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Preface 

The purpose of this text is to present and demonstrate the use of finite 
element based methods for the solution of problems involving plasticity. As 
well as the conventional quasi-static incremental theory of plasticity, attention 
is given to the slow transient phenomenon of elasto-viscoplastic behaviour 
and also to dynamic transient problems. We make no pretence that the text 
provides a complete treatment of any of these topics but rather we see it as 

_ an attempt to present numerical solution techniques, which have been well 
tried and tested, for selected important areas of application. 

In our earlier books on finite elements we have concentrated on linear 
applications. Here we attempt the much more daunting task of introducing, 
in detail, the use of finite elements for solving problems in which plasticity 
effects are present. To our knowledge it is the first such book. Our main idea 
is to present the theory and detailed algorithms in the form of modular 
routines written in FORTRAN which can be linked together to form 13 
finite element plasticity programs. 

Writing this book has been in itself, rather like solving a nonlinear finite 
element problem. We have gone through many iterations and we hope that 
we have now converged to a reasonable 'solution'. As in many real engineer
ing situations our convergence criterion has been influenced by a deadline. 
In our case the deadline was largely self-imposed as we have already been 
engaged on this project for more than three years. We do not believe our 
solution to be unique or in any sense optimal. We merely offer it to fill a 
gap in the existing literature. 

The text is arranged in three main parts. Part I is devoted to one
dimensional problems. These relatively simple applications are possibly the 
most important in the book; since all the essential features of nonlinear finite 
element analysis are immediately recognisable without the distractions and 
complications that are present in general continuum problems. Part II 
deals with the two-dimensional applications of plane stress/strain and axi
symmetric continua and plate bending problems. Finally in Part III we 
present some dynamic transient applications and briefly describe some 
further developments. 

All of the programs presented in this text have been specially written by 
the authors. In the development of the subroutines for the solution algo
rithms described, a conflict inevitably arose between computational efficiency 

xi 



xii PREFACE 

and clarity of coding. Whatever sacrifices have been made have been biased 
towards satisfying the latter condition. However, we believe that the codes 
presented are both reasonably efficient and flexible and have potential usage 
in commercial as well as teaching and research environments. A total of 132 
subroutines are presented which amount to more than 8,000 statements. The 
13 assembled programs comprise approximately 20,000 statements. To aid 
readers wishing to implement the programs a magnetic tape of the computer 
codes together with the test input data listed in Appendix IV is available 
£rom the publishers. Although every attempt has been made to verify the 
programs, no responsibility can be accepted for their performance in practice. 

A further feature of the book is that each chapter contains several exercises 
for further study. 

We are indebted to many people for their direct or indirect assistance in 
the preparation of this text. This preface would not be complete without an 
acknowledgment of this debt and a record of our gratitude to the following: 
To Professor O. C. Zienkiewicz for his pioneering work and stimulating 
influence. To Professor G. C. Nayak whose work on numerical analysis of 
plasticity problems has significantly influenced the present text. To Dr. I. C. 
Cormeau whose thesis on viscoplasticity has been an invaluable source of 
information. To Professor K. 1. Bathe for permission to use the profile 
equation solver included in Chapter 11. To N. Bicanic, D. K. Paul, H. H. 
Abdel Rahman and M. M. Huq for their generous assistance in the prep
aration of several chapters. To our colleagues and former research workers 
in the Department of Civil Engineering, University College of Swansea for 
helpful discussions and suggestions. To E. S. Caldis for his care in preparing 
annotated computer listings and, finally, to Mrs. M. 1. Davies for her skill 
and patience in typing the manuscript. 

D. R.I. OWEN 
E. HINTON 

Swansea, May 1980 
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1.1 Introductory remarks 

Chapter 1 
Introduction 

The finite element method is now firmly accepted as a most powerful 
general technique for the numerical solution of a variety of problems 
encountered in engineering. Applications range from the stress analysis of 
solids to the solution of acoustical, neutron physics and fluid dynamics 
problems" Indeed the finite element process is now established as a general 
numerical method for the solution of partial differential equation systems, 
subject to known boundary and/or initial conditions. 

For linear analysis, at least, the technique is widely employed as a design 
tool. Similar acceptance for nonlinear situations is dependent on two major 
factors. Firstly, in view of the increased numerical operations associated 
with nonlinear problems, considerable computing power is required. 
Developments in the last decade or so have ensured that high-speed digital 
computers which meet this need are now available and present indications are 
that reductions in unit computing costs will continue. Secondly, before the 
finite element method can be used in design, the accuracy of any proposed 
solution technique must be proven. The development of improved element 
characteristics and more efficient nonlinear solution algorithms· and the 
experience gained in their application to engineering problems have ensured 
that nonlinear finite element analyses can now be performed with some 
confidence. Hence barriers to the common use of nonlinear finite element 
techniques are being rapidly removed and the process is already economi
cally acceptable for selected industrial applications. 

1.2 Aims and layout 
The object of this book is to describe in detail the application of the finite 

element method to the solution of materially nonlinear engineering analysis 
problems. Unlike other texts on linear and nonlinear finite element 
analysis(1-4) which have dealt predominantly with theoretical aspects, this 
book is intended to be more practical and therefore focuses attention on the 
computer implementation of nonlinear finite element schemes. 

Nonlinearities arise in engineering situations from several sources. For 
example a nonlinear material response can result from elasto-plastic material 
behaviour or from hyperelastic effects of some form. Additionally nonlinear 
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4 FINITE ELEMENTS IN PLASTICITY 

characteristics can be associated with temporal effects such as viscoplastic 
behaviour or dynamic transient phenomena. Each of these nonlinearities 
may occur in a variety of structural types such as two- or three-dimensional 
solids, frames, plates or shells. Therefore it becomes clear that a textbook 
dealing with nonlinear finite element programming must at least be restricted 
to selected topics. For this reason three classes of problems will be examined 
in depth in the three parts of this text. 

Part I: One.;dimensional materially nonlinear problems. All the essential 
features of a nonlinear finite element solution can be described in 
relation to one-dimensional models. The applications considered 
are: 
• Nonlinear quasi-harmonic problems 
• Nonlinear elastic situations 
• Elasto-plastic behaviour of axial bar systems 
• Time dependent elasto-viscoplastic analysis of bar systems 
• Elasto-plastic beam bending 

Part II: Two-dimensional materially nonlinear problems. In this part the 
ideas developed in Part I are extended to continuum problems. The 
following applications are presented: 
• Elasto-plastic analysis of plane stress, plane strain and axi

symmetric solids 
• Time dependent elasto-viscoplastic analysis of plane stress, 

plane strain and axisymmetric solids 
• Elasto-plastic plate bending problems 

Part III: Nonlinear transient dynamic problems. In this time-dependent 
class of problems inertia effects are included in the analysis. In this 
part, the following topics are considered: 
• Elasto-plastic and geometrically nonlinear material behaviour 
• Explicit and implicit time integration schemes 
• Combined explicit/implicit algorithms 

It should be pointed out that several different programming options are 
open for solution of the above problems and the methods presented in this 
text are the ones which are physically the most clear and which experience 
indicates give reliable results for a wide range of applications. An important 
feature of this text is the step-by-step development of thirteen finite element 
programs to deal with the above problems. 

For the one-dimensional applications considered in Part I, only a 2-node 
element with linear displacement variation between nodes is considered. 
This allows the basic steps of a nonlinear finite element analysis to be pre
sented without unnecessary distractions. In Parts II and III of the text, 
where two-dimensional continuum and plate bending problems are con
sidered, isoparametric elements are exclusively employed. In particular, a 
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4-node linear element and 8- and 9-node quadratic versions are used. These 
elements are illustrated in Fig. 1.1 and are extremely versatile, good per
formers which have been well tried and tested in both linear and nonlinear 
situations. A typical elasto-plastic application using 8-node isoparametric 
elements is shown in Fig. 1.2 where the incremental loading of a notched 
beam is illustrated. The progressive development of plastic zones with 
increasing load levels are compared for a Tresca and Von Mises yield 
criterion. 

y 

(a) (b) (c) 

x 

Fig. 1.1 The two-dimensional isoparametric elements employed in the text: 
(a) Linear 4-node; (b) Serendipity 8-node; (c) Lagrangian 9-node. 

The layout of the book will now be briefly described. The remainder of 
Chapter 1 discusses the basic notation and style adopted in program 
presentation. 

Chapter 2 discusses the general nonlinear problem and some solution
techniques are outlined. For the one-dimensional applications to be con
sidered, basic theoretical expressions are developed in a form suitable for 
numerical solution. 

In Chapter 3, the solution techniques presented in Chapter 2 are pro
grammed in FORTRAN and numerical examples are solved for each 
separate application. 

Chapter 4 is devoted to one-dimensional elasto-viscoplastic problems. 
The basic theory for this time-dependent phenomenon is first presented. 
The process is then coded and the program used to solve some numerical 
examples. 

In Chapter 5 elasto-plastic beam bending is considered. This topic forms a 
bridge between uniaxial and continuum applications since now more than 
one degree of freedom exists at each nodal point. Some measure of con
tinuum behaviour is also introduced since a layered approach is used to 
trace the development of plasticity through the cross-section of the beam. 
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Fig. 1.2 Elasto-plastic analysis of a notched beam under bending showing plastic zone distributions for both a Von Mises and a 
Tresca yield criterion. 
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Chapter 6 forms an introduction to two-dimensional continuum problems. 
The basic theory for two-dimensional isoparametric elements is presented 
and some standard su~routines required for applications described in later 
chapters are listed. These include routines which perform some standard 
linear elastic operations, such as nodal load generation, equation solution, 
etc., as well as nonlinear subroutines common to more than one application. 

Two-dimensional elasto-plastic problems are considered in Chapter 7. 
Basic theoretical expressions for a general continuum are first reviewed, and 
manipulated into forms convenient for numerical analysis. Particular -expressions for plane stress/strain and axisymmetric situations are then 
developed and coded. Four different yield criteria are employed. The Tresca 
and Von Mises laws which closely approximate metal plasticity behaviour 
are considered and the Mohr-Coulomb and Drucker-Prager criteria, which 
are applicable to concrete, rocks and soil are presented. 

Chapter 8 is concerned with the transient phenomenon of elasto
viscoplasticity where again the situations of plane stress/strain and axial 
symmetry are considered. Both explicit and implicit time integration schemes 
are presented and the four yield criteria considered in Chapter 7 are em
ployed. The FORTRAN program developed is illustrated by application to 
some numerical examples. 

Elasto-plastic plate bending problems are discussed in Chapter 9. The 
basic theoretical expressions are presented in a form suitable for numerical 
analysis with both a layered and nonlayered approach to plastification 
through the plate thickness being considered. Treatment in this chapter is 
limited to the Tresca and Von Mises yield conditions. 

Chapters 10 and 11 deal with the transient dynamic analysis of two
dimensional continua. In this application inertia effects are included in the 
computation and problems such as blast loading and seismic phenomena 
are ~onsidered. Nonlinear effects due to both elasto-plastic material behaviour 
and gross geometric deformations are included. Both explicit and implicit 
techniques are employed for the time integration of the equations of motion as 
well as a combined implicit/explicit algorithm. The computer codes developed 
are applied to the solution of some practical problems. 

Finally in Chapter 12 further aspects of nonlinear material behaviour are 
discussed. Alternative solution techniques and material models are referred 
to and some additional fields of application indicated. 

Three appendices are included which contain user instructions for the 
computer programs described throughout the text. Appendices I and II 
provide user instructions for one-dimensional and two-dimensional con
tinuum problems respectively. A user's guide for transient dynamic problems 
is provided in Appendix III. Finally in Appendix IV sample input data and 
lineprinter output are provided for both one- and two-dimensional appli
cations. 
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1.3 Program structure 

1.3.1 Introduction 
This section describes the main features of the computer programs to be 

developed later in the book. A modular approach is adopted, in that separate 
subroutines are employed to perform the various operations required in a 
nonlinear finite element analysis. Generally each program consists of 9 
modules, each with a distinct operational function. Each module in turn is 
composed of one or more subroutines relevant only to its own needs and, 
in some cases, of subroutines which are common to several modules. Control 
of the modules is held by the main or master segment. 

The modules, shown schematically in Fig. 1.3, are described in relation 
to their general functions as follows: 

1. Initialisation or zeroing module-this is the first module entered and its 
function is to initialise to zero various vectors and matrices at the begin
ning of the solution process. 

2. Data input and checking module-this is the second module entered. It 
handles input data defining the geometry, boundary conditions and 
material properties. This data is checked using diagnostic routines and if 
errors occur they are flagged and the remainder of the input data is 
printed out before the program is terminated. For isoparametric elements, 
Gaussian integration constants and mid-side nodal coordinates for 
straight-sided elements are also evaluated in this section. Once used 
this module is not needed again. 

3. Loading module-this module organises the calculation of nodal forces 
due to the various forms of loading for two-dimensional application. 
These include pressure, gravity and concentrated loadings. 

4. Load incrementing module-Any materially nonlinear finite element 
solution must proceed on an incremental basis. Therefore the function 
of this section is to control the incrementing of the applied loads evaluated 
by the loading module. It also ensures that any specified displacement 
values are also incrementally applied. 

5. Stiffness module-this is the next module entered and organises the 
evaluation of the stiffness matrix for each element. The stiffness matrices 
are stored on disc and ordered in the sequence required for equation 
assembly and reduction. 

6. Solution module-the general purpose of this routine is to assemble, 
reduce and solve the governing set of simultaneous equations to give the 
nodal displacements and force reactions at restrained nodal points. 

7. Residual force module-the function of this module is to calculate the 
residual or 'out of balance' nodal forces at each stage of the analysis. 

8. Convergence module-in this module the convergence of the nonlinear 
solution is checked against criteria given in later chapters. 
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9. Output module-this module organises the output of the requested 
quantities. 

Main or master segment 

-- Increment loop 

- - - - Iteration loop 

Initialising or 

zeroing module 

Data input 

and checking module 

Loading module 

--
Load incrementing module 

Stiffness module 

Solution module 

'----1 
I 
1 
I 
I 
I 
I 

..... ---l 

Residual force module 

Convergence module 

... 
Output module 

Fig. 1.3 Program modules for nonlinear solution codes. 
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The main purpose of the main or master segment is to call the above 
modules and to control the load increments and iteration procedure according 
to the solution algorithm being employed and the convergence rate of the 
solution process. 

1.3.2 Programming notation 
In the programs presented in this text an attempt has been made to name 

variables in a logical manner. By choosing descriptive names, the use of 
many of the variables becomes self-apparent, thus assisting the reader in the 
task of program assimilation. All variable names are chosen to be 5 charac
ters in length; this occasionally causes a little difficulty in abbreviation but 
has an advantage with regard to neatness of program presentation. For 
example, the following names will be employed. 

NMATS 
PROPS ( ) 
NEVAB 
NNODE 
NDOFN 

The Number of different MATerialS 
The array of material PROPertieS 
The Number of Element VAriaBles 
The Number. of NODes per Element 
The Number of Degrees Of Freedom per Node 

Furthermore a 'common root' principle will be adopted; where a single 
basic variable name is employed with different prefixes depending on its 
usage in the program. In particular: 

i) Prefix I, J or L will be used to indicate a DO loop variable 
ii) Prefix K will indicate a counter 

iii) Prefix M will indicate a maximum value 
iv) Prefix N will indicate a given number 

For example IPOIN, NPOIN, MPOIN will indicate respectively a par
ticular nodal point, the number of nodal points in the problem and the 
maximum permissible number of nodal points in the program. 

Similarly, any DO loop will be of the general form 

KEVAB=O 
DO 1 INODE=l, NNODE 
DO 1 IDOFN=l, NDOFN 

1 KEVAB=KEVAB+l 

which indicates that the outer and inner DO loop indices range respectively 
over the number of nodes per element and the number of degrees of freedom 
per node. The prefix K is employed in KEV AB to indicate a counter over 
the number of element variables, NEV AB. 

All programming is undertaken in standard FORTRAN IV. A listing is 
presented for all subroutines described in this text and detailed notes on 
each group of statements are provided. Comment cards have also been used 
to assist in. the understanding of the programs. . 
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Chapter 2 
One-dimensional nonlinear problems 

2.1 Introduction 
Several classes of nonlinear problems of interest in many branches of 

science and engineering can be reduced to the solution of a system of simul
taneous equations in whi<;h the equation coefficients are dependent on some 
function of the prime variables. (1) In this chapter some basic techniques for 
the numerical solution of such problems are examined. In order to introduce 
the essential details of the solution processes as simply as possible, the 
applications will be restricted to one-dimensional situations. In particular, 
elasto-plasticity, nonlinear elasticity problems and systems governed by a 
nonlinear quasi-harmonic equation will be considered. In each case a com
puter program will be developed and its use illustrated by application to 
simple problems. The aim of this chapter is to prepare the reader for the 
more comprehensive two-dimensional treatment of these topics which will 
be undertaken in Chapters 6-9. Indeed, all the essential features of nonlinear 
finite element analysis detailed in these later chapters will be recognisable 
from the si~le treatment considered here. It should be emphasised that 
the subroutines developed in this chapter will not be used in the main finite 
element programs discussed in Parts II and III. 

2.2 Basic numerical solution processes for nonlinear problems 
The use of finite element discretisation in a large class of nonlinear prob

lems results in a system of simultaneous equations of the form 

Hrp+f = 0, (2.1) 

in which rp is the vector of the basic unknowns, f is the vector of applied 
'loads' and H is the assembled 'stiffness' matrix. For structural applications, 
the terms 'load' and 'stiffness' are directly applicable, but for other situations 
the interpretation of these quantities varies according to the physical problem 
under consideration. 

If the coefficients of the matrix H depend on the unknowns rp or their 
derivatives, the problem clearly becomes nonlinear. In this case, direct 
solution of equation system (~.1) is generally impossible and an iterative 
scheme must be adopted. Many options remain open for the iterative 

13 



14 FINITE ELEMENTS IN PLASTICITY 

sequence to be employed. Some of the most generally applicable methods 
available will now be outlined. 

2.2.1 Method of direct iteration (or successive approximations) 
In this approach(2) successive solutions are performed, in each of which 

the previous solution for the unknowns ffJ is used to predict the current 
values of the coefficient matrix H(ffJ). Rewriting (2.1) as 

ffJ = - [H(ffJ)]-lf, 

then the iterative process yields the (r + 1 )th approximation to be 

ffJr+1 = - [H(ffJr)]-lf 

(2.2) 

(2.3) 

If the process is convergent then in the limit as r tends to infinity ffJr tends 
to the true solution. 

It is seen from (2.3) that it is necessary to recalculate the 'stiffness' matrix 
H for each iteration. To commence the process, an initial guess for the 
unknown ffJ is required in order to calculate H. Generally a value of ffJo 
based on the solution for an average material property throughout the 
region is found to be satisfactory. If the nonlinearity of the material prop
erties is very marked at certain values of ffJ, an approximate prescription of 
the field variable at all nodes may be necessary. 

For practical purposes, the iterative process is deemed to have converged 
when some measure (usually a norm of the nodal unknowns) of the change 
in the unknown ffJ between successive iterations has become tolerably small. 
The process is illustrated diagrammatically for a single variable in Figs 2.1 
and 2.2, in which case the matrix H and vector ffJ reduce to the scalar equiv
alents Hand cPo The assumed dependence of H on cP is a basic problem 
function which must be prescribed before solution can commence. This 
material property is included in Figs 2.1 and 2.2 and, for convenience, the 
relationship between H(cP):cP and cP is prescribed rather than the H(cP)-cP 
dependence. Figure 2.1 shows the convergence paths for initial trial values, 
cPo, which are below and above the true solution, cPT, and for a convex 
H -cP relation. From the initial trial value, cPo, the corresponding value of H 
is immediately given from the prescribed H(cP). cP -cP relationship, to be HO. 
Equation (2.3) is then solved to give cPl. The value of H corresponding to 
cPl is then determined from the H(cP). cP -cP relationship and (2.3) then 
resolved to obtain cP 2• This cycling process is continued until cPn- l and cPn 

are deemed to be sufficiently close, indicating that convergence has occurred. 
The quantity H r is represented by the slope of the secant to the H -cP curve 
and decreases with increasing values of cPo Both the high and low initial trial 
solutions produce monotonic convergence paths. Figure 2.2 shows the 
unsuitability of the method for problems with a concave H -cP relationship. 
Both low and high initial trial solutions produce convergence paths which 
oscillate around the true solution. Although the solution converges for the 
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Fig. 2.1 Direct iteration method for a single variable problem--convex H-t/> 
relation. 

single variable case, in multi-degree of freedom problems the coupling of 
stiffness terms is likely to lead to instability of the iterative process. A dis
advantage of the direct iteration method is that convergence of the solution 
scheme is not guaranteed and cannot be predicted at the initial solution 
stage. 

2.2.2 The Newton-Raphson method 
During any step of an iterative process of solution, (2.1) will not be satisfied 

unless convergence has occurred. A system of residual forces can be assumed 
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(b) High initial solution 

Fig. 2.2 Direct iteration method for a single variable problem--concave H-r/> 
relation. 

to exist, so that 

'" = Hrp+/ # O. (2.4) 

These residual forces '" can be interpreted as a measure of the departure 
of (2.1) from equilibrium. Since H is a function of rp and possibly its deriv
atives, then at any stage of the process, '" --:- ",Crp). 
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If the true solution to the problem exists at rpr + ~rpr then the Newton-
Raphson approximation(2) for the general term of the residual force vector, 
'fir corresponding to solution at rpr is 

~ ( at/;-)T 
t/;iT 

= - L_/~c/>l ac/>; , (2.5) 

j=l 

in which N is the total number of variables in the system and the superscript 
r denotes the rth approximation to the true solution. Substituting for t/;t 
from (2.4), the complete expression for all the residual components can be 
written in matrix form as 

(2.6) 

in which a typical term of the Jacobian matrix J is 

(2.7) 

where htJ is the general term of matrix H. The last term in (2.7) gives rise to 
nonsymmetric terms in the Jacobian matrix. If these nonsymmetric terms are 
neglected in order to maintain symmetry, then substitution of (2.7) in (2.6) 
results in 

Or since 

equation (2.8) reduces, on use of (2.4), to 

H(rpr).rpT+1+/ = O. 

(2.8) 

(2.9) 

(2.10) 

This equation is identical to equation (2.3), Section 2.2.1, which governs the 
method of direct iteration. Therefore in order to achieve the better con
vergence rate associated with the Newton-Raphson process it is essential 
that the unsymmetric terms in J be retained. 

The explicit form of the nonlinear terms in (2.7) will clearly depend on the 
way in which the stiffness matrix coefficients, hij, depend on the unknowns, rp. 
The terms of the Jacobian matrix, given in (2.7), can be assembled to give 
the general expression 

(2.11) 

where the last term contains the unsymmetric terms only. The Newton
Raphson process can be finally written, using (2.6) and (2.11), in the form 

(2.12) 
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This allows the correction to the vector of unknowns f{J to be obtained from 
the residual force vector '" for any iteration. Again an iterative approach 
must be followed, with the vector of unknowns f{J being corrected at each 
stage according to (2.12) until convergence of the process is deemed to have 
occurred. The technique is illustrated schematically in Figs 2.3 and 2.4 for 

H(cf»cf> 
Assumed H( cf»cf> - cf> 
dependence 

f+-~~--'-~~---'-~~l-------

1/10 

1 

AcJ>0 1 
I.. ~ I 
! '-"-t AcJ>l 
I I 

I 
I I 

I 

H(cf> )cf> 

cJ>T -+-------=--.,.,.....",~ 

I I I 1 
o 1 2 3 4 

(a) Low initial solution 

I 
5 

cJ>T -+----+----"""7"'!";=1"'1"""1~ 

o 2 345 

(b) High initial solution 

Fig. 2.3 The Newton-Raphson method for a single variable problem-convex 
H-tfo relation. 
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Fig. 2.4 The Newton-Raphson method for a single variable problem---concave 
H-cf> relation. 

a single variable situation. Solution to the nonlinear problem will be achieved 
when the residual force tp vanishes, since this term directly measures the lack 
of equilibrium of the governing equation as indicated in (2.4). A trial value ,0 of the basic unknown is assumed and the material stiffness associated 
with this value calculated according to the prescribed H -rp relationship. 
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The residual force, ",0 is then calculated from (2.4) and the Jacobian evalu
ated according to (2.7). The correction 6.rpo to the first approximation for 
the basic unknown, can finally. be found from (2.12). Thus an improved 
approximation to the solution has been found, as rpl = rpo+arpo. This 
process can then be continually repeated until the residual force, ",n, is 
sufficiently small; or equivalently that rpr-l and rpr are sufficiently close. 
The Newton-Raphson process generally gives a more rapid and stable 
convergence path than the direct iteration method. 

2.2.3 The tangential stiffness method 
For structural applications the matrix H can be interpreted physically as 

the stiffness matrix of the structure. For nonlinear situations, in which the 
stiffness depends on the degree of displacement in some manner, H is equal 
to the local gradient of the force/displacement relationship of the structure 
at any point and is termed the tangential stiffness. The analysis of such 
problems must proceed in an incremental manner since the solution at any 
stage may not only depend on the current displacements of the structure, 
but also on the previous loading history. Consequently the problem can be 
linearised over any increment of load and therefore the matrix, which con
tains the nonlinear terms, can be discarded from (2.11) and (2.12). With 
this modification, the solution process is identical to that described in the 
previous section and for this reason the method is sometimes termed a 
generalised Newton-Raphson method. 

The solution algorithm is illustrated in Fig. 2.5; again for a single variable 
situation. Solution is commenced from a trial value rpo of the unknown (for 
structural problems the starting position of solution is almost invariably 
rpo = 0). The tangential stiffness, H(rpO) , corresponding to this displacement 
state is then determined and the residual force ",0 calculated according to 
(2.4). The correction, 6.rpo, to the trial value is computed according to the 
linearised form of (2.12), which is 

6.rpr = _ [H(rpr)]-l. ",(rpr) (2.13) 

An improved approximation to the unknown IS then obtained as 
rpl = rpo + 6.rpo. This iterative process is then continued until the solution 
converges to the nonlinear solution which is indicated by the condition that 
",r practically vanishes. 

2.2.4 The initial stiffness method 
In-the methods described in the three previous sections, the complete 

factorisation (or reduction) and solution of the full set of simultaneous 
equations describing the discretised structure is essential for each iteration. 
For the method of direct iteration the equation solution indicated by (2.3) is 
necessary, whilst the Newton-Raphson technique and tangential stiffness 
method demand the equation solutions indicated by (2.12) and (2.13) 
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Fig. 2.5 Tangential stiffness solution algorithm for a single variable situation. 

respectively. If in (2.13) the tangential stiffness matrix is replaced, at all steps 
of the computation, by the stiffness corresponding to the initial trial value 
of rp a complete factorisation, or reduction, of the assembled equations can 
be avoided. (3) In this case a complete equation solution need only be per
formed for the first iteration and subsequent approximations to the nonlinear 
solution performed, via the expression 

(2.14) 

Since the same stiffness matrix H(rpO) is employed at each stage, the reduced 
equations can be stored in their reduced or factored form and a second or 
subsequent solution merely necessitates the reduction of the right-hand side 
(",(rp7» terms, together with a backsubstitution. This has the immediate 
advantage of significantly reducing the computing cost per iteration but 
reduces the convergence rate as can be seen from Fig. 2.6 where the ~cheme 
is schematically illustrated. The iterative algorithm is identical to that 
described in the preceding section. This method can be shown to be uncon
ditionally convergent(4) and can even be employed in situations where the 
material exhibits negative stiffness. The relative economies of the initial 
stiffne~s and tangential stiffness methods depend to a large extent on the 
degree of nonlinearity inherent in the problem under consideration. The 
optimum algorithm is generally provided by an amalgamation of both 
processes, in which the stiffnesses are changed at selected iterative intervals 
only. 
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c/>1 
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Fig. 2.6 Initial stiffness solution algorithm for a single variable situation. 

2.3 Systems governed by a quasi-harmonic equation 
Many physical situations in engineering science are governed by a quasi

harmonic equation containing coefficients which are dependent on the 
unknown variable or its derivatives according to some prescribed law; The 
most common problem of this type occurs in heat conduction under steady
state conditions when the material conductivity is itself a function of tem
perature. This phenomenon also arises in diffusion problems where the 
diffusivity of the medium often varies with the concentration of the diffusing 

. \ 

matter. Further physical examples are provided in Ref. (5). 
For a one-dimensional situation the governing equation to be con

sidered is 

~(Kdcp) + Q = 0, 
dx dx 

(2.15) 

in whjch cp is the unknown function and the terms K and Q may be functions 
of tiie position coordinate, x. The problem becomes nonlinear if K and/or Q 
are also functions of the unknown cp or its derivatives, according to some 
prescribed function. 

Two types of boundary condition will be considered: 

(a) The value of the unknown specified on the boundary 

(2.16) 

(b) The gradient of the unknown at the boundary specified to be zero 
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de/> = de/> = 0. 
dn dx 

(2.17) 

(A more general form of this latter boundary condition is considered 
in Ref. 6.) 

Equation (2.15) can be transformed to finite element form by suitable 
discretisation and use of the Galerkin weighted residual process.(5,6l The 
scalar product of equation (2.15) with any arbitrary weighting function, W, 
must be zero if e/> satisfies (2.15) throughout any region r, so that 

f (~(Kde/» + Q) W dx = O. 
r dx \ dx 

(2.18) 

Integrating the first term by parts results in 

[ WKde/>]X~f (KdW de/> -QW)dX = 0, 
dx Xl r dx dx 

(2.19) 

where the limits of integration in the first term are the end points of the 
region r. The unknown function e/> may be approximated as 

(2.20) 

in which n is the total number of nodes in the finite element idealisation and 
Nt are the global shape functions. In the Galerkin process the number of 
weighting functions must equal the total number of unknown nodal values. 
The weighting function Wi corresponding to node i can then be conveniently 
chosen such that Wi = Ni. It should be noted that at nodes where the 
values of e/> are prescribed, there is no associated unknown and consequently 
the weighting function for such nodes is zero. Therefore the first term 
in (2.19) always vanishes since at the tw,o end points of the interval either 
c/> is prescribed according to (2.16), in which case the weighting function 
for that point is zero, or dc/>/dx is specified as zero according to (2.17). 
Substituting for c/> and Win (2.19) and assembling all element contributions 
in the usual manner results in 

HffJ+f = 0, 

in which typical element components are 

f 
dNi(el dNj(el 

hij(el = K dx, 
r(el dx dx 

't(el = f QN·(el dx J i ( l Z , 

r e 

(2.21) 

(2.22) 

(2.23) 
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where N,(e) are the element shape functions specifying the distribution of the 
unknown, cp, over the element. For the specific case of a two-noded element 
with a linear variation in cp as shown in Fig. 2.7, the shape functions are 
simply 

1 x 
(2.24) =---

2 L 

where L is the length of the element. 

r-- x ~ -- --N
1
(e) I ----- --- I N (e) 

I -- I 2 -- --1 I 2 

~ ~ .... 1:.. -1 2 .. 2 

Fig. 2.7 One-dimensional two-noded element with linear variation of the un
known, rP, showing element shape functions. 

Substituting in (2.22) and (2.23), and assuming no variation of K with 
position in the element, gives 

and 

K [ 1 H(e) =-
L -1 

-1 ] 
1 ' 

QL 
11 (e) = 12(e) = -. 

- 2 

(2.25) 

(2.26) 

Provided that the variation of K with cp or its derivatives is specified, the 
problem falls into the category discussed in the previous section and can be 
solved by either the method of direct iteration or the Newton-Raphson 
approach. 

In the numerical examples considered later in this chapter a specific form 
of nonlinearity will be considered, namely 

K = Ko(a+bcp), (2.27) 

in which Ko is a reference value and a and b are known constants. For 
solution by the Newton-Raphson process the Jacobian matrix can be con
sidered to be th~-sumof symmetric and nonsymmetric components as indi
cated in (2.11). The symmetric part has already been calculated in (2.25) and 
the nonsymmetric contribution must now be calculated according to the last 
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term in (2.7). From (2.7), (2.22) and (2.27) the general term is given as 

2 2 

L(Ohik ) Lf JL
/
2 0 dNi(el dNk(el ) 

hi/ = - ~k = l~kKo - [a+b~] dx . 
O~j \ -L/2 O~j dx dx 

(2.28) 

k=l k=l 

Noting that ~ is given by (2.20) and that the shape functions are given by 
(2.24), the evaluation of (2.28) results in 

Kob [ 1 
H'(eJ = -(~1 -~2) 

2L -1 
(2.29) 

As expected, it is seen that the derivative matrix H'(el is unsymmetric. 

2.4 Nonlinear elastic problems 
The simplest case of nonlinear behaviour in structural problems arises 

from nonlinear elastic material action. The stress/strain relationship of the 
material is nonlinear but the material behaviour is elastic with all defor
mations and displacements recoverable on unloading. For example, this 
type of behaviour arises in hyperelastic problems(71 where the stresses are 
functions of a strain dependent material modulus. 

The nonlinear constitutive relation may be specified, for a one-dimensional 
situation, as 

(2.30) 

where a is the stress, € the strain and Eo some reference value of the material 
modulus. The material performance will be nonlinear according to the form 
of the specified strain energy function, W( €). 

14 L~ 

O~2 °1 16 
F~t--------------------~O~--~~F 

Cross sectional area A 

Fig. 2.8 Forces and displacements for a two-node element. 

The simplest form of one-dimensional finite element is the constant stress 
element shown in Fig. 2.8 in which a linear displacement variation is assumed 
between nodes 1 and 2. The force in the element is given, from (2.30), by 

F = EoAg(8/L), (2.31) 
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where A is the element cross-sectional area and 0 the element extension. The 
tangential stiffness for the material is then 

dF EoA dg EoA 
KT = - = - - = -g'(E). 

do L dE L 
(2.32) 

Or, in particular, the element tangential stiffness matrix is given by 

EoA [1 
KT(e) = --g'( E) 

L -1 
(2.33) 

Provided that g'( E) is positive for all strain values, the tangential stiffness 
method of solution described in Section 2.2.3 can be employed in solution 
with KT(e) being directly equivalent to H(rpr). If the tangential stiffness 
matrix becomes zero, the assembled stiffness equations will become singular 
and the inversion process required by (2.13) cannot be undertaken. Solution 
for situations in which the material tangential stiffness becomes non-positive 
can be performed by use of the initial stiffness method described in Section 
2.2.4. Since the initial material stiffness is employed throughout this latter 
process, the assembled stiffness matrix will remain positive definite through
out the computation. 

2.5 Elasto-plastic problems in one dimension 
In this section the essential features of elasto-plastic material behaviour 

are introduced, and the basic expressions are developed in a form suitable 
for numerical solution by some of the methods described in the previous 
sections. 

Elasto-plastic behaviour is characterised by an initial elastic material 
response on to which a plastic deformation is superimposed after a certain 
level of stress has been reached. (8) Plastic deformation is essentially irre
versible on unloading and is incompressible in nature. The onset of plastic 
deformation (or yieiding) is governed by a yield criterion and post-yield 
deformation generally occurs at a greatly reduced material stiffness. Basic 
theoretical expressions for a general continuum are provided in Chapter 7. 

For one-dimensional situations, the material parameters required to com
pletely define elasto-plastic behaviour are most conveniently obtained from a 
uniaxial tension test. Figure 2.9 shows an idealised stress-strain curve for a 
material and identical behaviour is assumed in tension and compression. 
The material initially deforms according to the elastic modulus, E, until the 
stress level reaches a value ay designated the uniaxial yield stress. On increas
ing the load further, the material is assumed to exhibit linear strain-hardening, 
characterised by the tangential modulus, ET. 

At some stage after initial yielding, consider a further load application 
resulting in an incremental increase of stress, da, accompanied by a change of 
strain, dE. Assuming-that the strain can be separated into elastic and plastic 
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Fig. 2.9 Elastic, linear strain-hardening stress-strain behaviour for the uniaxial 
case. 

components, so that 

dE = dEe+dEp, 

we define a strain-hardening parameter, H', as 

da 
H'=-. 

dEp 

(2.34) 

(2.35) 

This can be interpreted as the slope of the strain-hardening portion of the 
stress-strain curve after removal of the elastic strain component. Thus 

da 
(2.36) H' =---

With reference to Fig. 2.8, consider the behaviour of a linear displacement 
element, which has a cross-sectional area A, when it is subjected to a gradu
ally increasing axial force, F, which results in an extension, 8. Provided that 
FjA is less than or equal to the uniaxial yield stress, ay, the material behaviour 
will be elastic, exhibiting a stiffness of 

F EA 
K e =-=-

8 L' 
(2.37) 
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then the element stiffness matrix is simply 

EA [ 1 Ke(e) =-
L -1 

(2.38) 

Suppose F is increased until the material has yielded. Consider a further 
incremental increase in load dF which causes an additional element extension, 
dS. Then 

dS = (d€e+d€p)L, 

where L is the element length. Also, on use of (2.35) 

dF = daA = AH'd€p. 

The tangential stiffness for the material is then 

dF AH'd€p 
Kep = - = -----

dS L(dajE+d€p) 

Or, using (2.35) and rearranging 

Kep = EA(I_ E ). 
L E+H' 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

Finally, the element stiffness for elasto-plastic material behaviour is given by* 

Kep(e) = EA (1 _ E ) [ 1 -11] . 
L E+H'-1 

(2.43) 

In (2.42) it can be seen that the first term represents the elastic stiffness, as 
given by (2.38). The second term accounts for the reduction in stiffness from 
the elastic value due to yielding. 

* The element stiffness matrix can be written in the standard finite element form 

where integration is made over the volume of the element. For this one-dimensional 
application, D = E and 

where N1(e) and N2(e) are given by (2.24). The tangential stiffness matrix for elasto
plastic material behaviour is obtained by replacing D by 

Dep = E(1 _ E ). 
. E+H' 
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For a perfectly plastic material behaviour, after initial yielding equation 
(2.36) implies that H' = 0 and it is then evident from (2.43) that Kep(e) = O. 
This implies that the tangential (elasto-plastic) stiffness matrix for such a 
material is singular and the tangential stiffness method cannot generally be 
employed in solution. If a significant number of elements in the structure 
has yielded, the assembled tangential stiffness matrix will be singular, and 
the inversion or reduction demanded by (2.13) cannot be performed. This 
difficulty can be avoided by use of the initial stiffness method in which the 
elastic element stiffnesses are employed at every stage of the computation, 
thereby ensuring a positive definite assembled stiffness matrix. 

2.6 Problems 
In this section some tasks are set for the reader which illustrate some 

further points in connection with the topics discussed in the chapter. 
2.1 Use the direct iteration method to solve the following one degree of 

freedom problem, H4> + f = 0 where f = 10 and H depends on 4> 
according to H = 10(1 +e39). 

2.2 Repeat Problem 2.1 using the Newton-Raphson method. Compare the 
solutions and the computational effort required in each. 

2.3 Solve the following one degree of freedom problem by both the tan
gential stiffness and initial stiffness method. Apply the total load f as 
two equal increments 

H4>+f = 0, f = 10, H = 20(1-4». 

2.4 The more general form of the boundary condition (2.17) in Section 2.3 is 
d4>/dx+q+a.4> = 0, where q and a are constants and 4> is the unde
termined value of the unknown at the boundary point. Repeat the 
Galerkin process of Section 2.3 to include these additional terms. In 
particular, determine the additional nodal force contribution and the 
discrete 'external' nodal stiffness which arise. 

2.5 For the two-noded element with linear variation in 4> with shape 
functions as given by (2.24), evaluate the element stiffness matrix when 
K is a function of x. Assume that the spatial variation of K within the 
element is linear and obtained by interpolation of the specified nodal 
values by use of the element shape functions. 

2.6 Suppose that a heat loss also occurs by convection from the surface 
area of an element, which is given by h. 4> where h is the convection 
coefficient. If C is the circumference of the element, determine the 
additional contribution to H(e) resulting from this. (9) 

2.7 Determine the nonlinear portion, H'(e), of the Jacobian matrix for a 
material dependence K = Ko(1 + eb¢). Assume a two-noded linear 
element. 

2.8 Evaluate the stiffness matrix H(e) for a three-noded element for a 
heat conduction problem. Assume that the element has shape functions 
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N3(e) = 2X(~+X)' 
L2 2 

and also that K = Ko(a+bcp) where Ko, a and b are constants. 
2.9 Repeat.Problem 2.8 for the case where Ko is additionally a function of 

x. Assume that the nodal values of Ko are given. 
2.10 Solve the nonlinear elastic problem of Fig. 2.10 by hand calculation. 

Use the tangential stiffness method and assume the total load to be 
applied in two equal increments. 

11---------;9 ---O---l~. P = 4.8 
;1'. 5 ~ 

A=1.0 
a=20(e - ~) 

Fig.2.10 Nonlinear elastic example-Problem 2.10. 

2.11 Solve Problem 2.10 if the structure is loaded by incrementally increas
ing the prescribed value of displacement at node 2. Increase the applied 
displacement in two equal increments up to a maximum value of 
cp2 = 3.0. Since the element stiffnesses become negative at the higher 
increment, use the initial stiffness method. 

2.12 A locking material is one in which the stiffness increases with increasing 
strains. For example, if gee) = e2 can both the tangential stiffness and 
the initial stiffness methods be used to solve such material problems? 

l~ 2 
E= 1000 

0 .,20 A= 1.0 

~I 
CTy= 10 
H' = 100 ,-- 10 

Fig. 2.11 Elasto-plastic example-Problem 2.13. 

2.13 Determine the nodal displacement of node 2 of the structure shown in 
Fig. 2.11 as the applied load is increased to 10 units in two equal 
increments. Assume elasto-plastic material behaviour and use the 
tangential stiffness approach for solution. 

Ii 20 

fJ 
Element I I Element II 

0 ~ E 1000 1000 
I 2 II A 1.0 1.0 

.1 ... 
CTy 5.0 5.0 /,-- .1 H' 200 -100 

10 10 

Fig. ~.12- _ JJimaterial elasto-plastic example-Problem 2.14. 
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2.14 Determine the displacement of node 2 of the elasto-plastic structure 
shown in Fig. 2.12. Assume the load to be applied in two equal 
increments. What happens if HI' =200, Hu' = -200? 
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Chapter 3 
Solution of nonlinear problems 

3.1 Introduction 
A modular approach is adopted for the programs presented in this text, 

with the various main finite element operations being performed by separate 
subroutines. Any nonlinear finite element program must essentially contain 
all the subroutines necessary for elastic analysis. Briefly these consist of a 
subroutine to accept the input data, a subroutine for element stiffness formu
lation, subroutines for equation assembly and solution and a subroutine 
for output of the final results. 

In order to implement the solution algorithms described in Section 2.2, 
additional subroutines are clearly necessary. In particular two primary 
DO LOOPS are necessary to iterate the solution until convergence of the 
solution occurs and to increment the applied loading, if appropriate. Sub
routines must be included to evaluate the residual forces and also to monitor 
convergence of the solution. Figure 3.1 shows the organisation of the pro
grams presented in this chapter, particularly the sequence in which the 
subroutines are accessed. Four separate programs are developed to solve 
the following specific situations. 

• Solution of nonlinear quasi-harmonic situations by direct iteration. 
• Solution of nonlinear quasi-harmonic situations by the Newton

Raphson method. 
• Solution of nonlinear elastic problems by either the tangential stiffness 

or the initial stiffness method or a combination of both. 
• Solution of elasto-plastic problems by either the tangential stiffness or 

the initial stiffness method or a combination of both approaches. 
With reference to Fig. 3.1, most of the subroutines are common to all four 
programs presented; the only exceptions being the subroutines necessary for 
stiffness matrix generation, residual force calculation and solution conver
gence checking. The element stiffness formulation subroutines for quasi
harmonic direct interation, quasi-harmonic Newt~n-Raphson, nonlinear 
elastic situations and elasto-plastic problems are respectively named STIFF 1 , 
ASTIF1, STIFF2 and STIFF3. The evaluation of residual forces is not 
required in the direct iteration method and the appropriate subroutines for 
the quasi-harmonic Newton-Raphson, nonlinear elastic and elasto-plastic 
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I START J 
DATA 

Input data defining geometry, loading, boundary 
conditions, material properties, etc. 

INITIAL 
Initialise various arrays to zero 

INCLOD 
Increment the applied loads 

NONAL 
Set indicator to identify type of solution 
algorithm, e.g., direct iteration, tangential 
stiffness, etc. 

STIFFll ASTIFI/STIFF2ISTIFF3 
~L.. Calculate the element stiffnesses depending on 

c,. the type of problem, e.g., quasi-harmonic, 0 r-"-
0 "c,. elasto-plasticity, etc. ...I 

~ 8 
LU ...I 

ASSEMB ~ z 
LU 0 Assemble the element loads and stiffnesses to ~ 

~ u 
give the global stiffness matrix and load vector 2!:: ~ 

0 LU 

« t: 
0 GREDUC, BAKSUB & RESOL V ...I ..... 

"- Solve the resulting systems of simultaneous 
equations for the unknowns, cp 

I 
REFORI/REFOR2IREFOR3 

Calculate the residual force vector I/J for 
the Newton-Raphson, Tangential Stiffness and 
Initial Stiffness methods only 

I 
MONITR/CONUND .. ... 

NO 'Check to see if the solution has converged 

YES 

RESULT 
Output the results 

-
I END I 

Fig. 3.1 Program organisation for one-dimensional nonlinear applications. 

situations are named respectively REFORI, REFOR2 and REFOR3. 
Finally, since the basis of solution convergence differs for the direct iteration 
method from that of the other procedures, it requires a separate convergence 
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checking subroutine, termed MONITR. The equivalent subroutine for all 
other applications is named CONUND. 

The programs presented in this chapter also form the basis of an elasto
viscoplastic program for one-dimensional applications developed in Chapter 4 
and an elasto-plastic beam bending program considered in Chapter 5. In . 
order to allow several of the subroutines developed in this chapter to be used 
for beam bending applications it will be necessary to permit the number of 
degrees of freedom per nodal point to be variable and to dimension some 
arrays to accommodate additional quantities. 

Sections 3.2 to 3.8 are devoted to the development of the subroutines which 
are common to the four programs presented. 

3.2 Input data subroutine, D AT A 
For any finite element analysis the input data can be subdivided into three 

main classifications. Firstly the data required to define the geometry of the 
structure and the support conditions must be supplied. Secondly the material 
properties of the constituent materials must be supplied and finally the 
applied loading must be furnished. 

To allow a subroutine to be employed in more than one application, 
several control parameters must be supplied as input data. For example, the 
number of properties required to define the behaviour of a material will 
differ between quasi-harmonic problems and elasto-plastic situations. The 
use of variables in place of specific numerical values also generally aids 
program clarity. 

A list of control parameters required as input is now presented: 

NPOIN Total number of nodal points in the structure. 

NELEM Total number of elements in the structure. 

NBOUN Total number of boundary points, i.e. nodal points at which the 
value of the unknown is prescribed. In this context an internal 
node can be a boundary node. 

NMATS Total number of different materials in the structure. 

NPROP The number of material parameters required to define the charac
teristics of a material completely: 
4-For elasto-plastic problems, 
2-For all other applications. 

NNODE Number of nodes per element. For linear displacement one
dimensional elements this equals 2. 

NINCS The number of increments in which the total loading is to be 
applied. 

NALGO Indicator used to identify the type of solution algorithm to be 
employed: 
I-Direct iteration. 



36 FINITE ELEMENTS IN PLASTICITY 

2-Newton-Raphson method for quasi-harmonic problems. Tan
gential stiffness method for structural problems (nonlinear 
elastic and elasto-plastic situations). 

3-Initial stiffness method. 
4-Combination of the initial and tangential stiffness methods, 

where the stiffnesses are recalculated on the first iteration of a 
load increment only. 

5-Combination of the initial and tangential stiffness methods, 
where the stiffnesses are recalculated on the second iteration of 
a load increment only. This can aid the rate of convergence 
considerably, if on the application of an increment of load 
there is substantial further yielding. When calculating the 
element stiffnesses the total plastic strains evaluated during 
the previous iteration are used to indicate whether the element 
has yielded or not. If the element stiffnesses are recalculated on 
the first iteration, the elements which have now yielded may 
have been elastic at the end of the previous load increment and 
consequently the reformulated stiffness will be based on elastic 
behaviour. This can reduce the convergence rate of the process 
since generally H' ~ O.lE. From (2.42) the elasto-plastic stiff
ness is proportional to E(l-EI(E+H')) ~ EI11, whereas the 
elastic stiffness depends linearly on E. Hence the tangential 
stiffness calculated grossly overestimates the true material 
response. This problem can be alleviated by reformulating the 
element stiffnesses during the second iteration of a load incre
ment rather than the first, since the plastic strain evaluated on 
the first iteration will indicate yielding to have initiated. 

NDOFN The number of degrees of freedom per nodal point: 
I-For uniaxial problems. 
2-F or beam' bending problems (considered in Chapter 5). 

The geometry of the structure is completely defined on prescription of the 
nodal point coordinates and the element nodal connections. The coordinate 
of each nodal point must be defined with reference to a global coordinate sys
tem. For the one-dimensional situation being currently considered, the 
position of each nodal point is completely defined by a single coordinate 
whose value will be stored in the array 

COORD (IPOIN) 

where IPOIN corresponds to the number of the nodal point. 
The origin of the coordinate system can be arbitrarily chosen. The geometry 

of each individual element must be specified by listing in a systematic way 
the numbers of the nodal points which define its outline. For the two-noded 
linear displacement element the nodal numbers can obviously be read in any 
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order. The element topology is read into the array 

LNODS (NUMEL, INODE) 

where NUMEL corresponds to the number of the element under consider
ation and subscript INODE ranges from 1 to NNODE. Since each element 
may conceivably be assigned different material properties, a material property 
identification number is also allocated to each element and stored in the array 

MATNO (NUMEL) 

This implies that element number NUMEL has material properties of type 
MATNO (NUMEL). 

The material properties required for solution will differ for the various 
applications considered, but the same array will be employed for storage of 
this information. Namely 

PROPS (NUMAT, IPROP) 

where NUMAT denotes the material identification number and the subscript 
IPROP the individual property. Each element is associated with a particular 
material type through the previously mentioned identification array MA TNO 
(NUMEL). The relevant material properties associated with the different 
problem types considered here are listed below. 

(a) Quasi-harmonic problems 

PROPS (NUMAT, I)-The reference value Ko of the coefficient K in 
equation (2.27). 

PROPS (NUMAT, 2)-The constant b in equation (2.27) for a linear 
'stiffness' variation. 

(b) Nonlinear elastic problems 

PROPS (NUMAT, I)-The reference value Eo in (2.30). 
PROPS (NUMA T, 2)-Tl-te cross-sectional area A, of the element. Each 

element with a different cross-sectional area must 
be assigned a different material property number. 

(c) Elasto-plastic problems 

PROPS (NUMAT, I)-The elastic modulus, E, of the material. 
PROPS (NUMAT, 2)-The cross-sectional area, A, of the element. 
PROPS (NUMA T, 3)-The uniaxial yield stress of the material. 
PROPS (NUMAT, 4)-The linear strain hardening parameter, H', for 

the material (equation (2.35». 

It should be mentioned here that the specific form of dependence of material 
stiffness ·on the unknown function for cases (a) and (b) will be directly 
incorporated into the program by use of a FORTRAN FUNCTION 
statement. 
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Any nodal points at which a degree of freedom has a prescribed value 
must be identified by the temporary variable NODFX. To determine which 
degrees of freedom are to be prescribed at this node, the entries in the array 

ICODE (lDOFN) 

are set to either 0 or 1. (Variable IDOFN ranges over the number of degrees 
of freedom per node NDOFN. In the present case NDOFN = 1, but later 
in Chapter 5, NDOFN has the value 2.) If ICODE (lDOFN) is equal to 1, 
then degree of freedom IDOFN at node NODFX has a prescribed value. 
If NCODE (lDOFN) is equal to 0 then degree of freedom IDOFN at node 
NODFX is a free variable. 

The value for a prescribed degree of freedom is given by 

VALUE (lDOFN) 

It should be noted that if ICODE (IDOFN) =0, then VALUE (IDOFN) is 
ignored. 

In order to simplify the solution process, the information stored in arrays 
ICODE and VALUE is transferred to much larger arrays IFPRE (NPOSN) 
and PEFIX (NPOSN) respectively, where NPOSN ranges over all the degrees 
of freedom for the whole finite element mesh. Both IFPRE and PEFIX are 
initially set equal to zero and as data for each restrained boundary node is 
read, they are modified if necessary. Unit entries in IFPRE indicate that the 
associated variable is prescribed. The prescribed value is obtained from the 
corresponding position in PEFIX. 

Finally, the loads applied to the structure must be specified. For the 
frontal method of equation solution employed in later chapters it is con
venient to associate the applied loads with the elements on which they act. 
Thus for each element the nodal loads acting on the two nodes associated 
with the element must be input and these are stored in the array 

RLOAD (lELEM, lEV AB) 

where IELEM indicates the element number and lEV AB relates to the 
degrees of freedom of the element (lEV AB ranges from 1 to NEV AB, the 
number of element variables, which is equal to 2 in the present case but 
which equals 4 in the applications described in Chapter 5). It should be noted 
that a nodal load may be arbitrarily assigned to anyone of the elements con
nected to that node, since before eventual &olution all element contributions 
are assembled to form a global load vector. Before entering the solution 
routines the loads are transferred to an array ELOAD (IELEM, lEV AB) as 
described later in Section 3.7. 

Subroutine DATA is now presented and should be largely self-explanatory. 
Descriptive comments are provided immediately after the FORTRAN listing 
of the subroutine. 
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SUBROUTINE DATA DATA 1 
C***ff"'****f'*************--_._.*-************************************DATA 2 
C DATA 3 
C f** INPUTS DATA DEFINING GEOMETRY,LOADING,BOUNDARY CONDITIONS •.• ETC. DATA 4 
C DATA 5 
C*******f**f***.*****************.***************.**********************DATA 6 

COMMON/UNIM1/NPOIN. NELEM, NBOUN , NLOAD , NPROP,NNODE,IINCS, lIT ER, DATA 7 
KRESL,NCHEK,TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, DATA 8 
NITER,NOUTP,FACTO,PVALU DATA 9 

COMMON/UNIM2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), DATA 10 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), DATA 11 
MATNO(25),STRES(25,2),PLAST(25),XD-1SP(52), DATA 12 
TD1SP(26,2),TREAC(26.2),ASTIF(52,52),ASLOD(52), DATA 13 
REACT(52),FRESV(1352),PEF1X(52),ESTIF(4,4) DATA 14 

DIMENSION 1CODE(2),VALUE(2),TITLE(18) DATA 15 
READ (5,965)TITLE DATA 16 
WR1TE(6,965)TITLE DATA 17 

965 FORMAT(18A4) DATA 18 
READ(5,900) NP01N,NELEM,NBOUN,NMATS,NPROP,NNODE,NINCS,NALGO.NDOFN DATA 19 

900 FORMAT(915) DATA 20 
WRITE(6,905)NPOIN,NELEM,NBOUN,NMATS,NPROP,NNODE,N1NCS,NALGO,NDOFN DATA 21 

905 FORMAT(//1X, 'NPOIN =',I5,3X, 'NELEM :',I5,3X, 'NBOUN =',I5,3X, DATA 22 
'NMATS :',I5//1X,'NPROP :',I5,3X,'NNODE =',I5,3X, DATA 23 
'NINCS :',I5,3X, 'NALGO :',I5//1X, 'NDOFN :',15) DATA 24 

NEVAB:NDOFN*NNODE DATA 25 
NSVAB:NDOFN*NPOIN DATA 26 
WRITE(6,910) DATA 27 

910 FORMAT(lHO,5X,'MATERIAL PROPERTIES') DATA 28 
, DO 10 lMATS=',NMATS DATA 29 

READ (5.915) JMATS,(PROPS(JMATS,IPROP),IPROP:l,NPROP) DATA 30 
10 WRITE(6,915) JMATS,(PROPS(JMATS,IPROP),1PROP:1,NPROP) DATA 31 

915 FORMAT(Il0,4F15.5) DATA 32 
WRITE(6,920) DATA 33 

920 FORMAT(lHO,3X, 'EL NODES MAT.') DATA 34 
DO 20 IELEM=l,NELEM DATA 35 
READ (5.925) JELEM,(LNODS(JELEM,INODE),lNODE:l,NNODE),MATNO(JELEM)DATA 36 

20 WR1TE(6.925) JELEM,(LNODS(JELEM,INODE},INODE:1,NNODE),MATNO(JELEM)DATA 37 
925 FORMAT(415) DATA 38 

WRITE(6,930) DATA 39 
930 FORMAT(lHO,5X,'NODE',5X,'COORD.') DATA 40 

DO 30 1POIN=l,NPOIN DATA 41 
READ (5,935) JP01N,COORD(JPOIN) DATA 42 

30 WRITE(6,935) JPOIN,COORD(JP01N) DATA 43 
935 FORMAT(I10,F15.5) DATA 44 

DO 40 ISVAB=1,NSVAB DATA 45 
IFPRE(ISVAB)=0 DATA 46 

40 PEFIX(ISVAB):O.O DATA 47 
IF(NDOFN.EQ.l) WRITE(6.940) DATA 48 

940 FORMAT(1HO, lX, 'RES.NODE' ,2X, 'CODE' ,3X, 'PRES. VALUES') DATA 49 
IF(NDOFN.EQ.2) WRITE(6.945) DATA 50 

945 FORMAT(1HO,lX,'RES.NODE',2X,'CODE',3X,'PRES.VALUES',2X, DATA 51 
. 'CODE' ,3X, 'PRES. VALUES I) DATA 52 
DO 50 lBOUN=l,NBOUN DATA 53 
READ (5,950) NODFX, OCODEODOFN), VALUE( IDOFN) , IDOFN:l, NDOFN) DATA 54 
WRITE(6,950) NODFX,(ICODE(IDOFN),VALUE(IDOFN),1DOFN:l,NDOFN) DATA 55 

950 FORMAT(I10,2(I5,F15.5» DATA 56 
NPOSN:(NODFX-l)*NDOFN DATA 57 
DO 50 IDOFN=l,NDOFN DATA 58 
NPOSN=NPOSN+1 DATA 59 
IFPRE(NPOSN)=ICODE(IDOFN) DATA 60 

50 PEFIX{NPOSN)=VALUE(IDOFN) DATA 61 
WRITE(6,955) DATA 62 

955 FORMAT(lHO,2X,'ELEMENT',10X, 'NODAL LOADS') DATA 63 
DO 60 1ELEM=l,NELEM DATA 64 
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DO 60 IEVAB=1,NEVAB 
60 RLOAD(IELEM,IEVAB)=O.O 
70 READ (5,960) JELEM,(RLOAD(JELEM,IEVAB),IEVAB=1,NEVAB) 

IF(JELEM.NE.NELEM) GO TO 70 
DO 80 IELEM=1,NELEM 

80 WRITE(6,960) IELEM,(RLOAD(IELEM,IEVAB),IEVAB=1,NEVAB) 
960 FORMAT(I10,5F15.5) 

DATA 65 
DATA 66 
DATA 67 
DATA 68 
DATA 69 
DATA 70 
DATA 71 
DATA 72 
DATA 73 

RETURN 
END 

DATA 16-18 Read and write the problem title. 
DATA 19-24 Read and write the control parameters for the problem. 
DATA 27-32 Read and write the material properties for each individual 

material. 
DATA 33-38 Read and write the nodal connection numbers and material 

identification number of each element. 
DATA 39-47 Read and write the coordinate of each nodal point. Also 

initialise the arrays for locating and recording prescribed 
values of the unknown. 

DATA 48-61 Read and write the node number and prescribed value for 
each degree of freedom for each boundary node and store 
in the global arrays IFPRE and PEFIX. 

DATA 62-71 Read and write the nodal loads for each element. 

3.3 Subroutine NONAL 
The main function of this subroutine is to control the solution process 

according to the value of the solution algorithm parameter, NALGO, input 
in subroutine DATA. The subroutine sets the value of indicator KRESL to 
either 1 or 2 according to NALGO and the current value of the iteration 
number lITER and increment number lINCS. A value of KRESL = 1 
indicates that the stiffnesses are to be reformulated and consequently a full 
system of simultaneous equations must be subsequently solved. If KRESL =2 
the stiffnesses are not to be redefined and therefore only equation resolution 
need be undertaken. In this the reduced equations from the previous solution 
are stored and only the terms associated with the new loading need be reduced 
in the solution process. This results in a considerable saving in computation 
time with equation resolution generally requiring only 20% of the time 
required for complete analysis. For the algorithm options contained in the 
four programs presented, the value of KRESL is preset as follows. 

(a) Direct iteration. For this case the stiffnesses must be reformulated, 
according to (2.3), for every iteration. Consequently KRESL = 1 at 
all stages. 

(b) N ewton-Raphson method for quasi-harmonic problems and tangential 
stiffness method for structural problems. Again the stiffnesses must be 
reformulated for every iteration according to (2.12) for quasi-harmonic 
situations and (2.13) for structural applications. Therefore KRESL = 1 
at all stages. 
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(c) Initial stiffness method. In this approach the stiffnesses are calculated 
once and for all at the beginning of the computation, according to (2.14) 
and this value is then used throughout. Consequently KRESL = I for 
the first iteration of the first load increment and is set equal to 2 there
after. 

(d) Combination o/initial and tangential stiffness methods. In this algorithm 
the stiffnesses are recalculated only for the first iteration of any load 
increment and kept constant thereafter until convergence of solution 
under that particular loading is achieved. Therefore KRESL = 1 for 
the first iteration of any load increment and is set to 2 at all other 
times. (Alternatively the element stiffnesses may be recomputed at the 
beginning of the second iteration as described in Section 3.2.) 

The final role of subroutine NONAL is to set the vector of prescribed 
unknowns to the correct values. For the method of direct iteration the 
problem is completely reanalysed for every iteration and therefore the vector 
of prescribed unknowns must be introduced unchanged into the solution sub
routines at each stage. However, for the three other solution algorithms con
sidered, the processes are essentially accumulative with the value of the 
unknowns being totalled from the incremental values obtained for each 
iteration. Therefore, in order to maintain the fixed unknowns at their pre
scribed values, it is necessary to input the prescribed values into the solution 
routines for the first iteration of a load increment and then prescribe zero 
values for all subsequent iterations. In this way the final displacements will 
equal the prescribed values on convergence of the solution. If the structure 
is to be loaded by prescribing values of the unknowns then an incremental 
procedure may be adopted with factored values of the prescribed unknowns 
being applied sequentially. The prescribed displacements are factored by use 
of the variable FACTO, whose role is explained in terms of applied loads in 
Section 3.7. The prescribed values of the unknowns 'have been permanently 
stored in array PEFIX in subroutine DATA. These prescribed values, or 
zero values, required as described above, are transferred to the equation 
solution subroutines via the array FIXED. 

Subroutine NONAL is now presented and explanatory notes provided. 

SUBROUTINE NONAL NONL 1 
c***********************************************************************NONL 2 
C NONL 3 
C *** SETS INDICATOR TO IDENTIFY TYPE OF SOLUTION ALGORITHM NONL 4 
C NONL 5 
C***********************************************************************NONL 6 

COMMON/UNIM1/NPOIN.NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,lITER, NONL 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, NONL 8 
NITER, NOUTP ,FACTO, PVALU NONL 9 

COMMON/UNIM2/PROPS(5,4),COORD(26) ,LNODS(25,2) ,IFPRE(52 ), NONL 10 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), NONL 11 
MATNO(25) ,STRES(25,2),PLAST(25) ,XDISP(52) , NONL 12 
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TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) 

KRESL=2 
IF(NALGO.EQ.1) KRESL=1 
IF(NALGO.EQ.2) KRESL=1 
IF(NALGO.EQ.3.AND.IINCS.EQ.1.AND.IITER.EQ.1) KRESL=l 
IF(NALGO.EQ.4.AND.IITER.EQ.1) KRESL=l 
IF(NALGO.EQ.5.AND.IINCS.EQ.1.AND.IITER.EQ.1) KRESL=1 
IF(NALGO.EQ.5.AND.IITER.EQ.2) KRESL=l 
IF(IITER.EQ.l.0R.NALGO.EQ.l) GO TO 20 
DO 10 ISVAB=l,NSVAB 

10 FIXED(ISVAB)=O.O 
RETURN 

20 DO 30 ISVAB=1,NSVAB 
30 FIXED(ISVAB)=PEFIX(ISVP~)*FACTO 

RETURN 
END 

NONL 13 
NONL 14 
NONL 15 
NONL 16 
NONL 17 
NONL 18 
NONL 19 
NONL 20 
NONL 21 
NONL 22 
NONL 23 
NONL 24 
NONL 25 
NONL 26 
NONL 27 
NONL 28 
NONL 29 

NONL 15 
NONL 16 

Preset KRESL to the condition of equation resolution. 
For the direct iteration method set KRESL = 1 for recompu
tation of the stiffnesses at all stages. 

NONL 17 

NONL 18 

NONL 19 

NONL 20--21 

NONL22 

NONL 23-25 
NONL 26-27 

For the Newton-Raphson method for quasi-harmonic prob
lems or the tangential stiffness method for structural problems, 
recompute the stiffnesses at all stages. 
For the initial stiffness method for structural problems, com
pute the stiffnesses only at the beginning of the computation 
procedure. . 
For the combined initial and tangential stiffness approach and 
NALGO =4, recompute the stiffnesses at the first iteration of 
each load increment only. 
For the initial/tangential approach with the option NALGO 
= 5 (Section 3.2), the stiffnesses are recalculated on the 2nd 
iteration of any load increment. However, at the start of the 
computation the stiffnesses must be evaluated. 
For all stages of the direct iteration method or the first iter
ation of the other techniques, go to 20 to set the unknowns 
equal to the prescribed values. 
Set the vector of prescribed unknowns to zero and return. 
Set the vector of prescribed unknowns equal to the input 
prescribed values multiplied by a specified factor. 

3.4· Subroutines for equation assembly and solution 
For finite element analysis by the displacement process, the stiffness and 

load contributions of each element must be assembled into the global stiff
ness matrix and load vector respectively. The resulting set of simultaneous 
equations must then be solved to give the unknown nodal values. These 
aspects have been dealt with in detail elsewhere<1-3l and only the essential 
steps of the process will be reproduced here. 
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3.4.1 Numerical example of equation assembly and solution 
In order to introduce the global stiffness matrix assembly and equation 

solution process we consider the example of a simple axial load structure 
shown in Fig. 3.2. The structure is subdivided into four elements in each of 
which a linear displacement variation is assumed. At each node i of the 
element there is an axial displacement degree of freedom, CP1,. 

~ 
Li 

~ 
3 I PI 

~ 
0 

~-,.~ II 

LJ/ 

~~ __ I_V __ ~.~ ____ II_I ____ ~~ __________ =-____________ ~ 
cf>p 

Fig. 3.2 Structural example for illustration of equation solution process. 

The stiffness matrix for this element has already been derived in Section 2.5 
and is given, for elastic material behaviour, by equation (2.38). The element 
stiffness matrices can be written as 

where 

KI = kI [ 
1 

-1 

KIn = knI [ 1 
-1 

-1 ] 
1 ' 

-1 ] 
1 ' 

Kn = kn [ 1 
-1 

KIV = kIV[ 1 
-1 

E(Il A(II 

kI = , etc., 
L(Il 

-1 ] 
1 ' 

-1 ] 
1 ' 

(3.1) 

(3.2) 

in which E(Il, A(Il and L(Il are respectively the elastic modulus, cross
sectional area and length of element I. The vector of applied nodal forces 
for each element is 

The vectors of the unknown nodal displacements for the elements are 

We also assume the following prescribed displacement values 

CP2 = cPp, CP5 = O. (3.5) 
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The Theorem of Minimum Total Potential Energy will now be used to 
derive the stiffness equations for this problem. The total potential energy 
for each element may be calculated separately. For example, the total 
potential energy of element I can be expressed as 

kl 
7TI = Ut5I]T Klt51 - [t5I]T II = -(cpI -CP3)2 - PI CPl. (3.6) 

2 

The augmented total potential energy of the assemblage is given by the sum 
of the individual element potentials plus extra terms to account for the pre
scribed values 

7T = 7TI + 7Tn + 7Tln + 7TIV - R2(CP2 -cpp) - Rs(cps -0) (3.7) 

Note that R2 and Rs are the associated nodal reactions. 
Using the principle of minimum potential energy, we obtain 

07T 
- = kl(CPI -CP3) - PI = 0, 
OCPI 

07T 
- = kn( CP2 - CP3) = R2, 
OCP2 

07T 
- = kl(cp3-CPI)+kn(cp3-CP2)+knl(CP3-CP4) = 0, (3.8) 
OCP3 

07T 
- = kUI( CP4 - CP3) + klV( CP4 - CPs) = 0, 
OCP4 

These equibbrium equations for the assembled elements of the structure can 
be expressed in matrix form as 

1 2 3 4 5 
1 kl 0 -kl 0 0 CPI PI 

2 0 kn -kn 
\ 

0 0 CP2 R2 

3 -kl - kn kl + kn + knl -knl 0 CP3 - 0 (3.9) 

4 0 0 -knl kIII+kIV -klV CP4 0 

5 0 0 0 -klV . k lV CP5 R5 

The assembly process can be clearly appreciated by comparing the indi
vidual stiffness matrices (3.1), and load vectors (3.3), with the final assemblage. 
Obviously, the individual element contributions can be added directly into 
the overall stiffness matrix of the structure in positions appropriate to the 
element nodal connection numbers. 
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It is noted that the global stiffness matrix is both symmetric and banded. 
By banded we mean that all the non-zero stiffness coefficients lie within a 
band adjacent to the leading diagonal. Banding of the stiffness equations is a 
direct consequence of the order in which the nodal points are numbered. 

In the equation solution subroutines presented later in Sections 3.4.2-3.4.5 
no advantage will be taken of the banded symmetric form of the stiffness 
equations. 

Some elementary concepts of equation solution are now introduced. In 
particular we describe the Gaussian direct elimination process which will be 
used in a more efficient form in the main solution routine described later in 
Chapter 6. 

3.4.1.1 Gaussian direct elimination method for the solution of simultaneous 
equation systems 

Formulation of the global stiffness matrix resulted in equation system (3.9) 
which is of the general form 

knc/>1 +k12c/>2+k13c/>3 + ... k1nc/>n =.il 
k21 c/>1 + k22c/>2 + k 23c/>3 + ... k2nc/>n = f2 

(3.10) 

The Gaussian direct elimination method seeks to reduce equation system 
(3.10) to the following triangular form(4) 

kn' c/>1 +k12'c/>2+k13' CP3+ ... k'1,n-1CPn-1 +k'lnCPn = fl' 
o +k22' CP2+k23' CP3+ . ~ . k'2,n-1c/>n-l +~'2nCPn = f2' 
o + 0 +k33' CP3+ ... k'a,n-lCPn-l +k'3nCPn = fa' 

k'n-l,n-1c/>n-l +k'n-1,nCPn = f'n-1 
k'nnCPn = fn'. (3.11) 

Then all the unknowns can be systematically determined by taking these 
reduced equations in reverse order, since each new equation, proceeding in 
an upward direction, only introduces one additional unknown value. The 
last equation is solved for cpn, then CPn-1 can be recovered from the next 
equation and so on. This phase of the solution scheme is termed back
substitution. 

3.4.1.2 The equation reduction or elimination phase 
Reduction of system (3.10) to the form (3.11) can be accomplished by 

employing the ith equation to eliminate CPi from all equations below, i.e. 
from equations i + 1 to n. Formally this can be done by subtracting from the 
rth equation (i < r ~ n), the ith equation factored by krt(il/kii(il, where the 
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superscript i indicates that these coefficients have been already modified 
(i -1) times prior to the elimination of the ith degree of freedom. For ex
ample, the first equation is used to eliminate <PI from equations 2 to n as 
follows: 

Then the second equation is used to eliminate <P2 from equations 3 to nand 
so on. Note that the modified terms in the equation system are still sym
metric. 

3.4.1.3 The case of a prescribed displacement 
If a displacement is prescribed its value is known. Therefore the nodal 

force necessary to maintain the specified displacement becomes the unknown 
value associated with the node. Suppose for example that <P2 is prescribed 
to be some given value <pp, in which case /2 is the reaction value. In this case 
the elimination of <P2 is trivial and all that need be done is to substitute 
</>2 =</>p in equations 3 to n and transfer the now known quantity 

kr 2'</>P (3 ~ r ~ n) 

to the right-hand side of each equation. This is illustrated below 

kn<Pl +kI2<P2 +kI3 <P3 + ... kln<Pn = /1 
o. <PI + k22' <P2 + k 23' <P3 + ... k 2n' <Pn = /2 
O. <PI + ,0. <P2 + k33' <P3 + ... k 3n' <Pn = /3 - k 32' <pp 

(3.13) 

For the particular case of a zero prescribed displacement value due to a 
pinned support, an alternative approach is to delete the row and column 
corresponding to the zero displacement from the equation system. The 
column can be deleted since it always multiplies a zero quantity and the row 
is removed since it only relates to equilibrium at the supported node. How
ever this means that if the support reaction is r-equired, it must be computed 
separately from the element forces meeting at the pinned node. 

The complete solution process is best illustrated by application to a 
particular problem. We will now substitute explicit values for the terms 
contained in (3~9) in order to permit numerical solution. Assume that 

kl -:- 1, kIl = 2, kIll = 3, klv = 4, PI = 10, <pp = 2, (3.14) 
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then equations (3.9) can be written as 

47 

(3.I5a) 

(3.I5b) 

(3.I5c) 

(3.I5d) 

(3.I5e) 

where R2 and R5 are the nodal reactions associated with the displacement 
values prescribed at nodes 2 and 5. For example, R2 must balance the sum 
of the elastic forces provided by all the elements meeting at node 2. We 
also imply by the notation adopted that 4>2 = 2. 

To solve these equations by the Gaussian reduction process we first 
eliminate 4>1 from all equations, except (3.I5a). Then we eliminate 4>2 from 
all equations below (3.15b), then 4>3 is eliminated from all equations below 
(3.15c) and so on. Therefore, we eliminate a particular variable only below 
the current or active equation. (If we are eliminating 4>r, the rth equation is 
active.) 

We commence the process by eliminating 4>1 from equations (3.1Sb)
(3.15e) by using (3.I5a). In fact, we need only operate on (3.I5c) since 4>1 
does not appear in the other equations. Thus we eliminate 4>1 from (3 .15c) 
by adding (3.15a) to (3.15c). This gives the first reduced set of equations as 

4>1 +0.4>2- 4>3+0.4>4+0.4>5 = 10 (3.16a) 

0~4>1 + 24>2- 24>3+0.4>4+0.4>5 = R2; 4>2 = 2 (3.I6b) 

0.4>1- 24>2+ 54>3- 34>4+0.4>5 = 10 (3.16c) 

0.4>1 +0.4>2 - 34>3 + 74>4 - 44>5 = 0 (3.l6d) 

0.4>1 +0.4>2+0.4>3- 44>4+ 44>5 = R5; 4>5 = o. (3.16e) 

Next we eliminate 4>2 from (3.16c)-(3.I6e) by using (3.I6b). In fact, since 4>2 
is prescribed to be 2, all we need do is substitute 4>2 = 2 directly into the 
remaining equations. We also do this for (3.16b) in this case. 

(3.17a) 

0.4>1 +0.4>2- 24>3+0.4>4+0.4>5 = -4+R2; 
4>2 = 2 (3.I7b) 
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(3.17c) 

(3.17d) 

(3.l7e) 

We then use (3.17c) to eliminate ~3 from (3.17d) and (3.17e). We need only 
operate on (3.l7d), since ~3 does not appear in (3.17e), and in particular we 
add (3.17d) to 3/5 of (3.l7c). 

O. ~l + O. ~2 + 5~3 - 3~4 + ~5 = 14 
26 42 

O'~l +0'~2+0.~3+-~4- 4~5 = -
5 5 

O. ~l + 0 . ~2 + 0 . ~3 - 4~4 + 4~5 = R5; ~5 = O. 

(3.18a) 

(3.18c) 

(3.18d) 

(3.l8e) 

To complete the elimination process, we eliminate ~4 from (3.l8e) by adding 
(3.18e) to 20/26 of (3.18d). 

~l +0'~2- ~3+0'~4+0.~5 = 10 

0.~1+0'~2- 2~3+0'~4+0.~5 = -4+R2; 

0.~1+0'~2+ 5~3- 3~4+ ~5 = 14 
26 42 

O'~l +0.~2+0.~3+-~4- 4~5 = -
5 5 

12 84 
O'~l +0'~2+0.~3+0'~4+-~5 = -+R5; 

13 13 

(3.19a) 

~2 = 2 (3.19b) 

(3.l9c) 

(3.19d) 

~5=0. (3.lge) 

We now have a set of equations which can be solved directly if we take them 
in reverse order. Starting with (3.1ge) we have R5 = -84/13, since ~5 = O. 
Knowing ~5 then (3.19d) gives ~4 = 21/13. Having obtained ~4 and ~5 
equation (3.19c) gives ~3 = 49/13. Then knowing ~3, ~4' ~5 and with ~2 
prescribed, (3.19b) gives R2 = -46/13 immediately. Finally we complete the 
back substitution process by determining ~l from (3.19a) since ~2, ~3, ~4 
are known at this stage. This gives ~l = 179/13. Since the above procedure 
is quite systematic it can be readily programmed. 

The global stiffness matrix must be assembled and the stiffness equations 
reduced only if the element stiffnesses have been changed for the current 
iteration. The full assembly and reduction process must be followed if 
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KRESL = I, but only the global load vector need be formed and reduced 
if KRESL = 2. In this way a considerable number of arithmetic operations 
are avoided if only equation resolution is to be undertaken. This facility is 
incorporated in the equation solution subroutines presented in the following 
sections. 

The principles discussed in this section can now be repeated as a 
FORTRAN operation. Four subroutines are presented which undertake 
the respective tasks of equation assembly, equation reduction by Gaussian 
direct elim!nation, the back substitution process and reduction of subsequent 
load vectors for equation resolution. 

3.4.2 Subroutine ASSEMB 
This subroutine assembles the element nodal loads to form the global 

load vector. Also, the contributions of individual elements are assembled to 
form the global stiffness matrix. The variables employed in the subroutine 
are listed below and descriptive notes are again provided immediately after 
the FORTRAN listing. 

Dictionary of variable names (with dimensions) 

ASLOD (MSV AB) 
ASTIF (MSV AB, MSV AB) 
RLOAD (MEV AB) 
ESTIF (MEV AB, MEV AB) 
IELEM, NELEM, MELEM 

IFILE 
IDOFN, JDOFN, NODFN 

INODE, JNODE, NNODE, 
MNODE 
ISV AB, JSV AB, MSV AB, 
NSVAB 
JFILE 
KRESL 
LNODS (MELEM, MNODE) 

NODEI 
NODEJ 
NCOLS 

NROWS 

ASsembled LOaD vector 
Assembled global STIFfness matrix 
Element load vector 
Element STIFfness matrix 
Inde.x, Number, Maximum of 
ELEMents 
Input FILE 
Index, Index, Number of Degrees Of 
Freedom per Node 
Index, Index, Number, Maximum of 
NODes per Element 
Index, Index, Maximum, Number of 
global Structural VAriaBles 
Output file 
Equation resolution index 
ELement NODe numberS listed for 
each element 
NODE I 
NODE J 
Number of the COLumn in the global 
Structural stiffness matrix 
Number of the ROW in ~he global 
Structural stiffness matrix and load 
vector 
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NCOLE 

NROWE 

MEVAB 

Number of the COLumn in the 
Element stiffness matrix 
Number of the ROW in the Element 
stiffness matrix and load vector 
Maximum of Element VAriaBles 

SUBROUTINE ASSEMB ASEM 1 
C***********************************************************************ASEM 2 
C ~M 3 
C *** ELEMENT ASSEHBLY ROUTINE ASEM 4 
C A~ 5 
c***********************************************************************ASEM 6 

C 
C 
C 

C 
C 
C 

C 
C 
C 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, ASEM 7 
KRESL, NCHEK,TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, ASEM 8 
NITER,NOUTP,FACTO,PVALU ASEM 9 

COMMON/UNIH2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), ASEM 10 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), ASEM 11 
MATNO(25),STRES(25,2),PLAST(25),XDISP(52), ASEM 12 
TDISP(26,2),TREAC(26.2),ASTIF(52,52),ASLOD(52), ASEM 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) ASEM 14 

ELEMENT ASSEMBLY ROUTINE 

REWIND 1 
DO 10 ISVAB=1,NSVAB 

10 ASLOD(ISVAB)=O.O 
IF(KRESL.EQ.2) GO TO 30 
DO 20 ISVAB=1,NSVAB 
DO 20 JSVAB=1,NSVAB 

20 ASTIF(ISVAB,JSVAB)=O.O 
30 CONTINUE 

ASSEMBLE THE ELEMENT LOADS 

DO 50 IELEM=1,NELEM 
READ( 1) ESTIF 
DO 40 INODE=1,NNODE 
NODEI=LNODS(IELEM,INODE) 
DO 40 IDOFN=1,NDOFN 
NROWS=(NODEI-1)*NDOFN + IDOFN 
NROWE=(INODE-1)*NDOFN + IDOFN 
ASLOD(NROWS)=ASLOD(NROWS) + ELOAD(IELEM,NROWE) 

ASSEMBLE THE ELEMENT STIFFNESS MATRICES 

IF(KRESL.EQ.2) GO TO 40 
DO 40 JNODE = 1,NNODE 
NODEJ=LNODS(IELEM,JNODE) 
DO 40 JDOFN =1,NDOFN, 
NCOLS=(NODEJ-1)*NDOFN + JDOFN 
NCOLE=(JNODE-1)*NDOFN + JDOFN 
ASTIF (NROWS,. NCOLS) =ASTIF( NROWS, NCOLS) 

40 CONTINUE 
50 CONTINUE 

RETURN 
END 

+ ESTIF(NROWE,NCOLE) 

ASEM 15 
ASEM 16 
ASEM 17 
ASEM 18 
ASEM 19 
ASEM 20 
ASEM 21 
ASEM 22 
ASEM 23 
ASEM 24 
ASEM 25 
ASEM .26 
ASEM 27 
ASEM 28 
ASEM 29 
ASEM 30 
ASEM 31 
ASEM 32 
ASEM 33 
ASEM 34 
ASEM 35 
ASEM 36 
ASEM 37 
ASEM 38 
ASEb1 ;39 
ASEr-1' 4() 

ASEM 41 
ASEM 42 
ASEM 43 
ASEM 44 
ASEM 45 
ASEM 46 

'ASEM 47 
ASEM 48 
ASEM 49 
ASEM 50 

ASEM 18 Rewind file ready for reading the individual element stiffness 
matrices. 

ASEM 19-20 Set the global load vector, ASLOD, to zero. 
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ASEM 21-25 If only equation resolution is to be performed during this 

ASEM 29 
AS EM 30 
AS EM 31 
AS EM 32 

ASEM 33 
AS EM 34 

ASEM 35 

ASEM 36 

AS EM 1\0 

ASEM41 
ASEM42 

AS EM 43 
ASEM 44 
AS EM 45 
AS EM 46 

ASEM 48 

iteration, do not set the global stiffness coefficients to zero. 
Loop for each element. 
Read ESTIF for the current element. 
Loop for each node 'INODE' of current element. 
From LNODS array identify node number of current node 
'INODE'. 
Loop for each degree of freedom of the current node 'INODE'. 
Establish the row position in the global stiffness matrix and 
load vector. 
Establish the row position in the element stiffness matrix and 
load vector. 
Add the contribution to the global load vector from the 
element load vector. 
If equation resolution is to be performed, avoid assembling 
the global stiffness matrix. 
Loop for each node 'JNODE' of the current element. 
From LNODS array identify node number of current node 
'JNODE'. 
Loop for each degree of freedom of the current node 'JNODE'. 
Establish the column position in the global stiffness matrix. 
Establish the column position in the element stiffness matrix. 
Add the contribution to the global stiffness matrix from the 
element stiffness matrix. 
End element loop. 

_ For the problem described in Section 3.4.1, the main variables have the 
following values 

NNODE = 2, NELEM = 4, NDOFN = 1, NSVAB = 5, 

LNODS = 1 3 - Element I 

3.4.3 Subroutine GREDUC 

2 3 - Element II 

3 4 - Element ITI 

4 5 - Element IV. 

This subroutine undertakes the equation elimination process for equation 
solution by Gaussian reduction as outlined in Section 3.4.1. The additional 
variable names employed are defined below. 

Dictionary of variable names 

ASLOD (MEQNS) ASem bled LOaD vector. 
ASTIF (MEQNS, MEQNS) Assembled global STIFfness matrix. 
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IEQNS, NEQNS, MEQNS 

IFPRE (MEQNS) 

FIXED (MEQNS) 

ICOLS 

IROWS 

FACTR 
FRESV ( ) 
PIVOT 

SUBROUTINE GREDUC 

Index, Number, Maximum of 
EQuatioNS. 
Vector of parameters defining the fixity 
of a node. 0 - free; 1 - fixed. 
Vector of prescribed displacements 
(zero if not prescribed). 
Index COLumn of Structural stiffness 
matrix. 
Index ROW of Structural stiffness 
matrix. 
Gaussian reduction FACToR. 
Stored Gaussian reduction factors. 
Diagonal term of variable which is cur
rently being eliminated. 

GRED 
C***********************************************************************GRED 

1 
2 
3 
4 
5 
6 

C GRED 
C *** GAUSSIAN REDUCTION ROUTINE GRED 
C GRED 
c***********************************************************************GRED 

C 
C 
C 

C 
C 
C 

C 
C 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,lITER, 
KRESL, NCHEK , TOLER, NALGO, NSVAB, NDOFN, NINCS,NEVAB, 
NITER,NOUTP,FACTO,PVALU 

COMMON/UNIM2/PROPSC5,4),COORDC26),LNODS(25,2),IFPREC52), 
FIXED(52),TLOAD(25,4),RLOADC25,4),ELOADC25,4), 
MATNO(25),STRES(25,2),PLASTC25),XDISPC52), 
TDISPC26.2),TREACC26,2),ASTIF(52,52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) 

GAUSSIAN REDUCTION ROUTINE 

KOUNT=O 
NEQNS=NSVAB 
DO 70 IEQNS= 1 , NEQNS . 
IFCIFPRECIEQNS).EQ.1) GO TO 40 

REDUCE EQUATIONS 

PIVOT=ASTIFCIEQNS,IEQNS) 
IF(ABS(PIVOT).LT.1.0E-10) GO TO 60 
IF(IEQNS.EQ.NEQNS) GO TO 70 
IEQN1=IEQNS+l 
DO 30 IROWS=IEQN1,NEQNS 
KOUNT=KOUNT+1 
FACTR=ASTIF(IROWS,IEQNS)/PIVOT 
FRESV(KOUNT)=FACTR 
IF(FACTR.EQ.O.O) GO TO 30 
DO 10 ICOLS=IEQNS,NEQNS 
ASTIF(IROWS, ICOLS) =ASTIFC IROWS, ICOLS)-FACTR*ASTIFCIEQNS, ICOLS) 

10 CONTINUE 
ASLODCIROWS) =ASLOD(IROWS)-FACTR*ASLODC IEQNS) 

30 CONTINUE 
GO TO 70 

ADJUST RHS(LOADS) FOR PRESCRIBED DISPLACEMENTS 

GRED 7 
GRED 8 
GRED 9 
GRED 10 
GRED 11 
GRED 12 
GRED 13 
GRED 14 
GRED 15 
GnED 16 
GRED 17 
GRED 18 
GRED 19 
GRED 20 
GRED 21 
GRED 22 
GRED 23 
GRED 24 
GRED 25 
GRED 26 
GRED 27 
GRED 28 
GRED 29 
GRED 30 
GRED 31 
GRED 32 
GRED 33 
GRED 34 
GRED 
GRED 
GRED 
GRED 
GRED 
GRED 
GRED 

35 
36 
37 
38 
39 
40 
41 
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C 
40 DO 50 IROWS=IEQNS,NEQNS 

ASLOD(IROWS)=ASLOD(IROWS)-ASTIF(IROWS,IEQNS)*FIXED(IEQNS) 
50 CONTINUE 

GRED 42 
GRED 43 
GRED 44 
GRED 45 
GRED 46 
GRED 47 
GRED 48 
GRED 49 
GRED 50 
GRED 51 
GELl! ,)2 

GO TO 70 
60 WRITE(6,900) 

goo FORMAT(5X,15HINCORRECT PIVOT) 
STOP 

70 CONTINUE 
RETURN 
END 

GRED 18 

GRED 19 

GRED 20 

GRED 21 
GRED 25 
GRED 26 

GRED 27-38 

GRED 43-45 

GRED 47.49 

Set the counter over the Gaussian reduction factorisation 
terms to zero. 
Set the number of equations to be solved equal to the total 
number of variables in the structure, NSV AB. 
Loop for each equation-this equation is associated with the 
variable about to be eliminated. 
If this variable is fixed, skip to 40. 
Extract PIVOT-the leading diagonal term. 
Check for zero PIVOT in which case write a message and 
stop the program. 
Alter equations below equation 'IEQNS', not those above, 
according to (3.12). Note that the Gaussian factorisation 
terms are stored for use during equation resolution. 
For prescribed variables adjust the R.H.S. (or load) terms 
a,(cording to (3.13). 
For an invalid pivot value, write a message and terminate 
execution of the program. 

For the problem considered in Section 3.4.1 the main variables have the 
following values: 

NEQNS = 5, ASLOD = 10 , modified ASLOD = 10 

o -4 

o 14 

o 4~5 

o 84/13 

modified 
ASTIF = 1 o -1 0 0 

, ASTIF = I~ 0 -1 0 0 

0 2 -2 0 0 0 -2 0 0 

-1 -2 6 -3 0 0 5 -3 1 

0 0 -3 7 -4 0 0 026/5 -4 

0 0 0 -4 4 0 0 0 0 12/13 
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IFPRE = 0 , FIXED = 0 

1 

o 
o 
1 

2 

o 
o 
o . 

The computational effort in this reduction process is proportional to n3• 

This can be approximately halved if we take advantage of the symmetry· of 
the stiffness matrices. 

3.4.4 Subroutine BAKSUB 
The object of this subroutine is to perform the back substitution process 

required after equation elimination by Gaussian reduction. This results in 
sequential solution for all the unknowns and reactions at nodal points at 
which values of the unknown have been prescribed. In the nonlinear solution 
processes described in Chapter 2, the values of the unknown determined 
during any iteration mayor may not be the total values depending on the 
solution algorithm being employed. If the method of direct iteration is being 
used, then, according to equation (2.3), the value of'P determined during any 
iteration is the total value. For all other solution techniques considered the 
total values of the unknown are accumulated according to the corrections 
determined during each iteration, as indicated for example by (2.12). 

Therefore, for the direct iteration process, it is simply necessary to transfer 
the calculated values of the unknowns and the reactions to the arrays TDISP 
(ISV AB, IDOFN) and TREAC (ISV AB, IDOFN) for output later. This 
transfer is only necessary to allow the same subroutine to be employed for 
output of results for all four programs. 

Subroutine BAKSUB will now be presented in a form suitable for non
linear solution dy direct iteration. 

ASLOD (MEQNS) 
Dictionary of variable names 

Reduced load vector. 
ASTIF (MEQNS, MEQNS) 
IEQNS, NEQNS, MEQNS 

Reduced global stiffness matrix. 
Index, Number, Maximum of 
EQatioNS. 

IFPRE (MEQNS) 

FIXED (MEQNS) 

PIVOT 

REACT (MEQNS) 

XDISP (MEQNS) 

Vector of parameters defining the 
fixing of a node. 0 - free; 1 - fixed. 
Vector of prescribed displacements 
(zero if not prescribed). 
Diagonal term of variable currently 
being evaluated. 
REACTions at nodes with prescribed 
displacements. 
Displacement at nodes. 
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SUBROUTINE BAKSUB BAKS 1 
C***********************************************************************BAKS 2 
C BAKS 3 
C *** BACK-SUBSTITUTION ROUTINE BAKS 4 
C BAKS 5 
c***********************************************************************BAKS 6 

C 
C 
C 

COMMON/UNIM1/NPOIN.NELEN,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, BAKS 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, BAKS 8 

• NITER, NOUTP,FACTO, PVALU BAKS 9 
COMMON/UNIM2/PROPSC5,4),COORDC26),LNODSC25,2),IFPREC52), BAKS 10 

FIXED(52),TLOADC25,4),RLOAD(25,4),ELOADC25,4), BAKS 11 
MATNO(25),STRESC25,2),PLASTC25),XDISPC52), BAKS 12 
TDISPC26,2),TREAC(26,2),ASTIF(52,52),ASLODC52), BAKS 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) BAKS 14 

BACK-SUBSTITUTION ROUTINE 

NEQNS:NSVAB 
DO 10 IEQNS:1,NEQNS 
REACTCIEQNS):O.O 

10 CONTINUE 
NEQN1:NEQNS+1 
DO 40 IEQNS:1,NEQNS 
NBACK:NEQN1-IEQNS 
PIVOT:ASTIFCNBACK,NBACK) 
RESID:ASLODCNBACK) 
IFCNBACK.EQ.NEQNS) GO TO 30 
NBAC1:NBACK+1 
-00 20 ICOLS:NBAC 1 ,NEQNS 
~ES~:BESID-ASTIF(NBACK,ICOLS)*XDISP(ICOLS) 

20 CONTINUE 
30 IFCIFPRE(NBACK).EQ.O) XDISP(NBACK):RESID/PIVOT 

IF(IFPRE(NBACK).EQ.1) XDISP(NBACK):FIXED(NBACK) 
IF(IFPRE(NBACK).EQ.1) REACT(NBACK):-RESID 

40 CONTINUE 
KOUNT:O 
DO 50 IPOIN:1,NPOIN 
DO 50 IDOFN:1,NDOFN 
KOUNT:KOUNT+1 
TDISP(IPOIN,IDOFN): XDISP(KOUNT) 

50TREAC(IPOIN,IDOFN): REACT(KOUNT) 
RETURN 
END 

BAKS 15 
BAKS 16 
BAKS 17 
BAKS 18 
BAKS 19 
BAKS 20 
BAKS 21 
BAKS 22 
BAKS 23 
BAKS 24 
BAKS 25 
BAKS 26 
BAKS 27 
BAKS 28 
BAKS 29 
BAKS 30 
BAKS 31 
BAKS 32 
BAKS 33 
BAKS 34 
BAKS 35 
BAKS 36 
BAKS 37 
BAKS 38 
BAKS 39 
BAKS 40 
BAKS 41 
BAKS 42 
BAKS 43 

BAKS 19-21 Zero space for reactions. 
BAKS 22-24 Loop backwards over each equation. 
BAKS 25 Use the same PIVOT as in subroutine GREDUC. 
BAKS 27 For the last equation (the first to be solved) we do not have 

any other variables to substitute (i.e. bypass the loop). 
BAKS 28-31 Evaluate RESID from previously calculated variables. 
BAKS 32 If the variable is not prescribed evaluate the variable. 
BAKS 34 If the variable is prescribed evaluate the R.H.S. reaction. 
BAKS 36-41 Store the solved variables and reactions in new arrays for 

output. 

For the problem described in Section 3.4.1, the arrays employed in addition 
to those utilised in Subroutine GREDUC have the following values: 
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TDISP = XDISP = 179/13 , TREAC = REACT = 0 l 
2 -46/13 

49/13 0 

21/13 0 

0 -84/13 

It should be noted that nonzero reactions are obtained only for nodal 
positions at which the value of the unknown has been prescribed. For the 
Newton-Raphson, Tangential Stiffness and Initial Stiffness methods, the 
calculated unknowns and reactions must be accumulated from the values 
obtained during each iteration. Therefore, for these applications, statements 
BAKS 36-41 in the above listing must be replaced by 

KOUNT=O 
DO 50 IPOIN=1,NPOIN 
DO 50 IDOFN=1,NDOFN 
KOUNT=KOUNT+1 
TDISP(IPOIN,IDOFN)~ TDISP(IPOIN.IDOFN)+XDISP(KOUNT) 

50 TREAC(IPOIN,IDOFN)= TREAC(IPOIN,IDOFN)+REACT(KOUNT) 

BAKS 36 
BAKS 37 
BAKS 38 
BAKS 39 
BAKS 40 
BAKS 41 

with the arrays TDISP and TREAC being initially set to zero at the begin
ning of the program. 

For these three solution algorithms a final further programming addition 
must be made. When de1ermining the residual forces according to (2.4), the 
contribution to f of the reactions at nodal points at which the value of the 
unknown is prescribed must be accounted for, since any reactions can be 
interpreted as additional applied loads necessary to maintain the prescribed 
value of the unknown. Therefore, the evaluated reactions must be added into 
the vector of applied nodal loads at every iteration. This task can be 
accomplished by the following coding inserted immediately before the 
RETURN statement: 

DO 90 IPOIN=1,NPOIN 
DO 60 IELEM=1,NEL8~ 
DO 60 INODE=1,NNODE 
NLOCA=LNODS(IELEM,INODE) 

60 IF(IPOIN.EQ.NLOCA) GO TO 70 
70 DO 80 IDOFN=1,NDOFN 

NPOSN=(IPOIN-1)*NDOFN+IDOFN 
IEVAB=(INODE-1)*NDOFN+IDOFN 

80 TLOAD(IELEH,IEVAB)=TLOAD(IELEN,IEVAB)+REACT(NPOSN) 
90 CONTINUE 

BAKS 42 Loop over each nodal point. 

BAKS 42 
BAKS 43 
BAKS 44 
BAKS 45 
BAKS 46 
BAKS 47 
BAKS 48 
BAKS 49 
BAKS 50 
BAKS 51 

BAKS 43-46 Search through the element nodal connections until one is 
found corresponding to the nodal point currently under con
sideration. As soon as one is found, abandon the search. Note 
that it is immaterial in which element the node is found since 
all element contributions will be finally assembled. 
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BAKS 47-50 Add the nodal reaction into the appropriate position in the 
array of applied element loads. 

3.4.5 Subroutine RESOL V 
As stated in Section 3.4.1, for equation resolution (indicated by KRESL 

= 2) only the global load vector need be formed and reduced. Subroutine 
RESOLV merely reduces the R.H.S. (or load) terms by standard Gaussian 
elimination using the same operations as employed in Subroutine GREDUC, 
Section 3.4.3. The Gaussian factorisation terms were evaluated and stored 
in GREDUC and are now utilised in this subroutine. The programming logic 
follows that of Subroutine GREDUC and can be readily understood by 
reference to Section 3.4.3. 

SUBROUTINE RESOLV RSLV 
C***********************************************************************RSLV 

1 
2 
3 
4 
5 
6 

C RSLV 
C *** RESOLVING GAUSSIAN REDUCTION ROUTINE RSLV 
C RSLV 
C***********************************************************************RSLV 

C 
C 
C 

C 
C 
C 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,I ITER, 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, 
NITER,NOUTP,FACTO,PVALU 

COMMON/UNIM2/PROPS(5,4) ,COORD(26),LNODS(25,2) ,IFPRE(52) , 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), 
MATNO(25) ,STRES(25,2) ,PLAST(25),XDISP(52) , 
TDISP(26 ,2) ,TREAC(26 ,2) ,ASTIF(52,52) ,ASLOD(52) , 
REACT(52) ,FRESV(1352) ,PEFIX(52) ,ESTIF(4,4) 

KOUNT=O 
NEQNS=NSVAB 
DO 40 IEQNS=1,NEQNS 
IF(IFPRE(IEQNS).EQ.1) Go TO 20 

REDUCE RHS 

IF(IEQNS.EQ.NEQNS) GO TO 40 
IEQN1=IEQNS+1 
DO 10 IROWS=IEQN1,NEQNS 
KOUNT=KOUNT+1 
FACTR=FRESV(KOUNT) 
IF(FACTR.EQ.O) GO TO 10 
ASLOD(IROWS)=ASLOD(IROWS)-FACTR*ASLOD(IEQNS) 

10 CONTINUE 
GO TO 40 

ADJUST RHS TO PRESCRIBED DISPLACEMENTS 

20 DO 30 IROWS=IEQNS,NEQNS 
ASLOD(IROWS)=ASLOD(IROWS)-ASTIF(IROWS,IEQNS)*FIXED(IEQNS) 

30 CONTINUE 
40 CONTINUE 

RETURN 
END 

RSLV 7 
RSLV 8 
RSLV 9 
RSLV 10 
RSLV 11 
RSLV 12 
RSLV 13 
RSLV 14 
RSLV 15 
RSLV 16 
RSLV 17 
RSLV 18 
RSLV 19 
RSLV 20 
RSLV 21 
RSLV 22 
RSLV 23 
RSLV 24 
RSLV 25 
RSLV 26 
RSLV 27 
RSLV 28 
RSLV 29 
RSLV 30 
RSLV 31 
RSLV 32 
RSLV 33 
RSLV 34 
RSLV 35 
RSLV 36 
RSLV 37 
RSLV 38 
RSLV 39 
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3.4.6 Improved numerical algorithm for equation solution 

Substantial economies can be achieved in both core storage requirements 
and execution times if advantage is taken of the banded symmetric form of 
the global stiffness matrix. Since: 

• By recognising that the global stiffness matrix is symmetric, it is 
necessary oniy to store the upper (or lower) triangular part of the 
stiffness matrix. 

• By noting that all the non-zero coefficients in the global stiffness 
matrix occur in a band adjacent to the leading diagonal, further 
reductions in the core storage requirements can be made, as well as a 
significant reduction in the number of arithmetic operations under
taken in the equation reduction and backsubstitution phases. 

In order to introduce these enhancements it is convenient to store the 
global stiffness matrix as a one-dimensional array. The necessary program
ming changes required to the subroutines presented in Sections 3.4.2-3.4.5 
are fully documented in Ref. 5. 

3.5 Output of results 

The next subroutine common to all four programs presented is subroutine 
RESULT whose function is to output the results at a frequency governed 
by a parameter input in Subroutine INCLOD described in Section 3.7. In 
order to make the subroutine applicable to all four cases, quantities will be 
output for some situations which are physically meaningless. In particular 
for quasi-harmonic problems, output items termed stress and plastic or non
linear strain are output as zero values for this reason. For nonlinear elastic 
problems the latter term is the total strain, €, defined in Section 2.4 and for 
elasto-plastic situations it is the plastic strain component, €p, defined in 
Section 2.5. For both cases the stress quantity output is the axial stress 
existing in each constant stress element employed. 

Subroutine RESULT will now be listed. 
". 

SUBROUTINE RESULT RSLT 1 
C***********************************************************************RSLT 2 
C RSLT 3 
C *** OUTPUTS DISPLACEMENT , REACTIONS AND STRESSES RSLT 4 
C R~T 5 
C***********************************************************************RSLT 6 

COMMON/UNIM1/NPOIN,NELEH,NBOUN,NLOAD,NPROP,NNODE.IINCS, II TER, RSLT 7 
KRESL, NCHEK,TOLER, NALGO, NSVAB,NDOFN,NINCS,NEVAB, RSLT 8 
NITER,NOUTP,FACTO,PVALU RSLT 9 

COHMON/UNIM2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), RSLT 10 
FIXED(52),TLOAD(2S,4),RLOAD(25~4),ELOAD(25,4), RSLT 11 
MATNO(25) ,STRES(25,2) ,PLAST(25; ,XDISP(52), RSLT 12 
TDISP(26.2),TREAC(26.2),ASTIF(52,52),ASLOD(52), RSLT 13 

. REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) RSLT 14 
IF( NDOFN. EQ. 1) \vRITE( 6.900) RSLT 15 
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900 FORMAT(1HO,5X,'NODE',4X,'DISPL.',12X,'REACTIONS') 
IF(NDOFN.EQ.2) HRITE(6.910) 

910 FORMAT (1HO,5X,'NODE',4X, 'DISPL. ',12X, 'REACTION', 
7X, 'DISPL. '.12X, 'REACTION') 

DO 10 IPOIN=1,NPOIN 
10 WRITE(6,920) IPOIN,(TDISP(IPOIN,IDOFN),TREAC(IPOIN,IDOFN), 

.IDOFN=1,NDOFN) 
920 FORMAT(I10,2(E14.6,5X,E14.6» 

IF(NDOFN.EQ.2) WRITE(6.930) 
930 FORMAT( 1 HO , 2X, 'ELEHENT' , 12X, 'STRESSES' , 12X, , PL. STRAIN' ) 

IF(NDOFN.EQ.1) WRITE(6.940) 
940 FORMAT(1HO,2X,'ELEMENT',5X,'STRESSES',5X,'PL.STRAIN') 

DO 20 IELEt4= 1 ,NELEM 
20 WRITE(6,950) IELEM,(STRES(IELEfvI,IDOFN),IDOFN=1,NDOFN), 

• PLAST~IELEM) 
950 FORMAT(I10,3E14.6) 

RETURN 
END 
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RSLT 16 
RSLT 17 
RSLT 18 
RSLT 19 
RSLT 20 
RSLT 21 
RSLT 22 
RSLT 23 
RSLT 24 
RSLT 25 
RSLT 26 
RSLT 27 
RSLT 28 
RSLT 29 
RSLT 30 
RSLT 31 
RSLT 32 
RSLT 33 

RSLT 15-23 Write titles and output the calculated unknown and reaction 
at each nodal point. Non-zero reactions are only obtained for 
nodal points at which the value of the unknown is prescribed. 

RSLT 24-31 Write titles and output the stress and plastic or nonlinear 
elastic strain for each element. 

Note that provision is made for output of results for the beam bending 
application of Chapter 5. 

3.6 Subroutine INIT AL 
The function of this subroutine is to initialise to zero some arrays used by 

other subroutines. 

SUBROUTINE INITAL INTL 1 
C***********f***********************************************************INTL 2 
C INTL 3 
C *** INITIALIZES TO ZERO ALL ACCU~ruLATIVE ARRAYS INTL 4 
C INTL 5 
C*t*********************************************************************INTL 6 

COMHON/UNHI11 NPOIN, NELEM, NBOUN, NLOAD, NPROP, NNODE, IINCS, IITER, INTL 7 
KRESL, NCHEK,TOLER, NALGO, NSVAB, NDOFN,NINCS, NEVAB, INTL 8 

• NITER, NOUTP,FACTO, PVALU INTL 9 
COMMON/UNIM2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), INTL 10 

FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), INTL 11 
MATNO(25),STRES(25,2),PLAST(25),XDISP(52), INTL 12 
TDISP(26,2),TREAC(26.2),ASTIF(52,52),ASLOD(52), INTL 13 

• . REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) INTL 14 
DO 20 IELEM= 1 , NELEM INTL 15 
PLASTCIELEN):O.O INTL 16 
DO 10 IDOFN=1,NDOFN INTL 17 
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10 STRES(IELEM,IDOFN):O.O 
DO 20 IEVAB:1,NEVAB 
ELOAD(IELEM,IEVAB):O.O 

20 TLOAD(IELEM,IEVAB):O.O 
DO 30 IPOIN:1,NPOIN 

INTL 18 
INTL 19 
INTL 20 
INTL 21 
INTL 22 
INTL 23 
INTL 24 
INTL 25 
INTL 26 
INTL 21 

DO 30 IDOFN:1.NDOFN 
TDISP(IPOIN,IDOFN):O.O 

30 TREAC(IPOIN,IDOFN):O.O 
RETURN 
END 

INTL 15-18 Initialise to zero the plastic or nonlinear strain vector and the 
stress vector. 

INTL 20 

INTL 21 
INTL 22-25 

Initialise the array, ELOAD, which will contain the out of 
balance loading to be applied in solution for any iteration. For 
techniques other than the direct iteration method, this vector 
will contain the residual nodal forces and thus differs from 
the vector of applied loads. 
Initialise the vector of applied loads. 
Initialise the vector of total unknowns and total reactions to 
zero. 

3.7 Load increment subroutine, INCLOD 
This subroutine controls the incrementing of the applied loads. For each 

increment of load, data is input to this segment to control the upper limit to 
the number of iterations, the output frequency, the size of load increment 
and the convergence tolerance limit. These quantities are specifically input as: 

NITER 

NOUTP 

FACTO 

Maximum permissible number of iterations. This is a safety 
measure to cover situations where the solution process does not 
converge. After performing NITER iteration cycles the pro
gram will'then stop. 

This parameter controls the frequency of output of results. 
In order to examine the iterative procedure the user may wish 
to obtain results at stages other than the converged solution. 
o - Print the results on convergence to the nonlinear solution 

only, for each load increment. 
1 - Print the results after the first iteration and after conver

gence for each load increment. 
2 - Print the results after every iteration for each load 

increment. 

This quantity controls the magnitude of any load increment. 
The applied loading is input in subroutine DATA into the 
array RLOAD as described in Section 3.2. The size of any 
load increment is then defined to be F ACTO*RLOAD 
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(IELEM, INODE) with the increment size factor, FACTO, 
being input for each increment. This permits unequal load 
increments to be taken. It should be noted that the applied 
loading at any instant is accumulative. Therefore, if FACTO is 
input for the first three increments as respectively 0·5, 0·3 and 
0·1, the total loading applied to the structure during the third 
increment is 0·9 times the loading input in subroutine DATA. 
The above also holds for loading by incremental prescribed 
displacements. 
This item of data controls the tolerance permitted on the 
convergence process. Its use will be described in detail in 
Sections 3.9.2 and 3.9.3. 

Subroutine INCLOD is now presented and described: 

SUBROUTINE INCLOD INCL 1 
C***********************************************************************INCL 2 
C INCL 3 
C *** INPUTS DATA FOR CURRENT INCREMENT AND UPDATES LOAD VECTOR INCL 4 
C INCL 5 
C***********************************************************************INCL 6 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS.IITER, INCL 7 
KRESL, NCHEK, TOLER, NALGO. NSVAB, NDOFN,NINCS, NEVAB, INCL 8 
NITER, NOUTP,FACTO, PVALU INCL 9 

COMMON/UNIM2/PROPS(5.4),COORD(26),LNODS(25,2),IFPRE(52), INCL 10 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), INCL 11 
MATNO(25),STRES(25,2),PLAST(25),XDISP(52), INCL 12 
TDISP(26.2),TREAC(26.2),ASTIF(52.52),ASLOD(52), INCL 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) INCL 14 

READ (5,900) NITER,NOUTP,FACTO,TOLER INCL 15 
900 FORMAT(2I5,2F15.5) INCL 16 

WRITE(6,905) IINCS,NITER,NOUTP,FACTO,TOLER INCL 17 
905 FORMAT(1HO,5X,'IINCS =',I5,3x,'NITER =',I5,3X,'NOUTP =',15, INCL 18 

3X,'FACTO =',E14.6.3X,'TOLER =',E14.6) INCL 19 
DO 10 IELEM= 1 • NELEM INCL 20 
DO 10 IEVAB=1.NEVAB INCL 21 
ELOAD(IELEM,IEVAB)=ELOAD(IELEM,IEVAB)+RLOAD(IELEM,IEVAB)*FACT0 INCL 22 
TLOAD(IELEM, IEVAB) =TLOAD(IELEM, IEVAB)+RLOAD(IELEM, IEVAB)*FACT 0 INCL 23 

10 CONTINUE INCL 24 
RETURN INCL 25 
END INCL 26 

INCL 15-19 Read and write the input data required for each load increment 
as described previously in this section. 

INCL 20-24 Add the current increment of load into the out of balance load 
array ELOAD and the total applied load vector TLOAD. 

3.8 The master or controlling segment 
The final portion of the program which will be common to all four pro

grams (subject to the minor differences indicated in Fig. 3.1) is the master 
segment which controls the calling, in order, of the other subroutines. This 
program segment also controls the iterative process and also the incrementing 
of the applied loads, where appropriate. 
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The following channel numbers are employed by the programs: 5 (card 
reader), 6 (line printer), 1 (scratch file). 

The MASTER segment will now be presented in the form required in the 
next section for the solution of one-dimensional quasi-harmonic problems 
by direct iteration. For other applications it is only necessary to arrange for 
the calling of appropriate subroutines as indicated in Fig. 3.1. 

t1ASTER UNIDIH QUIT 1 
2 
3 
4 
5 
6 

C***********************************************************************QUIT 
C QUIT 
C *** PROGRAt-1 FOR THE 1-D SOLUTION OF NONLINEAR PROBLEMS QUIT 
C QUIT 
C***********************************************************************QUIT 

COHMON/UNH11 INPOIN. NELEI1, NBOUN, NLOAD, NPROP, NNODE, lINCS, lITER, 
KRESL,NCHEK,TOLER,NALGO.NSVAB,NDOFN,NINCS,NEVAB, 
NITER,NOUTP,FACTO,PVALU 

COHHON/UNIM2/PROPS(5.4),COORD(26),LNODS(25,2),IFPRE(52), 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), 
TDISP(26.2),TREAC(26.2),ASTIF(52,52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) 

CALL DATA 
CALL INITAL 
DO 30 IINCS:1,NINCS 
CALL INCLOD 
DO 10 IITER:1,NITER 
CALL NONAL 
IF(KRESL.EQ.1) CALL STIFF 1 
CALL ASSEMB 
IF(KRESL.EQ.1) CALL GREDUC 
IF(KRESL.EQ.2) CALL RESOLV 
CALL BAKSUB 
CALL HONITR (RINTL) 
IF(NCHEK.EQ.O) GO TO 20 
IF(IITER.EQ.1.AND.NOUTP.EQ.1) CALL RESULT 
IF(NOUTP.EQ.2) CALL RESULT 

10 CONTINUE 
WRITE(6,900) 

900 FORMAT ( 1 EO, 5X, I SOLUTION NOT CONVERGED I ) 

STOP 
20 CALL RESULT 
30 CONTINUE 

STOP 
END 

QUIT 7 
QUIT 8 
QUIT 9 
QUIT 10 
QUIT 11 
QUIT 12 
QUIT 13 
QUIT 14 
QUIT 15 
QUIT 16 
QUIT 17 
QUIT 18 
QUIT 19 
QUIT 20 
QUIT 21 
QUIT 22 
QUIT 23 
QUIT 24 
QUIT 25 
QUIT 26 
QUIT 27 
QUIT 28 
QUIT 29 
QUIT 30 
QUIT 31 
QUIT 32 
QUIT 33 
QUIT 34 
QUIT 35 
QUIT 36 
QUIT 37 

QUIT 15 Call the subroutine which reads the input data as described in 
Section 3.2. 

QUIT 16 
QUIT 17 
QUIT 18 
QUIT 19 

QUIT 20 

QUIT 21 

Call the subroutine which initialises various arrays to zero. 
Enter the DO LOOP over the number of load increments. 
Call the subroutine which increments the applied loads. 
Enter the DO LOOP over the maximum permissible number 
of iterations. 
Call the subroutine which controls the solution process as 
described in Section 3.3. 
If the element stiffnesses are to be reformulated, call the 
appropriate subroutine. 
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QUIT 22-25 Call the subroutines which assemble the element stiffnesses and 

QUIT 26 
solve for the unknowns and reactions. 
Call the subroutine which monitors the convergence process. 
This subroutine differs for the direct iteration method from 
that for the three other cases. 

QUIT 27 If the solution has converged, abandon the iterative process. 
QUIT 28-29 Output the results according to the display code, NOUTP, 

supplied as input for this particular load increment. 
QUIT 31-33 If the solution procedure reaches the maximum number of 

iterations permitted without convergence occurring, write a 

QUIT 34 
QUIT 35 

message and stop the program. 
Otherwise output the converged results. 
Return to process the next increment of load. 

3.9 Program for the solution of one-dimensional quasi-harmonic problems 
by direct iteration 

We now assemble a computer program which permits the solutiOIl of one
dimensional problems governed by a nonlinear quasi-harmonic equation. 
The behaviour of several physical situations can be described by such a 
model and some numerical examples will be provided at the end of this 
section. 

Most of the subroutines required for this program have been already 
described in the preceding sections of this chapter and, in particular, the 
master segment which controls the entire numerical process was described 
in Section 3.8. The additional subroutines, pertinent only to this application 

. which must be developed, are the element stiffness generation subroutine, 
STIFFl, and the solution convergence monitoring subroutine, MONITR. 
Detailed 'user instructions', listing the required input data, are included in 
Appendix I. 

3.9.1 Element stiffness subroutine, STIFFl 
The purpose of this subroutine is to formulate the stiffness matrix for each 

element in turn and store this data on a disc file. For solution by the method 
of direct iteration, the stiffness matrix for a one-dimensional element with a 
linear variation of the unknown is given by equation (2.25). The term K is, 
however, a specified function of the unknown or its derivatives which must 
be accounted for when formulating the element stiffnesses for each iteration 
of the solution sequence. In particular, K is assumed to vary according to 

K = Kof(~, ~:), (3.20) 

where Ko is a reference value of K and is specified as material property 
PROPS (NUMAT, 1) in subroutine DATA. The function 1(4), d4>/dx) is 
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defined by means of a FORTRAN FUNCTION statement and must be 
appropriately specified for each application. 

Subroutine STIFFI is now presented and descriptive notes provided. 

SUBROUTINE STIFF 1 STF1 
C***********************************************************************STF1 2 

3 
4 
5 
6 

C STF1 
C *** CALCULATES ELEMENT STIFFNESS MATRICES STF1 
C STF1 
c***********************************************************************STF1 

COI-1MON/UNIMlI NPOIN , NELEM, NBOUN, NLOAD, NPROP , NNODE. IINCS, IITER, STF 1 7 
8 KRESL, NCHEK,TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, STF1 

NITER,NOUTP,FACTO,PVALU STF1 9 
COMMON/UNIH2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), STF1 10 

FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), STF1 11 
MATNO(25),STRES(25,2),PLAST(25),XDISP(52), STF1 12 
TDISP(26,2),TREAC(26.2),ASTIF(52,52),ASLOD(52), STF1 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) STF1 14 

REWIND 1 
DO 10 IELEM:1,NELEM 
LPROP:MATNO(IELEM) 
STERM:PROPS(LPROP,1) 
NODE1:LNODS(IELEM,1) 
NODE2:LNODS(IELEH,2) 
ELENG:ABS(COORD(NODE1)-COORD(NODE2» 
AVERG:(TDISP(NODE1,1)+TDISP(NODE2,1»)/2.0 
FMULT:STERM*VARIA(AVERG)/ELENG 
ESTIF(1,1):FMULT 
ESTIF(1,2):-FMULT 
ESTIF (2, 1) :-HlliLT 
ESTIF(2,2):FMULT 
WRITE ( 1) ESTIF 

10 CONTINUE 
RETURN 
END 

STF1 15 
STF1 16 
STF1 17 
STF1 18 
STF1 19 
STF1 20 
STF1 21 
STF1 22 
STF1 23 
STF1 24 
STF1 
STF1 
STF1 
STF1 
STF1 
STF1 
STF1 

25 
26 
27 
28 
29 
30 
31 

STFI 15 Rewind the file on which the stiffness matrix for each element 
will be stored in sequence. 

STFI 16 
STFI 17 
STFI 18 
STFI 19-20 
STF121 
STFI22 

STFI23 
STF124-27 

STF128 
STFI29 

Loop over each element. 
Identify the material property of each element. 
Set STERM equal to Ko. 
Identify the node numbers of the element. 
Calculate the element length. 
Calculate the element temperature as the average of the nodal 
values. 
Calculate the temperature gradient. 
Compute the components of the element stiffness matrix 
according to (2.25) with the function 1(4), d4>ldx) being 
VARIA (AVERG). 
Write the element stiffness matrix on to disc file. 
Termination of DO LOOP over each element. 

The function 1(4), d4>ldx) must be defined for each application. Below we 
show, for e~ample, the appropriate function for the variation K =Ko(l + 1 Orb), 
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FUNCTION VARIA(AVERG) 
C**** 
C MULTIPLYING FUNCTION FOR QUASI-HARMONIC STIFFNESS VARIATION 

STF1 32 
STF1 33 
STF1 34 
STF1 35 
STF1 36 
STF1 37 
STF1 38 

C*Ui 
VARIA=1.0+10.0*AVERG 
RETURlJ 
END 

3.9.2 Solution convergence monitoring subroutine, MONITR 
Convergence of the numerical process to the nonlinear solution must be 

monitored by comparing, in some way, the values of the unknowns rp deter
mined during each iteration. One possible method is to compare each indi
vidual nodal value with the corresponding value obtained on the previous 
iteration. Then, provided that this change is negligibly small for all nodal 
points, convergence can be deemed to have occurred. In this chapter we will 
employ a global convergence check rather than such a local one. We will 
assume that the numerical process has converged if 

(3.21) 

where N denotes the total number of nodal points in the problem and r-l 
and r denote successive iterations. It is assumed that the positive root is 
always considered and I I signifies the absolute value of the numerator. The 
multiplication factor of 100 on the left-hand side allows the specified toler
ance factor TOLER to be considered as a percentage term. Equation (3.21) 
states that convergence is assumed to have occurred if the difference in the 
norm of the unknowns between two successive iterations is less than or 
equal to TOLER times the norm of the unknowns on the first iteration. In 
practical situations a value of TOLER = 1·0 (i.e., 1 %) is found to be 
adequate for the majority of applications. Convergence of the solution is 
indicated by the parameter NCHEK. A value of NCHEK = 1 indicates 
that convergence has not yet occurred, whereas NCHEK = 0, denotes a 
converged solution. Subroutine MONITR is now presented and desc'riptive 
notes provided. 

SUBROUTINE MONITR (RINTL) MNTR 1 
c***********************************************************************MNTR 2 
C MNTR 3 
C *** CHECKS FOR SOLUTION CONVERGENCE MNTR 4 
C MNTR 5 
c***********************************************************************MNTR 6 

COMMDN/UNIH1/NPOIN, NELEN,NBOUN,NLOAD, NPROP, NNODE, IINCS, IITER, MNTR 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, MNTR 8 
NITER,NOUTP,FACTO,PVALU MNTR 9 

COMMON/UNIM2/PROPS(5,4),COORD(26),LNODS(25,2),IFPRE(52), MNTR 10 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), MNTR 11 
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MATNO(25),STRES(25,2),PLAST(25),XDISP(52), MNTR 12 
TDISP(26.2),TREAC(26.2),ASTIF(52,52),ASLOD(52), MNTR 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) MNTR 14 

NCHEK=O MNTR 15 
RCURR=O.O MNTR 16 
DO 10 IPOIN= 1 , NPOIN MNTR 17 

10 RCURR=RCURR+TDISP(IPOIN.1)*TDISP(IPOIN,l) MNTR 18 
IF(IITER.EQ.1) RINTL=RCURR MNTR 19 
IF(IITER.EQ.1) NCHEK=l MNTR 20 
IF(IITER.EQ.1) GO TO 20 MNTR 21 
RATIO=100.0*SQRT(ABS(RCURR-PVALU»/SQRT(RINTL) MNTR 22 
IF(RATIO.GT.TOLER) NCHEK=l MNTR 23 

20 PVALU=RCURR MNTR 24 
WRITE(6,900) NCHEK,RATIO MNTR 25 

900 FORMAT(lH045X~18HCONVERGENCE CODE =,I4,3X,28HNORM OF RESIDUAL SUM MNTR 26 
.RATIO =,E1 .6) MNTR 27 

RETURN MNTR 28 
END MNTR 29 

MNTR 15 Set the indicator monitoring convergence to zero. If conver
gence has not yet occurred this will be set to 1 later in the 
subroutine. 

MNTR 16-18 Compute the norm of the unknowns 
N 

2:4>£2, 
£=1 

for the current iteration. 
MNTR 19 For the first iteration only compute the denominator of(3.21). 
MNTR 20-21 Convergence cannot possibly have occurred on the first 

MNTR22 
MNTR23 

MNTR24 

iteration, therefore set NCHEK = 1 and skip the remainder 
of the checking procedure by going to 20. 
Compute the left-hand side of (3.21). 
If (3.21) is not satisfied (i.e., convergence not taken place), 
set NCHEK = 1. 
Store the current value of the norm of the unknowns for use as 

during the next iteration. 
MNTR 25-27 Output the value of NCHEK and the left-hand side of (3.21). 

3.9.3 Numerical examples 
The first numerical example considered is illustrated in Fig. 3.3. The 

situation shown could physically represent the diffusion of a gas through a 
membrane in which case 4> is the gas concentration and K is the diffusivity 
of the membrane. Alternatively, the problem also represents the conduction 
of heat through a one-dimensional solid in which case 4> is the temperature 
and K the thermal conductivity. The boundary conditions assumed are 
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specified values of the unknown at the two boundaries. The term K is 
assumed to vary with the unknown q, according to 

K = Ko{l + 1Oq,) = Ko{l +g(q,». (3.22) 

An analytical solution(6) exists for this problem which enables q, to be 
determined from 

q,A + F(q,A) -q, - F(q,) X 

q,A + F(q,A) -q,B - F(q,B) - T,' 
(3.23) 

where 

F(</» = I: g(</>')d</>'. (3.24) 

In the present case, g(q,) = 10q, which gives on substitution in (3.24) and 
then in (3.23) 

6 -c/> -Sc/>2 X 

6 - 10' 
(3.2S) 

which allows q, to be determined for any value of x and is shown as the full 
line in Fig. 3.3. The initial finite element solution (i.e., after the first iteration) 
is shown in Fig. 3.3 as the broken line and, as expected, is linear. The results 
upon convergence, after 10 iterations, of the process are then included as 
circles and it is seen that the numerical solution coincides with the theoretical 
values. For example, for x = 6, the theoretical solution is c/> = 0·6, whilst 
the finite element analysis yieds q, = 0·S99999 (see Appendix IV). 

The second example considered includes the effect of the term Q in (2.IS). 
For thermal problems this can be physically interpreted as a heat generation/ 
unit length and must be specified as a loading, according to (2.26), in sub
routine DATA. Figure 3.4 shows the problem to be considered. A bar with 
its surface insulated generates heat internally and the temperature at its 
ends is maintained at zero value. Due to symmetry only one half of the 
problem is analysed with the symmetry condition dq,/dx = 0 at the centre
line being invoked. The initial solution corresponding to K = Ko is shown 
and is practically identical to the theoretical value. The process converged 
to the nonlinear solution after 12 iterations with the temperature being 
markedly reduced. The reduction is greater in regions of higher initial tem
perature due to the comparatively greater increase in material 'stiffness' in 
these areas. 

3.10 Program for the solution of one-dimensional quasi-harmonic 
problems by the Newton-Raphson method 

As seen in Section 2.3, use of this method results in the assembled stiffness 
equations being nonsymmetric. The equation assembly and solution routines 
developed in Section 3.4 made no use of the symmetry properties of the 



1.0 

0.9 

0.8 

0.7 

-S- 0.6 
~ ... 
=' ... 
~ O.S ... 
8. 
E 
~ 0.4 

0.3 

0.2 

0.1 

0 
0 

! d¢ =0 Q = O.2Iunit length d x 

:C:~::r::::::::::I:::r::::::I1 ~==I ¢=O c 

K = 10(1 + 10<!» I 
rt ----------~ 

/ 
Initial I' mear solution / 

. . -12 iterations I Nonlinear SOlutions~ Direct Iteratlhon -7 iterations 
Newton-Rap son 

o o 
_0 o 

/ ~...-----o ___ o--o- _0-

2 3 4 5 6 7 8 9 

Fig.3.4 Quasi-harmonic equation example-Heat generation in an axial bar. 

10 

til 
o 
r 
c: 
~ -o 
z 
o 
." 

Z 
o 
Z 
r -z 
m 
> 
iC 

" ~ o 
t:C 
r m 
3: 
til 

Q\ 
..0 



70 FINITE ELEMENTS IN PLASTICITY 

stiffness matrices. They are therefore applicable to this method of analysis 
without modification. 

Three additional subroutines need to be developed. These are the element 
stiffness subroutine ASTIFI and, since solution convergence is now based 
on the elimination of the residual forces, subroutine REFORI must be 
formed to calculate these forces and subroutine CONYER to monitor their 
convergence to zero. The master segment controlling the solution process is 
again that developed in Section 3.8 and the remaining subroutines accessed 
by this segment have also been described previously. 

3.10.1 Element stiffness formulation subroutine, ASTIFI 
For solution by the Newton-Raphson process, the 'stiffness' equations 

which require solution are summarised in (2.12) where it is seen that the 
total stiffness is the sum of symmetric, H, and nonsymmetric, H', contri
butions. The symmetric stiffness matrix is given by (2.25) and the nonsym
metric terms depend on the particular form of material nonlinearity. For a 
material nonlinearity of the form (2.27), the non symmetric portion of the 
stiffness matrix is given by (2.29). The subroutine which evaluates and sums 
these separate contributions is now presented below. 

SUBROUTINE ASTIF1 ASTF 
C***********************************************************************ASTF 

1 
2 
3 
4 
5 
6 

C ASTF 
C *** CALCULATES ELEMENT STIFFNESS MATRICES ASTF 
C ASTF 
C***********************************************************************ASTF 

CM10N/UNHll/NPOIN. NELEH, NBOUN, NLOAD, NPROP, NNODE. IINCS, IITER, 
KRESL, NCHEK, TOLER, NALGO. NSVAB, NDOFN, NINCS, NEVAB, 
NITER. NOUTP.FACTO,PVALU 

COMMON/UNIM2/PROPS(5.4),COORD(26),LNODS(25,2),IFPRE(52), 
FIXED(52).TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), 
MATNO(2S),STRES(25,2),PLAST(25).XDISP(52). 
TDISP(26.2),TREAC(26.2).ASTIF(52,52).ASLOD(52). 
REACT(52) ,FRESV(1352) ,PEFIX(52) ,ESTIF(4.4) 

REWIND 1 
DO 10 IELEM: 1 • NELEM 
LPROP=MATNO(IELEM) 
STERM:PROPS(LPROP,1) 
GRADU:PROPS(LPROP.2) 
NODE1:LNODS(IELEM,l) 
NODE2:LNODS(IELEM.2) 
ELENG:ABS(COCRD(NODE1)-COORD(NODE2» 
AVERG:(TDISP(NODE1.1)+TDISP(NODE2,1»/2.0 
FMULT:STERM*VARIA(AVERG)/ELENG 
DIFFR:TDISP(NODE1.1)-TDISP(NODE2,1) 
COEFF=STERM*GRADU*DIFFR/(2.0*ELENG) 
ESTIF(l,1):FMULT+COEFF 
ESTIF(1,2):-FMULT+COEFF 
ESTIF(2,1)=-FMULT-COEFF 
ESTIF(2,2):FMULT-COEFF 
WRITE(l) ESTIF 

10 CONTINUE 
RETURN 
END 

ASTF 7 
ASTF 8 
ASTF 9 
ASTF 10 
ASTF 11 
ASTF 12 
ASTF 13 
ASTF 14 
ASTF 15 
ASTF 16 
ASTF 17 
ASTF 18 
ASTF 19 
ASTF 20 
ASTF 21 
ASTF 22 
ASTF 23 
ASTF 24 
ASTF 25 
ASTF 26 
ASTF Z7 
ASTF 28 
ASTF 29 
ASTF 30 
ASTF 31 
ASTF 32 
ASTF 33 
ASTF 34 



ASTF 15 

ASTFI6 
ASTF 17 
ASTF 18 
ASTF19 
ASTF 20-21 
ASTF 22 
ASTF 23 

ASTF 24 
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Rewind the file on which the stiffness matrix of each element 
will be stored. 
Loop over each element. 
Identify the material property of each element. 
Set STERM equal to Ko in (2.27). 
Set GRADU equal to h in (2.27). 
Identify the node numbers of the element. 
Calculate the element length. 
Calculate the element temperature as the average of the nodal 
values. 
Calculate the multiplying term in (2.25) by use of FUNCTION 
statement VARIA. 

ASTF 25-26 Evaluate the multiplying term in (2.29). 
ASTF 27-30 Compute the components of the total stiffness matrix. 
ASTF 31 Write the clement stiffness matrix on to disc file. 
ASTF 32 Termination of DO LOOP over each element. 

3.10.2 Residual force calculation subroutine REFORI 
The residual forces after any step of the process are obtained from (2.4). 

The applied nodal forces, f, are known and it only remains to evaluate the 
'equivalent nodal forces', Hf/J, which are the nodal forces consistent with the 
unknowns, f/J. It should be noted that H is the linear symmetric matrix 
defined in (2.25). The equivalent nodal forces at the nodes 1 and 2 of the 
linear element can be explicitly written, using (2.25), as 

(3.26) 

The subroutine which evaluates these forces for each element is now 
presented. 

SUBROUTINE REFOR1 RFR1 
c***********************************************************************RFR1 2 
C RFR1 3 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFR1 4 
C RFR1 S 
c***********************************************************************RFR1 6 

COt-iMON/UNIM1/NPOIN.NELEM,NBOUN,NLOAD,NPROP,NNODE. IlNCS, lITE R, RFR1 7 
KRESL,NCHEK,TOLER,NALGO.NSVAB,NDOFN,NINCS.NEVAB, RFR1 8 
NITER,NOUTP,FACTO.PVALU RFR1 Q 

COM~ION/UNIM2/PROPS( 5.4), COORD(26). LNODS(25,2). IFPRE( 52). RFR1 10 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4). RFR1 11 
MATNO(25),STRES(25,2).PLAST(25).XDISP(52). RFR1 12 
TDISP(26 .2), TREAC(26 .2) ,ASTIF(52,52) ,ASLOD(52), RFR1 13 

• REACT ( 52) ,FRESV( 1352) , PEFIX( 52) , ESTIF(lI. 4) RFR 1 14 
DO 10 IELEM= 1 ,NELEI·l RFR 1 15 
DO 10 IEVAB=1,NEVAB RFR1 16 
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10 ELOAD ( lELEI·l, lEV AB) =0.0 
DO 20 lELEH~l.NELEN 
LPROP=MATNO(IELEH) 
STERM=PROPS(LPROP.1) 
NODE1=LNODS(IELEH,1) 
NODE2=LNODS(IELEM,2) 
ELENG=ABS(COORD(NODE1)-COORD(NODE2» 
AVERG=(TDlSP(NODE1.l)+TDlSP(NODE2,1»/2.0 
STlFF=STERM*VARlA(AVERG)/ELENG 
ELOAD(IELEM,l)= STlFF*(TDlSP(NODE1,1)-TDlSP(NODE2,1» 

20 ELOAD(IELEM,2)=-STlFF*(TDlSP(NODE1,1)-TDlSP(NODE2,1» 
RETURN 
END 

RFR1 17 
RFR1 18 
RFR1 19 
RFRl 20 
RFRl 21 
RFR1 22 
RFRl 23 
RFR1 24 
RFR1 25 
RFR1 26 
RFRl 27 
RFRl 28 
RFR1 29 

RFRI 15-17 Initialise to zero the array in which the equivalent nodal forces 
for each element will be stored. 

RFRI 18 Loop over each element. 
RFRI 19 Identify the material property of each element. 
RFRI 20 Set STERM equal to Ko in (2.27). 
RFRI 21-22 Identify the node numbers of the element. 
RFRI 23 Calculate the element length. 
RFRI 24 Calculate the element temperature as the average of the nodal 

values. 
RFRI 25 Calculate the multiplying term in (2.25). 
RFRI 26-27 Compute the equivalent nodal forces according to (3.26). 

3.10.3 Solution convergence monitoring subroutine, CONUND 
This subroutine must essentially differ from subroutine MONITR 

described in Section 3.9.2 since convergence is now based on the residual 
force values rather than values of the unknowns. The convergence criterion 
employed is similar to that described in (3.21) and is 

J [t~ (;\")'] 
J [i~ C0

2 

] 

x 100 ~ TOLER, (3.27) 

where N is the total number of nodal points in the problem and r denotes 
the iteration number. This criterion states that convergence occurs if the 
norm of the residual forces becomes less than TOLER times the norm of 
the total applied forces. Again the parameter NCHEK is used to indicate 
whether or not convergence has occurred. Three values of NCHEK are 
utilised: 

NCHEK = 0 
= 1 

= 999 

Solution has converged. 
Solution converging, with the norm of the residual forces 
being less for the rtll iteration than the (r - I )th iteration. 
Solution diverging. The norm of the residual forces is 
greater for the rth iteration than the (r - 1 )th iteration. 
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Subroutine CONUND is now listed and descriptive notes provided. 

SUBROUTINE CONUND COND 
c.*~***********************.********************************************COND 2 
C COND 3 
C *** CHECKS FOR SOLUTION CONVEHGEIJCE COND 4 
C COND 5 
C***********************************************************************COND 6 

COHNON/UNUI1/NPOIN. NELE~I, NBOUN, NLOAD, NPROP, NNODE. IINCS. IITER, 
KRESL, NCHEK ,TOLER,NALGO, NSVAB, NDOFN,NINCS,NEVAB, 
NITER,NOUTP,FACTO,PVALU 

COMHON/UNU'.2/PROPS(5,4) ,COORD(26) ,LNODS(25,2) ,IFPRE(52), 
FIXED(52),TLOADC25,4),RLOAD(25,4),ELOADC25,4), 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52) , 
TDISP(26.2),TREAC(26.2) ,ASTIFC52,52) ,ASLOD(52) , 
REACT( 52) ,FRESV ( 1352) , PEFIX ( 52) , ESTIF( 4,4) 

DIMENSION STFOR(52),TOFOR(52) 
NCHEK=O 
RESID=O.O 
RETOT=O.O 
DO 10 ISVAB=1,NSVAB 
STFOR(ISVAB)=O.O 

10 TOFOR(ISVAB)=O.O 
DO 20 IELEN= 1 , NELH1 
IEVAB=O 
DO 20 INODE=l.NNODE 
NODNO=LNODS(IELEl-1,INODE) 
DO 20 IDOFN=1,NDOFN 
IEVAB=IEVAB+ 1 
NPOSN=(NODNO-l)*NDOFN+IDOFN 
STFOR (NPOSN) =STFOR (NPOSfJ) +ELOAD (IELEM. lEV AS) 

20 TOFOR(NPOSN)=TOFOR(NPOSN)+TLOAD(IELEH,IEVAB) 
DO 30 ISVAB=l,NSVAB 
REFOR=TOFOR(ISVAB)-STFORCISVAB) 
RESID=RESID+REFOR*REFOR 

30 RETOT=RETOT+TOFOR(ISVAB)*TOFOR(ISVAB) 
DO 40 IELEH=l,NELEf.1 
DO 40 IEVAB=l,NEVAB 

40 ELOAD(IELEM,IEVAB)=TLOAD(IELEH,IEVAB)-ELOADCIELEr1,IEVAB) 
RATlO=100.0*SQRT(RESID/RETOT) 
IF(RATIO.GT.TOLER) NCHEK=l 
IF(IITER.EQ.l) GO TO 50 
IF(RATIO.GT.PVALU) NCHEK=999 

50 PVALU=RATIO 
WRITE(6,goo) IITER,NCHEK,RATlO 

900 FOR~~T(lHO)5X,IITERATION NUMBER =',151 

RETURN 
END 

1 HO, 5X, I CONVERGENCE CODE =', I4, 3X, 
'NORM OF RESIDUAL SUN RATIO =',E14.6) 

COND 7 
COND 8 
COND 9 
COND 10 
COND 11 
COND 12 
COND 13 
COND 14 
COND 15 
COND 16 
COND 17 
COND 18 
COND 19 
COND 20 
COND 21 
COND 22 
COND 23 
COND 24 
COND 25 
COND 26 
COND 27 
COND 28 
COND 29 
COND 30 
COND 31 
COND 32 
COND 33 
COND 34 
COND 35 
COND 36 
COND 37 
COND 38 
COND 39 
COND 40 
COND 41 
COND 42 
COND 43 
COND 44 
COND 45 
COND 46 
COND 47 
COND 48 

COND 16 Initialise the convergence indicator to zero. If convergence 
has not occurred during this iteration this value will be reset 
later in the subroutine. 

COND 17 Initialise to zero the norm of the residual forces. 
COND 18 Initialise to zero the norm of the total applied loads. 
COND 19-21 Initialise the arrays which will contain the equivalent nodal 

forces and the applied loads for each nodal point. 
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COND 22-30 Assemble the equivalent nodal forces and applied load con
tributions of each element to give the total nodal values, as 
required for use in (3.27). This manipulation is necessary as 
we have decided to associate loads with an element rather 

COND 32 
COND 33 
COND 34 
COND 35-37 

COND 38 
COND 39 

than nodal points. 
Calculate the nodal residual force according to (2.4). 
Evaluate the norm of the residual forces. 
Evaluate the norm of the total applied forces. 
Calculate the residual nodal forces for each element, for 
application as forces for the next iteration according to (2.12). 
Compute the left-hand side of (3.27)-the residual sum ratio. 
If (3.27) is not satisfied reset NCHEK = 1 to indicate that 
convergence has not yet occurred. 

COND 40-41 For second and subsequent iterations check to see if the 
residual sum ratio has decreased from the previous iteration. 
If not, set NCHEK = 999. 

COND 42 Store the residual sum ratio, in order to perform the check 
indicated in COND 41 during the next iteration. 

COND 43-46 Write the convergence code and the residual sum ratio. 

3.10.4 Numerical examples 
The numerical example considered in Section 3.9.3 and illustrated in 

Fig. 3.3, was reanalysed using the Newton-Raphson approach. The process 
converged to the nonlinear solution in 5 iterations compared to the 10 cycles 
required for the direct iteration method. The reduction in the number of 
iterations must, however, be balanced against the increased computing 
effort required for the solution of nonsymmetric equations. This remark is 
applicable only when advantage of the symmetric property of the equations 
is taken in solution as is the case in the more sophisticated equation solver 
described later in Chapter 6. The numerical results are practically identical 
to those obtained by the method of direct iteration and consequently both 
solutions are represented by the full circles in Fig. 3.3. The problem of Fig. 3.4 
was also reanalysed and a similar improvement in convergence behaviour 
was obtained with only 7 iterations being required in place of the 12 necessi
tated by direct iteration. 

3.11 Program for the solution of nonlinear elastic problems 
In this section a program is developed which permits the solution of non

linear elastic problems by either the tangential stiffness or the initial stiffness 
approach or by a combination of both methods. The options open are con
trolled by the parameter NALGO, the possible values of which are described 
in Section 3.2. 
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The structure of this program is identical to that described in Section 3.10 
and it is only necessary to develop appropriate subroutines for element 
stiffness formulation, STIFF2, and residual force evaluation, REFOR2. 

3.11.1 Element stiffness subroutine, STIFF2 
For any value of the total strain, E, in an element, the tangential stiffness 

matrix is explicitly given by (2.33). It is seen from this expression that the 
first derivative of the strain function must be known. For the calculation of 
the residual forces, the strain function itself must be input. Since the com
puter cannot perform even the simplest differentiation it is necessary to 
supply both quantities in the form of FUNCTION statements. As an 
example, the strain function will be assumed to be of the form 

(3.28) 

in which case 

(3.29) 

Subroutine STIFF2 is now listed below. 

SUBROUTINE STIFF2 STF2 1 
2 
3 
4 

C***********************************************************************STF2 
C STF2 
C **if CALCULATES ELEl-iEfJT STIFFtJESS fvlATRICES STF2 
C STF2 5 
C***********************************************************************STF2 6 

COMHON/UNIM1/NPOIN, NELEt'l, NBOUN, NLOAD, NPROP ,NNODE, IINCS, IITER, 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, 
NITER, NOUTP,FACTO, PVALU 

COHNON/UNIM2/PROPS(5, 4) , COORD (26 ) ,LNODS(25 ,2), IFPRE( 52), 
FIXED(52),TLOAD(25,4),RLOADC25,4),ELOADC25,4), 
11ATNO(25) ,STRESC25,2) ,PLAST(25) ,XDISP(52), 
TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) 

RBHND 1 
DO 10 IELEN= 1 , NELEJ.I 
LPROP=HATrm( IELEN) 
YOUNG=PROPS(LPROP,1) 
XAREA=PROPS(LPROP,2) 
/JODE 1 =UJODS ( IELEt~, 1 ) 
tJODE2=LNODSCIELEH,2) 
ELENG=ABS(COORDCNODE1)-COORDCNODE2» 
PTRAN=PLASTCIELEN) 
COEFF=YOUNG*XAREA/ELENG 
FMULT=COEFF*STDIVCPTRAN) 
ESTIF ( 1 , 1 ) =FtlULT 
ESTIF(1,2)=-FMULT 
ESTIFC2, 1 ):-HIULT 
ESTIFC2,2)=FHULT 
\JRITEC 1) ESTIF 

lC CONTINUE 
RETURN 
EtJD 

STF2 7 
STF2 8 
STF2 9 
STF2 10 
STF2 11 
STF2 12 
STF2 13 
STF2 14 
STF2 15 
STF2 16 
STF2 17 
STF2 18 
STF2 19 
STF2 20 
STF2 21 
STF2 22 
STF2 23 
STF2 24 
STF2 25 
STF2 26 
STF2 27 
STF2 28 
STF2 29 
STF2 30 
STF2 31 
STF2 32 
STF2 33 
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STF215 Rewind the file on which the stiffness matrix of each element 
will be stored. 
Loop over each element. 
Identify the material property of each element. 

STF216 
STF217 
STF218 Set YOUNG equal to the reference value of the material 

modulus, Eo. 
Set XAREA equal to the cross-sectional area. 
Identify the node numbers of the element. 
Calculate the element length. 
Set PTRAN equal to the total strain, E. 

STF219 
STF220--21 
STF222 
STF223 
STF224-25 Compute the multiplying term in (2.33) with g'( E) given by 

STDIV (PTRAN). 
STF226-29 
STF230 
STF231 

Compute the components of the stiffness matrix. 
Write the element stiffness matrix on to disc file. 
Termination of DO LOOP over each element. 

For a strain derivative function as defined by (3.29), the appropriate 
function statement is provided below. 

fUIJCTIU!i STDIV( PTRAfJ) STf2 34 
Clf!;;:';; STF2 35 
C STRAIN DERIVATIVE FUIJCTIOfJ STF2 36 
C**** STF2 37 

STDIV=1.0-10.0*rrRAIJ STF2 38 
RETURN STF2 39 
ErJD STF2 40 

3.11.2 Residual force calculation subroutine REFOR2 
The residual forces existing at the end of any iteration must be calculated 

according to (2.4). The first step in this calculation entails the evaluation of 
the equivalent nodal forces, which are the forces required to produce the 
total displacements existing in the element. The element strain is simply 

€E = {(¢>2 -¢>l)/L for X2 > Xl 

(¢>l -¢>2)/L for X2 < Xl, (3.30) 

where Xl and X2 denote the coordinates of the element nodes. This notation 
is required to ensure that tensile strains are positive and enables the nodal 
connections to be assigned in any order. 

Then from (2.30) the stress in the element is given by 

UE = Eog(€E), 

and the equivalent nodal forces are 

/1 = -/2 ={-UEA 
uEA 

for X2 > Xl 

for X2 < Xl. 

(3.31 ) 

(3.32) 
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Subroutine REFOR2 is now listed and described. 
SUBROUTINE REFOR2 RFR2 1 

C*******************************************~**~*******************~~***RFR2 2 
C RFR2 3 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFR2 I.J 

C RFR2 5 
c***********************************************************************IWR2 6 

COHHON/UNlt-11 I NPOIN , NELEJ.I ,NBOUN ,NLOAD , NPROP , rmODE, !I tlCS, !ITER, RFR2 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NmCS,tJEVAfJ, RFR2 8 
NITER,NOUTP,FACTO,PVALU RFR2 9 

COMI'10N/UNIM2/PROPS( 5,4) ,CooRD( 26) ,LNODS(25, 2) ,IFPRE( 52) , RFR2 10 
FIXED(52),TLOAD(25,4),RLOAD(25,1.J),ELOAD(25,1.J), RFR2 11 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52), RFR2 12 
TOISP( 26,2) ,TREAC( 26,2) ,ASTIF( 52,52) ,ASLOD( 52) , RFR2 13 
REACT(52) ,FRESV(1352),PEFIX(52) ,ESTIF(4,4) RFR2 11.J 

DO 10 IELEH=l, NELEt1 RFR2 15 
DO 10 IEVAB=1,NEVAB HFR2 16 

10 ELOAD(IELEI1,IEVAB)=0.0 RFR2 17 
DO 30 IELEt1= 1 , NELEf·1 RFR2 18 
LPROP=MATNO( IELEI·t) RFR2 19 
YOUNG=PROPS(LPROP,1) RFR? 20 
XAREA=PROPS(LPROP, 2) RFR? 21 
NODE 1 =LNODS ( IELEt'l, 1) RFR2 22 
NODE2=LlJODSOELEH,2) RFH2 23 
ELENG=ABS(CooRD(NODE1)-CooRD(NODE2» RFR2 24 
IF(CooRD(NODE2).GT.CooRD(NODE1» STRAN=(XDISP(NODE2)-XDISP(NODE1»RFR2 25 

. IELENG RFR2 26 
IF(CooRD(NODE2).LT.CooRD(NODE1» STRAN=(XDISP(NODE1)-XDISP(NODE2»RFR2 27 

. IELENG RFR2 28 
PLAST(IELEM)::PLAST(IELEH)+STRAN RFR2 29 
PTRAN=PLAST(IELEM) RFR2 30 
STRES(IELEM,l)=YOUNG*STNFN(PTRAN) RFR2 31 
IF(COORD(NODE2).GT.COORD(NODE1» GO TO 20 RFR2 32 
ELOAD(IELEM,1)=STRES(IELEH,1)*XAREA RFR2 33 
ELOAD(IELEM,2)=-STRES(IELEM,1)*XAREA RFR2 34 
GO TO 30 RFR2 35 

20 ELOAD(IELEM,l)=-STRES(IELEM,l)*XAREA RFR2 36 
ELOAD(IELEM,2)=STRES(IELEH,1)*XAREA RFR2 37 

30 CONTINUE RFR2 38 
RETURN RFR2 39 
END RFR2 40 

RFR2 15-17 Initialise to zero the array in which the equivalent nodal forces 

RFR218 
RFR2 19 
RFR220 

for each element will be stored. 
Loop over each element. 
Identify the material property of each element. 
Set YOUNG equal to the reference value of the material 
modulus, Eo. 

RFR2 21 Set XAREA equal to the cross-sectional area. 
RFR222-23 Identify the node numbers of the element. 
RFR2 24 Calculate the element length. 
RFR225-28 Calculate the increase in element strain which occurred during 

the current iteration according to (3.30) (since XDISP measures 
the displacement change only). 

RFR2 29 Compute the total strain. 
RFR2 30-31 Compute the element stress according to (3.31). 
RFR2 32-37 Compute the equivalent nodal forces according to (3.32). 
RFR2 38 Termination of DO LOOP over the elements. 
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For calculation of the element stress in steps RFR230-31 (equation 
(3.31» the strain function g(€) must be defined. The FUNCTION statement 
appropriate to the variation indicated in (3.28) is provided below. 

FUNCTION STIJFtJ (PTRAN) 
C**** 
C STRAIN FUIJCTION 
C**** 

STNFN=PTRAN-5.0*PTRAIJ*PTRAN 
RETURN 
END 

The equivalent nodal forces evaluated here are converted into 
forces", in subroutine CONUND as described in Section 3.10.3. 

3.11.3 Numerical examples 

RFR2 41 
RFR2 42 
RFR2 43 
RFR2 4J~ 

RFR2 45 
RFR2 46 
RFR~) 47 

residual 

The first example considered is the uniaxial loading of a two-element 
system. The stress/strain relationship is assumed to be defined in terms of 
the nonlinear expression (3.28). The applied load is incrementally increased 
and the combined tangential/initial stiffness solution algorithm, NALGO = 4, 
is employed. Figure 3.5 shows the solution behaviour during iteration to 
the nonlinear solution. The element stiffnesses are initially assembled at the 
beginning of a load increment and then kept constant during iteration to 
the nonlinear solution. The convergence path is plotted and it is seen that 
the process converges within 7 iterations for the first load increment. For the 
second load increment the process requires 9 iterations before convergence 
takes place. The process diverged rapidly on further increase of load to a 
total value of 11; which is expected since no solution can exist for this 
load value. 

As an illustration of the application of the initial stiffness method to 
strain-softening problems, the above problem was reanalysed with the 
structure being loaded by prescribing an increasing value of displacement to 
node 3, rather than incrementing an applied load. For strain values at and 
beyond the peak load, the structural stiffness is either zero or negative and 
an initial stiffness approach must be employed. Figure 3.6 shows the results 
when the structure is strained beyond the peak load value. 

3.12 Program for the solution of elasto-plastic problems 
A computer program is now developed for the solution of one-dimensional 

elasto-plastic problems. Once again a tangential stiffness, initial stiffness or 
combined approach is permitted for solution. The program differs only from 
that described in the previous section in the explicit form of the element 
stiffness and residual force subroutines. 

3.12.1 Element stiffness subroutine, STIFF3 
Before yielding, the stiffness matrix of an element with linear displacement 

variation is given by (2.38). After the onset of plastic deformation, as 
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1.2 

Fig. 3.5 Load/extension response of a nonlinear elastic bar under applied axial 
loading. 

governed by the uniaxial yield stress Uy, the material stiffness is reduced and 
the elasto-plastic stiffness matrix is explicitly given by (2.43). Thus when 
forming the stiffness matrix for each element, it is first necessary to check 
whether the element behaviour is elastic or elasto-plastic. This can best be 
monitored by recording the plastic strain component, Ep, for each element 
and noting that this will be zero for a completely elastic material response. 
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Fig. 3.6 Solution for a nonlinear elastic bar by initial stiffness, incremented 
prescribed displacement approach. 

Subroutine STIFF3 can now be presented. 

SUBROUTINE STIFF3 STF3 1 
c***********************************************************************STF3 2 
C STn 3 
C *** CALCULATES ELEMENT STIFFNESS MATRICES STF3 4 
C STF3 5 
c***********************************************************************STF3 6 

2.6 
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COMMON/UNlM1/NPOlN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,lITER, 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NlNCS,NEVAB, 

• NlTER,NOUTP,FACTO,PVALU 
COMMON/UNlM2/PROPS(5,4) ,COORD(26) ,LNODS(25,2),lFPRE(52) , 

FlXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), 
MATNO(25),STRES(25,2),PLAST(25),XDlSP(52), 
TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTlF(4,4) 

REWIND 1 
DO 10 IELEM:1,NELEM 
LPROP:HATNO(IELEM) 
YOUNG:PROPS(LPROP,1) 
XAREA:PROPS(LPROP,2) 
HARDS:PROPS(LPROP,4) 
NODE1:LNODS(IELEM,1) 
NODE2:LNODS(IELEM,2) 
ELENG:ABS(COORD(NODE1)-COORD(NODE2» 
FMULT:YOUNG*XAREA/ELENG 
IF(PLAST(IELEM).GT.O.O) FMULT:FMULT*(1.0-YOUNG/(YOUNG+HARDS» 
ESTIF(1,1):FMULT 
ESTIF(1,2):-FMULT 
ESTIF(2,1):-FMULT 
ESTIF(2,2):FMULT 
WRITE ( 1) ESTIF 

10 CONTINUE 
RETURN 
END 
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STF3 7 
STF3 8 
STF3 9 
STF3 10 
STF3 11 
STF3 12 
STF3 13 
STF3 14 
STF3 15 
STF3 16 
STF3 11 
STF3 18 
STF3 19 
STF3 20 
STF3 21 
STF3 22 
STF3 23 
STF3 24 
STF3 25 
STF3 26 
STF3 21 
STF3 28 
STF3 29 
STF3 30 
STF3 31 
STF3 32 
STF3 33 

STF315 Rewind the file on which the stiffness matrix of each element 
will b~ stored. 

STF316 
STF317 
STF318 
STF3 19 
STF320 
STF321-22 
STF323 
STF324 
STF325 

STF326-29 
STF330 
STF331 

Loop over each element. 
Identify the material property of each element. 
Set YOUNG equal to the material elastic modulus. 
Set XAREA equal to the cross-sectional area. 
Set HARDS equal to the strain hardening parameter, H'. 
Identify the node numbers of the element. 
Calculate the element length. 
Compute the multiplying term in (2.38) as FMULT. 
Check if the element has yielded. If yes, compute FMULT as 
the mUltiplying term in (2.43). 
Compute the components of the stiffness matrix. 
Write the element stiffness matrix on to disc file. 
Termination of DO LOOP over each element. 

3.12.2 Residual force subroutine, REFOR3 
The purp.ose of this subroutine is to calculate the equivalent nodal forces 

from which the residual nodal forces will be evaluated in subroutine 
CONUND. In view of the essentially incremental nature of the equations of 
plasticity, the subroutine is somewhat more intricate than the residual force 
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subroutines developed to date. All stress and strain components must be accu
mulated from the values obtained during each iteration. The situation is 
further complicated by the fact that an element may yield when the residual 
forces are applied as loads for any iteration. The precise load at which 
yielding begins will generally lie somewhere between the total load corre
sponding to the previous iteration and the total load for the present cycle. 
Consequently the yield load must be determined and the plastic strain 
computed for only the post yield portion of the load. The general procedure 
adopted is to determine the stress in each element so that the yield criterion 
is satisfied. If the actual stress in any element is greater than this permissible 
value, then the additional part is removed but is included in the residual force 
vector to maintain equilibrium. 

Consider the situation existing for the rth iteration of any particular load 
increment. The solution algorithm employed is presented below. 

Step a The applied loads for the rth iteration are the residual forces 'l'T-1 

calculated at the end of the (r -J )th iteration according to (2.4). 
These applied loads give rise to displacement increments, 6.rpr, 

according to (2.12). Hence calculate the corresponding increment of 
strain 6. er. For the general element denote this value by 6.E r and 
it is shown in Fig. 3.7. 

Step b Compute the incremental stress change assuming linear elastic 
behaviour. This will introduce errors if the element has yielded and 
the material is behaving elasto-plastically. However, we will correct 
any discrepancy when the residual forces are calculated. Therefore 
we calculate the stress change according to 6.(jl = E6.E r, where 
the subscript e is used to denote that this stress is based on elastic 
behaviour. 

Step c Accumulate the total stress for each element as (jer = (jr-1+6.(je r. 

The stress (jT-1 will have been determined to satisfy the yield con
dition during the (r -1 )th iteration. Consequently, the error in the 
stress (jeT is limited to 6.ueT. Again the subscript e denotes that 
(jeT is based on an elastic behaviour. 

Step d The next step in the process depends on whether or not the element 
had previously yielded on the (r -1 )th iteration. This can be checked 
from the known value of the yield stress for the (r -l)th iteration. 
The stress limit for this cycle is given from Fig. 2.9 as 

Since the plastic strain Ep will differ from element to element, each 
element will generally have a different permissible stress level. 
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Fig. 3.7 Incremental stress and strain changes in a one-dimensional elasto-plastic 
material. (a) Initial yielding of material. (b) Material previously yielded. 
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Therefore we check if u r-l > uy + H' £ P r-l. If the answer is: 

YES 

which implies that the element had already 
yielded during the previous iteration, then 
check to see if aer > ar-l. If the answer 
is: 

NO 

The element is 
unloading which 
according to 
plasticity theory 
must take place 
elastically, and no 
further action 
need be taken. 
Go directly to 
Step g. 

YES 

The element had 
reached the 
threshold stress 
during the previous 
iteration and the 
stress is still 
increasing. There
fore all the excess 
stress aer - a r - I 

must be reduced to 
the yield value as 
indicated in 
Fig. 3.7(b). There
fore the factor, R, 
which defines the 
portion of the stress 
which must be 
modified to satisfy 
the yield condition, 
is equal to I in this 
case as shown in 
Fig. 3.7(b). 

NO 

which implies that the element had not 
previously yielded. We now check to see 
if f1er > ay. If the answer is: 

NO 

The element is 
still elastic and no 
further action need 
be taken. Go 
directly to Step g. 

YES 

The element has 
yielded during the 
application of load 
corresponding to 
this iteration as 
illustrated in Fig. 
3.7(a). Therefore the 
portion of the stress 
greater than the 
yield value must be 
reduced to the 
elasto-plastic line. 
The removed por
tion will be included 
in the residual force 
vector. The re
duction factor, R, is 
found, with refer
ence to Fig. 3.7(a) 
to be 

AB 
R=

AC 

Step e For yielded elements only, calculate the increment of stress l1uep''', 
which is the portion after yielding, permitted byelasto-plastic theory. 
This stress value is shown in Fig. 3.7 for the two cases when (a) yield
ing has commenced during this iteration and (b) when the element 
had previously yielded. Using (2.4) we have 

(3.33) 

where the subscript ep denotes elasto-plastic behaviour. For 
the above to be generally true we must restrict ourselves to small 
increments of stress and strain. For the situation of Fig. 3.7(a), 
noting that triangles ADC and AEB are similar, we have 

(3.34) 
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Defining R = 1 for the situation of Fig. 3.7(b), then (3.34) IS 

still correct. Therefore 

(3.35) 

The total current stress is given by 

aT = a T- I +(1- R)~aeT + ~aepT, (3.36) 

where the second term accounts for the elastic portion of the stress 
increment occurring before the onset of yielding. 

Step / For yielded elements only, evaluate the total plastic strain for the 
element as EpT = EpT-I + ~EpT where the plastic strain increment 
for the iteration is calculated as follows. For the elastic component 
of strain, ~Ee T, we have 

(3.37) 

Substituting for ~aT from the linearised form of (2.35) into (3.37) 
and then using (2.34) we obtain 

(3.38) 

Since the plastic strain component must be calculated for the part 
of the strain after the element yields, then, with reference to Fig. 
3.7, ~ET must be replaced by ~EepT. Or, using (3.34), we have 

Rt:.ET 
~E T = . 

p 1 +H'/E 

Then the total current plastic strain for the element is 

R~ET 
EpT = EpT-l + . 

1 +H'/E 

Step g For elastic elements only, store the correct current stress as 

(This in fact repeats Step c.) 

(3.39) 

(3.40) 

(3.41) 

Step h Finally, calculate the equivalent nodal forces from the element 
stress according to 

(

-aT A for 
/1 = -/2 = 

aT A for 

X2 > Xl 

X2 < Xl. 
(3.42) 
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Subroutine REFOR3 is now presented below and explanatory notes pro
vided. 

SUBROUTINE REFOR3 RFR3 1 
c***********************************************************************RFR3 2 
C RFR3 3 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFR3 4 
C RFR3 5 
c***********************************************************************RFR3 6 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, RFR3 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, RFR3 8 
NITER,NOUTP,FACTO,PVALU RFR3 9 

COMMON/UNIM2/PROPS(5,4) ,COORD(26) ,LNODS(25,2) ,IFPRE(52) , RFR3 10 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), RFR3 11 
MATNO(25) ,STRES(25,2) ,PLAST(25) ,XDISP(52) , RFR3 12 
TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), RFR3 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) RFR3 14 

DO 10 IELEM=1,NELEM RFR3' 15 
DO 10 IEVAB=1,NEVAB RFR3 16 

10 ELOAD(IELEM,IEVAB)=O.O RFR3 17 
DO 70 IELEM=1,NELEM RFR3 18 
LPROP=MATNO(IELEM) RFR3 19 
YOUNG=PROPS(LPROP,1) RFR3 20 
XAREA=PROPS(LPROP,2) RFR3 21 
YIELD=PROPS( LPROP, 3) RFR3 22 
HARDS=PROPS( LPROP, 4) RFR3 23 
NODE1=LNODSOELEM,1) RFR3 24 
NODE2=LNODSCIELEM,2) RFR3 25 
ELENG=ABS(COORD(NODE1)-COORD(NODE2» RFR3 26 
If(COORD(NODE2).GT.COORD(NODE1» STRAN=(XDISP(NODE2)-XDISP(NODE1»RFR3 27 

· IELENG RFR3 28 
IF(COORD(NODE2).LT.COORD(NODE1» STRAN=(XDISP(NODE1)-XDISP(NODE2»RFR3 29 

· IELENG RFR3 30 
STLIN=YOUNG*STRAN RFR3 31 
STCUR=STRES(IELEM,1)+STLIN RFR3 32 
PREYS=YIELD+HARDS*ABS(PLAST(IELEM» RFR3 33 
IF(ABS(STRES(IELEM,1».GE.PREYS) GO TO 20 RFR3 34 
ESCUR=ABS(STCUR)-PREYS RFR3 35 
IF(ESCUR.LE.O.O) GO TO 40 RFR3 36 
RFACT=ESCUR/ABS(STLIN) RFR3 37 
GO TO 30 RFR3 38 

20 IF(STRESOELEM,1).GT.O·.O.AND.STLIN.LE.O.O) GO TO 40 RFR3 39 
IF(STRES(IELEM,1).LT.0.0.AND.STLIN.GT.0.0) GO TO 40 RFR3 40 
RFACT=1.0 RFR3 41 

30 REDUC=1.0-RFACT RFR3 42 
STRES(IELEM,1)=STRES(IELEM,1)+REDUC*STLIN+RFACT*YOUNG*C1.0- RFR3 43 

• YOUNG/(YOUNG+HARDS»*STRAN RFR3 44 
PLAST(IELEM)=PLAST(IELEM)+RFACT*STRAN*YOUNG/(YOUNG+HARDS) RFR3 45 
GOTO~ RF~ % 

40 STRES(IELEM,1)=STRES(IELEM,1)+STLIN RFR3 47 
50 IF(COORD(NODE2).GT.COORD(NODE1» GO TO 60 RFR3 48-

ELOAD(IELEM,1)=STRES(IELEM,1)*XAREA RFR3 49 
ELOAD(IELEM,2) =-STRES(IELEM, l)*XAREA RFR3 50 
GO TO 70 RFR3 51 

60 ELOAD(IELEM,1)=-STRES(IELEM,1)*XAREA RFR3 52 
ELOAD(IELEM,2)=STRES(IELEM,1)*XAREA RFR3 53. 

70 CONTINUE RFR3 54 
RETURN RFR3 55 
END RFR3 56 
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RFR3 15-17 Initialise to zero the array in which the equivalent nodal forces 
for each element will be stored. 

RFR318 
RFR319 
RFR320 
RFR321 
RFR322 
RFR323 

Loop over each element. 
Identify the material property of each element. 
Set YOUNG equal to the elastic modulus, E, of the material. 
Set XAREA equal to the cross-sectional area. 
Set YIELD equal to the uniaxial yield stress, a}", of the material. 
Set HARDS equal to the hardening parameter, H', of the 
material. 

RFR324-25 Identify the node numbers of the element. 
RFR3 26 Calculate the element length. 
RFR3 27-30 Calculate the element strain, so that a tensile strain is positive. 
RFR3 31 Calculate daeT according to Step b. 
RFR3 32 Calculate acT according to Step c. 
RFR3 33-34 Check if the element had yielded on the previous iteration, i.e., 

if aT-I> ay+H'EpT-l which is the first operation of Step d. 
The absolute value of a T- 1 is taken to account for yielding in 
compressIOn. 

RFR3 35-36 If the element was previously elastic, check to see if it has 
yielded during this iteration. 

RFR3 37 For an element which yields during this iteration, calculate 

R=----

(Fig. 3.7(a)). The absolute value sign is taken to account for 
compressive loading. 

RFR3 39-40 Check to see if an element which had previously yielded IS 

unloading during this iteration. If yes, go to 40. 
RFR341 Otherwise, set R = 1. 
RFR3 42 Evaluate, (1 - R). 
RFR343-44 For plastic elements, calculate the correct current stress, aT, 

RFR345 
RFR347 

according to (3.36). 
Also calculate the plastic strain, EpT, according to (3.40). 
For elastic elements, calculate the current stress, aT, according 
to Step g. 

RFR348-53 Evaluate the equivalent nodal forces, according to Step h. 
RFR3 54 Termination of DO LOOP over the elements. 

3.U.3 Numerical examples 
The first example considered is the yielding of a bar under self weight 

loading. The problem and finite element idealisation employed is illustrated 
in Fig. 3.8. Progressive yielding is induced in the system by increasing the 
gravitational field incrementally. The gravitational force due to self weight 
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Fig. 3.8 Load/displacement response of a vertical bar loaded by a progressively 
increasing self-weight. 

acting on each element is equally distributed to its two nodes. The structure 
is capable of carrying load beyond first yield, due to the strain hardening 
characteristic of the material. 

The second example considered is the compound bar shown in Fig. 3.9. 
The two bars have a different yield stress and cross-sectional area in order 
to induce differential yielding. The structure is loaded by an end load, P, 
which is systematically incremented. The load/extension characteristics for 
the system are shown in Fig. 3.9. It is seen that there is an initial loss of stiff
ness corresponding to yielding of the first bar followed by a further reduction 
when the second bar becomes plastic. 

This simple example suggests a method by which more complex material 
responses can be generated. By connecting two bars with different properties 
in parallel we obtain a material behaviour made up of three linear portions. 
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By connecting n bars in parallel and choosing the yield stress and cross
sectional area of each appropriately we can approximate any arbitrary 
stress/strain response piecewise linearly by (/1 + 1) intervals. This is the basis 
of the 'overlay method'(7) which will be described later in Chapter 8. 

Also included in Fig. 3.9 are the results for the case when the load is 
cycled. First the load is incremented in tension up to a certain level, then 
removed and applied compressively, before final removal. It is immediately 
seen that a Bauschinger effect(S) is obtained with initial yield in compression 
taking place at a reduced value. This occurs even though we have assumed 
an equal yield stress in tension and compression. This behaviour is attribu
table to the differential straining of the two components and is a phenomenon 
evident in real materials. 

3.13 Problems 
3.1 Reanalyse the problem of Fig. 3.3, Section 3.9.3, for the case where 

the term K is assumed to vary with the unknown cp according to 

K = IO{l +e39 ). 

Use the direct iteration solution code QUITER, user instructions for 
which are provided in Appendix I, Section A1.I, for solution. 

3.2 Resolve Problem 3.1 using the Newton-Raphson procedure which is 
coded in program QUNEWT. User instructions for this program are 
provided in Appendix I, Section A1.2. Compare the computation 
times required for the two different solution procedures. 

3.3 The quasi-harmonic equation described in Section 2.3 is also applicable 
to groundwater flow problems. (5) In this application cp is the pressure 
head potential, K is the material permeability and Q is the rate at 
which water is being injected per unit volume of material. The flow 
velocity at any point is then given by v = - K{dcp/dx). Figure 3.10 
illustrates the problem of water seeping through two permeable strata 
whose permeabilities depend on the seepage velocity as shown. By 
treating the problem as one-dimensional in the vertical direction 
obtain a numerical solution for the steady state potential and velocity 
distribution in the two strata. 

3.4 Following the approach of Section 2.3, develop the stiffness matrix 
H(e) and the load vector f(e) for the one-dimensional axisymmetric 
situation. In this application all quantities are symmetric with respect 
to a central axis and the radial coordinate r now replaces x. 

3.5 Implement the formulation of Problem 3.4 in program QUITER. 
3.6 Use the computer code developed in Problem 3.5 to solve the problem 

of water flow in the horizontal place of the confined aquifer shown in 
Fig. 3.11. In this case cp is the piezometric head, K is the material 
permeability and Q is the rate at which water is being injected per 
unit volume of material. 
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Fig.3.10 Groundwater flow example-Problem 3.3. 
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Fig. 3.11 Water flow in a confined aquifer-Problem 3.6. 
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The circular region shown in Fig. 3.11 has a central well point at 
which water is being extracted at a rate of 200 m3/day. Determine the 
steady state potential distribution for this system assuming the material 
permeability to be nonlinear in the manner shown. 

3.7 The relationship between stress, u, and strain, €, for a certain locking 
material is given by the relationship 

u= , 
€L(€L-€) 

(3.43) 

in which Eo is the elastic modulus and €L is the limiting strain value of 
the material. Implement this relation in program NONLAS docu
mented in Appendix I, Section A 1.3, by modifying the strain derivative 
function in Section 3.11.1. Also allow the behaviour of certain elements 
to be linear elastic. Use this modified program to determine the force 
displacement/relationship of the central node in Fig. 3.12 for a total 
applied load of 100 units. 

01~ _____ --CO).. ___ ... _100 ___ 1 Cross-sectional area, A = I 
for both members 

oil /. 

Nonli!e-ar-~~;-L-i-ne-ar-e~as~iC 
elastic material, E = 1000 
Eo= 1000 
€L = 0.1 

Fig. 3.12 Nonlinear elastic example-Problem 3.7. 

3.8 Use program ELPLAS, for which user instructions are provided in 
Appendix I, Section AI.4, to solve the one-dimensional elasto-plastic 
problem shown in Fig. 3.13. 

3.9 Develop the elastic stiffness matrix, K(e), for a two-node finite element 
in the form of a thin disc of thickness t which is to be subjected to 
axisymmetric in-plane loading. Assume a linear variation between 
nodes, as shown in Fig. 2.7, and note the following relationships 

du 1 
€r = - = --=<:ur-vuo) 

dr E 

u 1 
€o = - = --=<:Uo-vur), 

r E 
(3.44) 
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Fig. 3.13 Elasto-plastic example-Problem 3.8. 
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in which u is the radial displacement and E and v are respectively the 
elastic modulus and Poisson's ratio of the material. Also express the 
stresses ar and a 0 in terms of the nodal displacements 4>1 and 4>2. 

3.10 Use the stiffness matrix evaluated in Problem 3.9 to modify program 
ELPLAS to allow solution of one-dimensional axisymmetric problems 
by the initial stiffness method. Assume a Tresca yield criterion (dis
cussed in Chapter 7) where yielding is assumed to begin when the 
maximum shearing stress reaches a critical value. For the present 
application this implies commencement of yielding when either ar or 
ao reaches the uniaxial yield stress, ay. 

3.11 Employ the program developed in Problem 3.10 to determine the 
elasto-plastic stress distribution in a thin disc, of thickness 1 mm, 
subjected to internal pressure loading. Take the internal and external 

Axis of 
symmetry 

r 

~ 
t 

Fig. 3.14 Axisymmetric membrane element-Problem 3.9 
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radii of the disc as 5 cm and 10 cm respectively, the elastic modulus 
£=2 X 105 Njmm2, Poisson's ratio JI =0·3 and the uniaxial yield stress, 
uy = 300 Njmm2. Compare your solution with the theoretical ex
pressions given in Ref. 8. 
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Chapter 4 
Viscoplastic problems in one 

dimension 

4.1 Introduction 
In this chapter the basic concepts of viscoplasticity are introduced by the 

consideration of one-dimensional situations. This topic is then studied 
further in Chapter 8 where the case of a general continuum is treated. 

Viscoplastic theory allows the modelling of time rate effects in the plastic 
deformation process. Thus after initial yielding of the material the plastic 
flow, and the resulting stresses and strains, are time dependent. Such effects 
are always present to some degree in all materials but they mayor may not 
be significant depending on the physical situation being considered. 

The basic theory of viscoplasticity in one dimension is developed and a 
numerical solution process is then described. All the essential features of 
viscoplasticity can be demonstrated with reference to one-dimensional 
behaviour. Finally the solution process is coded in FORTRAN to form a 
working program and the basic characteristics of a viscoplastic material 
response are illustrated by the solution of numerical examples. 

4.2 Basic theory 
The concept of viscoplastic material behaviour is best introduced by means 

of the one-dimensional rheological model illustrated in Fig. 4.1. The friction 
slider component develops a stress ap, becoming active only if a > Y, 
where a is the total applied stress and Y is some limiting yield value. The 
excess stress ad, = a - ap is carried by the viscous dashpot. Instantaneous 
elastic response is, of course, provided by the linear spring. The presence of 
the dashpot allows the stress level to instantaneously exceed the value pre
dicted by plasticity theory, the solution tending to this equilibrium level as 
steady state conditions are achieved in the system. 

The total strain in the model is given by the sum of the elastic and visco
plastic components as 

€ = €e+€vp. (4.1) 

The stress in the linear spring is equal to the total applied stress and is 

95 
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(f 

Inactive if 

(fp<Y 

Fig. 4.1 Basic one-dimensional elastic-viscoplastic model. 

related to the elastic strain by 

(4.2) 

where E is the elastic modulus of the linear spring. 
The stress level in the friction slider depends on whether or not the 

threshold or yield stress, Y, has been reached. The onset of viscoplastic 
deformation is governed by a uniaxial yield stress Uy. The stress level for 
continuing viscoplastic flow depends on the strain-hardening characteristics 
of the material. Restricting discussion to a linear strain-hardening response 
as discussed in Section 2.5, the stress level for viscoplastic yielding at any 
stage is given by 

Y = uy+H' El'p. (4.3) 

in which H' is the slope of the strain hardening portion of the stress-strain 
curve after removal of the elastic strain component and El'P is the current 
viscoplastic strain. Thus the stress in the friction slider is 

Up = u 

= Y 
if 

(4.4) 
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The stress in the viscous dash pot, ael, is related to the viscoplastic strain by 

(4.5) 

where fJ- is a viscosity coefficient and t denotes the time. We note that 

(4.6) 

Before the onset of viscoplastic yielding Evp = 0, giving act = 0 from (4.5) 
and consequently ap = a. It now remains to establish the constitutive 
relationship for the model under both elastic and elasto-viscoplastic con
ditions. 

Before viscoplastic yielding, Evp = 0 and from (4.1) and (4.2) we have the 
elastic stress-strain relation to be 

(4.7) 

Substituting from (4.4) and (4.5) in (4.6) gives 

dEvp 
'H' , 01' T Erp --;- fJ--- = a. 

dt 
(4.8) 

Substituting for Evp from (4.1) and using (4.2) results in 

dE da 
H' EE +fJ-£- = H' a + £(a - ay) +fJ--, 

dt dt 
(4.9) 

which is a first order ordinary differential equation defining the time
dependent relationship between stress and strain under visco plastic con
ditions. At this stage we introduce a fluidity parameter, y, such that 

y =-. 
/L 

Substituting in (4.9) and rearranging 

a-
E = -+y[a-(ay+H' Evp)], 

£ 

in which (.) denotes derivative with respect to time, f. Or 

where 

a-
Ee. =-, 

£ 

and 
€vp = y[a-(ay+H' EVp)]. 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 
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Expression (4.14) defines the viscoplastic strain rate in terms of the portion 
of stress in excess of the steady state yield value. 

It is instructive to consider the closed form solution to (4.9). Consider the 
case when a constant applied stress (J = (J A is applied to the model. Then 
(4.9) reduces, (using (4.10», to 

dE yH' 
yH' E+- = --(JA +Y«(JA -(JY). 

dt E 
(4.15) 

The solution to this first-order ordinary differential equation is elementary 
and is 

Strain, E 

OA 

E 

Strain, E 

E 

(J A ((J A - (Jy) , 
E = -+ [1 -e-H yt] 

E H' ' 

(a) 

Slope = (<TA - CTy)'Y 

H'=O 

(b) 

<TA - <Ty 

H' 

Time,t 

Time,t 

(4.16) 

Fig.4.2 Strain response with time for the model of Fig. 4.1 due to a constant 
applied load. (a) Linear strain hardening material. (b) Perfectly plastic material. 
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provided that H I is nonzero. The form of the response is shown in Fig. 
4.2(a). Following an initial elastic response, the strain in the model attains 
the steady state value indicated in an exponential fashion. 

The case of a perfectly viscoplastic material in which H' = 0, can be 
obtained by taking the limit as H I tends to zero in (4.16) and applying 
L'Hopital's rule. This results in 

0'..1 
E" = -+(O'A-O'1')yl. 

E 
(4.17) 

This response is shown in Fig. 4.2(b). In this case it is seen that a steady state 
condition is not achieved and that visco plastic deformation continues 
indefinitely at a constant strain rate. The different behaviour shown in 
Figs. 4.2(a) and 4.2(b) arises from the fact that for a strain hardening material 
the visco plastic yield stress increases according to (4.3) until it reaches tl1e 
applied stress level 0'..1 at which stage the visco plastic strain rate becomes 
zero. On the other hand, for a perfectly viscoplastic material there is always 
a stress imbalance of O'A -0'1' in the system which does not reduce and 
consequently steady state conditions cannot be achieved. 

We note that in (4.16) and (4.17) that the time t only enters the expressions 
through the term yl. Therefore the solution for a material with a different 
fluidity parameter y can be obtained by a simple adjustment of the time scale. 

4.3 Numerical solution process 
Viscoplasticity is a transient phenomenon and therefore the essential 

objective of a numerical solution process is to determine the displacement, 
strains and stresses throughout the time interval of interest. Consequently 
some time stepping or time marching scheme must be introduced in order to 
allow the solution to be advanced from a time tn to time tn+! = In + I1.tn, 

where subscripts nand n + 1 denote successive times and I1.ln the interval 
between. The simplest method of incrementing quantities over a time 
interval is afforded by Euler's rule. In this the mean rate of change over the 
interval is taken as the value at the beginning of the interval and thus the 
predicted value of some quantity X at time In+! is extrapolated from the 
value at time tn to be 

(4.18) 

This scheme becomes unstable for time steps exceeding a critical value and 
estimation of the limiting step length is discussed in Section 4.4. The Euler 
method, however, remains attractive due to its simplicity. 

With the viscoplastic strain rate defined by (4.14) we can define the strain 
increment ·11.£.vpn occurring in a time intervall1.tn = tn+! -tn, using (4.18), as 

(4.19) 
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We note that the time step length can, in general, be different for each time 
interval. 

~ dq,l ~ 14 
dq,2 

~I 

.0 0 • f. f! 

]0 °2 
~ L ·1 

Fig.4.3 One-dimensional two-noded element with linear displacement variation. 

With reference to Fig. 4.3, consider the behaviour of a linear displacement 
element, which is of length L and has a cross-sectional area, A. The change 
of length in this element associated with strain increment (4.19) is 

(4.20) 

or adding the displacement change due to a change in applied loading !lfn 
occurring between times tn and In+! we obtain the total change in element 
length to be 

(4.21) 

This can be rewritten in matrix form, in terms of the nodal displacements 
and forces as 

(4.22) 

where 

(4.23) 

(4.24) 

and 

EA [ 1 -1 ] K(e) = -- . 
L -1 1 

(4.25) 

In the above, !l Vn are termed the pseudo forces and !lffJn and !lfn are respec
tively the incremental changes in the nodal displacements and applied forces 
for the element. 
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We note in passing that expressions (4.24) and (4.25) could be written in 
the standard finite element form 

~Vn = Iv BT DedV +~fn 

K(e) = Iv BT DBdV, (4.26) 

since for the linear element considered 

B= [_~ _1] 
L' L 

D=E 

Iv dV = AL. (4.27) 

The displacements at time tn+1 are then obtained by simple accumulation as 

rpn+ 1 = rpn + ~rpn . 
The stress increment is given from (4.1) and (4.7) to be 

~an = E~€en = E(!J.€n-~€vpn), 

or 

(4.28) 

(4.29) 

(4.30) 

where Iicp1n and ~cp2n are the displacement changes at the nodes of the 
element. 

The stress at time tn+1 is then given by 

The total viscoplastic strain at time tn+1 is 

and finally the viscoplastic strain rate at tn+1 is given, from (4.14) as 

€vpn+1 = y[ an+1-( ay + H' €vpn+1)]. 

(4.31) 

(4.32) 

(4.33) 

In employing the Euler scheme for time-stepping, we are effectively linear
ising the variation of quantities over the increment. Therefore the total 
stresses an+1 obtained by accumulating all such stress increments may not be 
in exact equilibrium with the applied forces. It is therefore necessary to intro
duce an equilibrium correction procedure into the numerical solution algo
rithm. The simplest approach is to evaluate the out-of-balance nodal forces 
at the end of each time step and consider these forces as additional forces to 
be applied at the beginning of the next time increment. 
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The out-of-balance or residual forces, rp, for the general element are given 
as the algebraic sum of the applied nodal loads and the nodal forces equiv
alent to the element stress, so that 

¥In +1 = A un +1 [_: 1+1#+1, (4.34) 

in which un+1 is the element stress and In+! are the total applied forces at 
time tn+!. These residual forces are then added to the pseudo forces to give 
for the next time increment 

!lv.+1 = AE€vp.+1M.n [_: ] +!lI'+1 + ¥I' +1 , (4.35) 

This sequence is repeated for each time step until solution is either obtained 
for the desired time duration or until steady state conditions are achieved. 
Steady state conditions are deemed to have been achieved when the visco
plastic strain rate, Evpn, becomes tolerably small. 

4.4 Limiting time-step length 
The critical time-step length for viscoplastic solution using the Euler 

time marching scheme has been established by Cormeau. (1) For the uni
axial case considered in this chapter the limiting value is 

Uy 
!1t ~-. 

yE 
(4.36) 

Alternatively the time-step length can be limited according to a semi
empirical relationship. Such an approach is essential for some general con
tinuum problems where a theoretical value of the critical time-step length 
may not exist. The most obvious procedure is to limit the viscoplastic strain 
increment to be some specified factor, 'T, of the total current strain, 

(4.37) 

Since each element generally has a different strain level, expression (4.37) 
will yield a different limiting step value when applied to each element in 
tum. Therefore the limiting value is restricted according to 

t1tn ~ 'T [ • En n ] .' 
Evp mm 

(4.38) 

where the minimum value of t1tn obtained after considering each element is 
taken. Stability of the solution process is also aided by restricting the length 
of successive time steps according to 

(4.39) 

where k is a specified constant generally chosen in the range 1·5-2·0. 
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4.5 Computational procedure 
Before proceeding with the development of a computer code for the 

solution of one-dimensional viscoplastic problems we will first summarise 
the essential steps of the computation. Solution to the problem must com
mence from the known initial conditions at time t = 0 which of course 
correspond to the initial elastic response. At this stage tp0, fO, EO, 0'0 are 
known and Evpo = O. The general procedure for advancing the solution 
from a time tn to time tn+l is the following. 

Stage J At time t = tn the values of un, En, €vpn andfn are known for each 
element and the nodal displacements are also known. The viscoplastic 
strain rate for each element is then evaluated according to (4.14) as 

(4.40) 

Stage 2 (a) Compute the displacement increments, D.tpn, according to 
(4.22)-(4.25), as 

where 

and the stiffness matrix for an individual element is 

EA [ 1 -1 ] 
K(p) = -- . 

L -1 1_ 

(b) Calculate the stress increment ~uU and the viscoplastic strain 
increment /j.Erpn for each element as 

Stage 3 Determine the total displacements, stresses and viscoplastic strain 

n+l - n+ A n €vp - Evp u£vp. 

Stage 4 Calculate the viscoplastic strain rate for each element 
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Stage 5 Apply the equilibrium correction. Evaluate the residual forces, for 
each element, as 

Add these into the vector of incremental pseudo loads for use in the next 
time step 

Stage 6 Check to see if the viscoplastic strain rate Evp7Hl in each element 
has become tolerably small. If so, steady state conditions have been reached 
and the solution is either terminated or the next load increment is applied. 
If €vpn+l is non-zero return to Stage 1 and repeat the entire procedure for 
the next time step. 

4.6 Program structure 
The organisation of the one-dimensional viscoplastic program is shown in 

Fig. 4.4 where, in particular, the order in which subroutines are accessed is 
indicated. The operations undertaken by the program are those described 
in Section 4.5. Many of the subroutines employed are common to the one
dimensional plasticity application described in Chapter 3 and, since they are 
used in the present program without modification, the reader will be referred 
to the appropriate section for details. Only the additional subroutines 
necessary to complete the computer package will be described in this chapter. 

With reference to Fig. 4.4 the following subroutines have been already 
described where indicated below: 

Subroutine ASSEMB -Section 3.4.2 
Subroutine GREDUC-Section 3.4.3 
Subroutine BAKSUB -Section 3.4.4 
Subroutine RESOLV -Section 3.4.5 
Subroutine RESULT -Section 3.5 
Subroutine INITAL -Section 3.6* 

Also, Subroutine DATA described in Section 3.2 is used with some minor 
modifications. A viscoplastic material in one dimension requires five indi
vidual quantities to describe it completely. Thus NPROP becomes 5 and 
the following quantities must be specified as material properties. 
PROPS (NUMAT, I)-The elastic modulus, E, of the material 
PROPS (NUMAT, 2)-The cross-sectional area, A, of the element 
PROPS (NUMAT, 3)-The uniaxial yield stress, O'y, of the material 
PROPS (NUMAT, 4)-The linear strain hardening parameter, H', for the 

material 
PROPS (NUMAT, 5)-The fluidity parameter, 'Y, controlling the visco

plastic strain rate. 

* Subroutine NONAL, described in Section 3.3, is also employed but with llTER 
now replaced by the time step index, ISTEP. 
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C START) 

I 
DATA 

Input data defining geometry, loading, 
boundary conditions, material properties, etc. 

I 
STUNVP 

Calculate the stiffness matrix for each element 

ASSEMB 
Assemble the element loads and stiffnesses 
to give the global stiffness matrix and 
load vector 

I .......... r- .... 
GREDUC, BAKSUB & RESOl V 

I:a. 
I:a. Solve the resulting system of simultaneous § 8 equations for the displacements c/> 

~ 
..J 
0 I 

~ z - INCVP I:a. 

B t1. 
tz:I a) Evaluate quantities at the end of 

~ f;; the timestep 
tz:I 

~ ::t b) Calculate the pseudo loads for 
0 i= application during the next time step 
..J 

L-.-- L-r- I 
CONVP 

Check for convergence of the time stepping 
process to steady state conditions 

I 
RESULT 

Print the results for the current timestep 

I 
I 

C END ) 

Fig. 4.4 Operational sequence for the one-dimensional viscoplastic stress analysis 
program. 

Input data are also received by this segment which controls the time-
stepping algorithm. The following information is input: 

TAUFT The parameter T discussed in Section 4.4 
DTINT The time-step length for the first time step 
FTIME The factor k defined in (4.39) which limits the rel

ative length of successive time steps 
The additional subroutines which are required will now be described in 

turn. 
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4.7 Element stiffness subroutine STUNVP 
In all stages of the viscoplastic solution the elastic element stiffness 

matrix is employed, as indicated in (4.25). Consequently the structure of sub
routine STUNVP, which evaluates the stiffness matrix for each element in 
turn, is straightforward and can be presented without further comment. 

SUBROUTINE STUNVP SNVP 1 
C***************************************~*******************************SNVP 2 
C SNVP 3 
C *** CALCULATES ELEMENT STIFFNESS MATRICES SNVP 4 
C SNVP 5 
c***********************************************************************SNVP 6 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,ISTEP, SNVP 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, SNVP 8 
NSTEP,NOUTP,FACTO,TAUFT,DTINT,FTINE,FIRST,PVALU, SNVP 9 
DTINE, TTIME SNVP 10 

COMMON/UNIM2/PROPS(5,5) ,COORD(26),LNODS(25,2) ,IFPRE(52) , SNVP 11 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), SNVP 12 
MATNO(25),STRES(25,2) ,PLAST(25) ,XDISP(52) , SNVP 13 
TDISP(26 ,2) ,TREAC(26,2) ,ASTIF(52,52) ,ASLOD(52) , SNVP 14 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4),VIVEL(25) SNVP 15 

SNVP 16 REWIND 1 
DO 10 IELEt4= 1 ,NELEM 
LPROP=MATNO(IELEM) 
YOUNG=PROPS(LPROP,1) 
XAREA=PROPS(LPROP,2) 
NODE1=LNODS(IELEM,1) 
NODE2=LNODS(IELEM,2) 
ELENG=ABS(COORD(NODE1)-COORD(NODE2» 
FMULT=YOUNG*XAREAlELENG 
ESTIF(1,1)=FMULT 
ESTIF(1,2)=-FMULT 
ESTIF(2,1)=-FMULT 
ESTIF(2,2)=FMULT 
\-IRITE( 1) ESTIF 

10 CONTINUE 
RETURN 
END 

SNVP 17 
SNVP 18 
SNVP 19 
SNVP 20 
SNVP 21 
SNVP 22 
SNVP 23 
SNVP 24 
SNVP 25 
SNVP 26 
SNVP 27 
SNVP 28 
SNVP 29 
SNVP 30 
SNVP 31 
SNVP 32 

SNVP 16 Rewind the file on which the stiffness matrix of each element 
wiII be stored. 

SNVP 17 Loop over each element. 
SNVP 18 Identify the material property of the current element. 
SNVP 19-20 Set YOUNG equal to the material elastic modulus and 

XAREA equal to the cross-sectional area. 
SNVP 21-22 Identify the node numbers of the element. 
SNVP 23 Calculate the element length. 
SNVP 24 Compute EA/L as FMUL T. 
SNVP 25-28 Evaluate the components of the element stiffness matrix 

SNVP 29 
SNVP 30 

according to (4.25). 
Write the element stiffness matrix on to disc file. 
End of loop over each element. 
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4.8 Subroutine INCVP for the evaluation of end of time-step quantities 
and equilibrium correction terms 
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This subroutine evaluates quantities such as stresses and viscoplastic 
strains at the end of the current time step and also calculates the loading 
to be applied during the next time step. Essentially it undertakes Stages 3-5 
described in Section 4.5. All quantities at the end of time step n are calcu
lated as ( )n+ 1. 

The program presented is restricted to loading which is applied in dis
crete increments and is assumed to remain constant during the time-stepping 
process for any given increment. Thus in (4.35) ~fn = 0 for all stages other 
than the first time step of a particular load increment. 

Subroutine INCVP is now presented and described. 

SUBROUTINE INCVP INVP 1 
C**** ••••••••••••••••••••••••••••••••••••• **************************'***INVP 2 
C INVP 3 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES INVP 4 
C INVP 5 
c******'*'*********"'***'********************'*************************INVP 6 

COMMONIUNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,ISTEP, INVP 7 
KRESL, NCHEK,TOLER, NALGO, NSVAB, NDOFN, NINCS,NEVAB, INVP 8 
NSTEP, NOUTP ,FACTO, TAUFT ,DTINT ,FTIME,FIRST, PVALU, INVP 9 

• DTIME, TTIME INVP 10 
COMMON/UNIM2/PROPS(5,5),CooRD(26)lLNODS(25,2)lIFPRE(52), INVP 11 

• FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), INVP 12 
• MATNO(25),STRES(25,2),PLAST(25),XDISP(52), INVP 13 

TDISP(26 2),TREAC(26 2),ASTIF(52,52),ASLOD(52), INVP 14 
REACT(52~,FRESV(1352~,PEFIX(52),ESTIF(4,4),VIVEL(25) INVP 15 

DO 10 IELEM=1,NELEM INVP 16 
DO 10 IEVAB=1,NEVAB INVP 17 

10 ELOAD(IELEM,IEVAB)=O.O INVP 18 
DNEXT=FTIME*DTIME INVP 19 
DO 30 IELEM= 1 , NELEM INVP 20 
LPROP=MATNO(IELEM) INVP 21 
YOUNG=PROPS(LPROP,l) INVP 22 
XAREA=PROPS( LPROP , 2) INVP 23 
YIELD=PROPS(LPROP,3) INVP 24 
HARDS=PROPS(LPROP,4) INVP 25 
GAMHA=PROPS(LPROP,5) INVP 26 
NODE1=LNODS(IELEM,1) INVP 27 
NODE2=LNODS(IELEM,2) INVP 28 
ELENG=ABS( COORD ( NODEl ) -CooRD( NODE2) ) INVP 29 
IF(COORD(NODE2).GT.COORD(NODE1» STRAN=(XDISP(NODE2)-XDISP(NODE1»INVP 30 

• IELENG INVP 31 
IF(COORD(NODE2).LT.COORD(NODE1» STRAN=(XDISP(NODE1)-XDISP(NODE2»INVP 32 

• IELENG INVP 33 
STRES(IELEM,1)=STRES(IELEM,1)+(STRAN-VIVEL(IELEM)*DTIME)'YOUNG INVP 34 
PLAST(IELEM)=PLAST(IELEM)+VIVEL(IELEM)*DTIME INVP 35 
IF(STRES(IELEM, 1) .LT .0.0) YIELD=-YIELD INVP 36 
PREYS=YIELD+HARDS*PLAST(IELEM) rNVP 37 
IF(ABS(STRES<IELEM, 1» .LE.ABS(PREYS» GO TO 20 INVP 38 
VIVEL(IELEM)=GAMMA*(STRES(IELEM,l)-(YIELD+HARDS*PLAST(IELEM») INVP 39 
SNTOT=(TDISP(NODE2,1)-TDISP(NODE1,1»/ELENG INVP 40 
DELTM=1AUFT*ABS(SNTOT/VIVEL(IELEM» INVP 41 
IF(DELTM.LT .DNEXT) DNEXT=DELTM INVP 42 
GO TO 30 INVP 43 

20 VIVEL(IELEM)=O.O INVP 44 
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30 CONTINUE 
OTIME=ONEXT 

INVP 45 
INVP 46 
INVP 47 
INVP 48 
INVP 49 
INVP 50 
INVP 51 
INVP 52 
INVP 53 
INVP 54 
INVP 55 
INVP 56 
INVP 57 
INVP 58 
INVP 59 
INVP 60 
INVP 61 
INVP 62 
INVP 63 
INVP 64 

IF(ISTEP.EQ.1) OTIHE=OTINT 
DO 50 IELEM= 1 , HELEM 
LPROP=HATNO(IELEM) 
YOUNG=PROPS(LPROP,1) 
XAREA=PROPS(LPROP,2) 
FACTR=(YOUNG*VIVEL(IELEH)*OTIHE-STRES(IELEH,1»*XAREA 
IF(COORD(NODE2).GT .COORD(NOOE1» GO TO 40 
ELOAD(IELEM,1)= FACTR 
ELOAD(IELEH,2)=-FACTR 
GO TO 50 

40 ELOAD(IELEH,1)=-FACTR 
ELOAD(IELEH,2): FACTR 

50 CONTINUE 
DO 60 IELEM= 1 , NELEH 
DO 60 IEVAB=1,NEVAB 

60 ELOAD( IELEH, IEVAB) =ELOAD( IELEH, IEVAB)+TLOAD( IELEH, IEVAB) 
RETURN 
END 

INVP 16-18 Zero the array in which the pseudo loads for the next time step 
will be stored. 

INVP 20 
INVP 21 
INVP 22-26 

INVP 27-28 
INVP 29 
INVP 30-33 
INVP 34 

INVP 35 
INVP 36 

INVP 37 
INVP 38 

INVP 39 

INVP 40-42 
INVP 44 
INVP 45 
INVP 47 

INVP 48 

INVP49 

Loop over each element. 
Identify the element material property number. 
Store the elastic modulus as YOUNG, the cross-sectional area 
as XAREA, the uniaxial yield stress as YIELD, the uniaxial 
hardening parameter as HARDS and the fluidity parameter as 
GAMMA. 
Identify the element node numbers. 
Evaluate the length of the element. 
Calculate the element strain so that a tensile strain is positive. 
Evaluate the total current stress un+1 according to (4.30) and 
(4.31). 
Evaluate the total viscoplastic strain Evpn+l, according to (4.32). 
For a compressive stress take a negative value of the initial 
yield stress. 
Compute the current yield level Uy + H' Evpn+1. 

If the current stress is less than the current yield stress, avoid 
evaluation of the viscoplastic strain rate. 
Otherwise evaluate the viscoplastic strain rate according to 
(4.33). 
Evaluate the next time-step length according to (4.38). 
F or elastic elements set the viscoplastic strain rate to zero. 
End of element loop. 
For the first timestep of a load increment choose the timestep 
as the initial value. 
Enter element loop to evaluate pseudo loads, ~ J1n+~, for the 
next time step. 
Identify the element material property number. 
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INVP 50-51 Store the elastic modulus as YOUNG and the cross-sectional 
area as XAREA. 

INVP 52 
INVP 53-62 

Evaluate the factor AEEvpn+l6.tn+l +Aun+l. 

Evaluate 6. Vn+l according to (4.34) and (4.35), taking the 
appropriate signs for tensile or compressive stresses and 
strains. Note that f n+1 + 6.fn+1 is the total load applied for 
time step n + 1 which is stored as TLOAD. 

4.9 Convergence monitoring subroutine, CONVP 
Convergence of the numerical process to the steady state solution must be 

m0nitored by comparing, in some way, the values of the visco plastic strain 
rate determined during each time step. This can be done in several ways and 
in this section we describe a procedure based on a global convergence check 
only. In particular we will assume that steady state conditions have been 
achieved if 

i=l 
----x 100 ~ TOLER, 

M 

2:1(6. Evp1i) I 
i=l 

(4.41) 

where M denotes the total number of elements in the problem and I I 
denotes the absolute value. The multiplication factor of 100 on the left-hand 
side allows the specified tolerance factor TOLER to be considered as a 
percentage term. Equation (4.41) states that steady state conditions are 
deemed to have been achieved if the sum of the absolute values of the strain 
increment for any time step is less than or equal to TOLER times the cor
responding value for the first time step. For practical purposes a value of 
TOLER ~ 1·0 (i.e. 1 %) is generally adequate. Parameter NCHEK indi
cates convergence of the solution to steady state, where; 

NCHEK = 1 indicates that the solution is converging to steady state, 
with the viscoplastic strain increment reducing between two 
successive time steps. 

NCHEK = 999 indicates a divergence, with the viscoplastic strain incre
ment increasing between two successive time steps. 

NCHEK = 0 indicates that steady state conditions have been achieved. 
Subroutine CONVP is now presented and described. 

SUBROUTINE CONVP CNVP 1 
C···· ••• ****************************************************************CNVP 2 
C CNVP 3 
C *** CHECKS FOR SOLUTION CONVERGENCE CNVP 4 
C CNVP 5 
C**** •••• ***************************************************************CNVP 6 

COMMON/UNIMl/NPOIN,NELEM,NBOUN,NLOAD, NPROP, NNODE, IINCS, ISTE P, CNVP 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, CNVP 8 
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NSTEP,NOUTP,FACTO,TAUFT,DTINT,FTlME,FIRST,PVALU, CNVP 9 
. DTlME, TTIME CNVP 10 
COMMON/UNIM2IPROPS(5,5),COORD(26),LNODS(25,2),IFPRE(52), CNVP 11 

FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), CNVP 12 
MATNO(25),STRES(25,2),PLAST(25),XDISP(52), CNVP 13 
TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), CNVP 14 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4),VIVEL(25) CNVP 15 

NCHEK=1 CNVP 16 
TOTAL=O.O CNVP 11 
DO 10 IELEM= 1 , NELEM CNV P 18 

10 TOTAL=TOTAL+ABS(VIVEL(IELEM»*DTIME CNVP 19 
IF(ISTEP.EQ.1) FIRST=TOTAL CNVP 20 
IF(FIRST.EQ.O.O) GO TO 20 CNVP 21 
RATIO=100.0*TOTALIFIRST CNVP 22 
ooro~ OOP~ 

20 RATIO=O.O CNVP 24 
30 CONTINUE CNVP 25 

IF(RATIO.LE.TOLER) NCHEK=O CNVP 26 
IF(RATIO.GT.PVALU) NCHEK=999 CNVP 21 

40 PVALU=RATIO CNVP 28 
WRITE(6,900) TTIME CNVP 29 

900 FORMAT(1HO,5X,12HTOTAL TIME =,E11.6) CNVP 30 
WRITE(6,910) NCHEK,RATIO CNVP 31 

910 FORMAT(1HO,5X,18HCONVERGENCE CODE :,I4,3X,28HNORM OF RESIDUAL SUM CNVP 32 
.RATIO =,E14.6) CNVP 33 

RETURN CNVP 34 
END CNVP 35 

CNVP 16 Set the indicator monitoring convergence to 1. This will be 
reset later in the subroutine if necessary. 

CNVP 17-19 Compute 
M 

2:1(d€vpn)i I 
'£=1 

for the current time step as required in (4.41). 
CNVP 20 For the first time step evaluate the denominator in (4.41). 
CNVP 21-25 Evaluate the left-hand side in (4.41). If the denominator is 

zero there is no viscoplastic flow for the particular load incre
ment, therefore set RATIO = 0 indicating a steady state 
condition. 

CNVP 26 If (4.41) is satisfied, set NCHEK = 0 indicating a steady 
state condition. 

CNVP 27 If the viscoplastic increment has increased from the value 
obtained on the previous time step set NCHEK = 999. 

CNVP 28 Store the current value of the left-hand side of (4.41) for use 
in Statement CNVP 27 during the next time step. 

CNVP 29-30 Output the current time. 
CNVP 31-33 Output the value of NCHEK and the left-hand side of (4.41). 

4.10 Subroutine INCLOD 
Subroutine INCLOD described in Section 3.7 is employed for this appli

cation with one minor change: The iteration limit NITER is now replaced 
by the time-step limit NSTEP. 
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For each increment of load, data is accepted by INCLOD to control the 
upper limit to the number of time steps, the output frequency, the size of 
load increment and the convergence tolerance limit. These quantities are 
specifically input as: 
NSTEP Maximum permissible number of time steps. This is a safety 

measure to cover situations where steady state conditions are 
not achieved. After performing NSTEP time steps the pro
gram will then stop. 

NOUTP This parameter controls the frequency of output of results: 
O-Print the results on convergence to steady state conditions 

only, for each load increment. 
I-Print the results after the first time step and at steady state, 

for each load increment. 
2-Print the results for each time step for each load increment. 

FACTO This quantity controls the magnitude of any load increment. 
The applied loading is accepted by subroutine DATA and 
stored in array RLOAD. The size of any load increment is 
then RLOAD factored by FACTO. Therefore if FACTO is 
input for the first three increments as respectively 0·3, 0·3 and 
0·1, the total loading applied to the structure during the third 
increment is o· 7 times the loading input in subroutine DATA. 

TOLER This item of data controls the tolerance permitted on the 
steady state convergence process, and has been described in 
Section 4.9. 

Subject to the replacement of NITER by NSTEP, the form of this subroutine 
for the present application is identical to that provided in Section 3.7. 

4.11 The main, master or controlling segment 
This master segment controls the calling, in order, of the other sub

routines. This program segment also controls the time-stepping process and 
also the incrementing of the applied loads, where appropriate. 

The following channel numbers are employed by the program: 5 (card 
reader), 6 (line printer), 1 (scratch file). 

MASTER UNVISC UVIS 1 
C ..... ******************************************************************UVIS 2 
C UV~ 3 
C * .. PROGRAM FOR TIlE 1-D SOLUTION OF NONLINEAR PROBLEMS UVIS 4 
C UV~ 5 
c***********************************************************************UVIS 6 

COMMONIUNIM1/NPOIN, NELEM, NBOUN,NLOAD, NPROP, NNODE,IINCS, ISTEP, UVIS 7 
KRESL, NCHEK,TOLER,NALGO, NSVAB, NDOFN, NINCS,NEVAB, UVIS 8 
NSTEP,NOUTP,FACTO,TAUFT,DTINT,FTIME,FIRST,PVALU, UVIS 9 
DTIME, TTIME UVIS 10 

COMMON/UNIM2IPROPS(5,5),COORD(26)lLNODS(25,2)tIFPRE(52), UVIS 11 
• FIXED(52), TLOAD(25,4J, RLOAD(25 ,4J ,ELOAD(25 ,4), UVIS 12 

MATNO(25),STRES(25,2),PLAST(25),XDISP(52), UVIS 13 
TDISP(26 2),TREAC(26 2),ASTIF(52,52),ASLOD(52), UVIS 14 
REACT(52~,FRESV(1352~,PEFIX(52),ESTIF(4,4),VIVEL(25) UV~ 15 
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TI'IME=O.O 
CAU.. DATA 
CAU.. INITAL 
CAU.. STUNVP 
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DO 30 IINCS=1,NINCS 
CAU.. INCLOD 
DTIME=O.O 
DO 10 ISTEP=1,NSTEP 
TI'IHE=TI'IME+DTIME 
CALL NONAL 
CAll. ASSEMB 
IF(KRESL.EQ.1) CALL GREDUC 
IF(KRESL.EQ.2) CALL RESOLV 
CAU.. BAKSUB 
CAU.. INCVP 
CAU.. CONVP 
IF(NCHEK.EQ.O) GO TO 20 
IF(ISTEP.EQ.1.AND.NOUTP.EQ.1) CALL RESULT 
IF(NOUTP.EQ.2) CALL RESULT 

10 CONTINUE 
WRITE(6,900) 

900 FORMAT(1HO,5X,'STEADY STATE NOT ACHIEVED') 
STOP 

20 CALL RESULT 
30 CONTINUE 

STOP 
END 

Initialise the total time to zero. 

UVIS 16 
UVIS 11 
UVIS 18 
UVIS 19 
UVIS 20 
UVIS 21 
UVIS 22 
UVIS 23 
UVIS 24 
UVIS 25 
UVIS 26 
UVIS 21 
UVIS 28 
UVIS 29 
UVIS 30 
UVIS 31 
UVIS 32 
UVIS 33 
UVIS 34 
UVIS 35 
UVIS 36 
UVIS 31 
UVIS 38 
UVIS 39 
UVIS 40 
UVIS 41 
UVIS 42 

UVIS 16 
UVIS 17 Call the subroutine which reads the input data as described in 

Section 3.2. 
UVIS 18 

UVIS 19 

UVIS 20 
UVIS 21 

UVIS 23 
UVIS 24 

UVIS 25 

Call Subroutine INIT AL which: 
(i) Initialises to zero the visco plastic strain vector and the 

stress vector. 
(ii) Initialises the array, ELOAD, which will contain the 

pseudo loads to be applied during each time step. 
(iii) Initialises the vector of applied loads. 
(iv) Initialises the vector of total displacements and total 

reactions. ' 
Call the subroutine which evaluates the stiffness matrix for 
each element. 
Enter the DO LOOP over the number of load increments. 
Call Subroutine IN CLOD which: 

(i) Reads and writes the input data required for each load 
increment as described previously in Section 4.10. 

(ii) Adds the current increment of load into the pseudo load 
vector, ELOAD, and into the total applied load vector, 
TLOAD. 

Begin the time-stepping process. 
Calculate the total time elapsed (note that the first time step 
corresponds to the elastic solution). 
Call the subroutine which sets the parameter KRESL con
trolling equation resolution facility. 



VISCOPLASTIC PROBLEMS IN ONE DIMENSION 113 

UVIS 26-29 Call the subroutines which assemble the element stiffnesses 
and solve for the unknown displacements and reactions. 

UVIS 30 Call the subroutine which evaluates quantities at the end of the 
time step and evaluates the loads for the next time step. 

UVIS 31 Check whether or not steady state conditions have been 
achieved. 

UVIS 32 

UVIS 33-34 

UVIS 35 
UVIS 36-38 

UVIS 40 

If so, terminate the time-stepping process for the current load 
increment. 
Output the results at a frequency controlled by parameter, 
NOUTP. 
End of time-stepping loop. 
If steady state conditions have not been achieved when the 
upper time-step limit has been reached, write a message and 
terminate the execution. 
End of load increment loop. 

4.12 Numerical examples 
The first example considered is the viscoplastic deformation of a single 

element under constant applied loading. The element is of length 10 units 
and the applied load is 15 units. The material properties assumed are included 
in Fig. 4.5, where it is noted that the strain hardening parameter is taken to 
be zero. The finite element prediction is seen to be in excellent agreement 
with the theoretical result (4.17) for this problem. 

The problem was then reanalysed for a strain-hardening material with 
H' = 5000. The finite element results are compared with the theoretical 
expression (4.16) in Fig. 4.6 for three different values of the time-stepping 
parameter, T, defined in Section 4.4. For a value of T = 0.01 excellent 
agreement is obtained, but as the time-step length is increased (T = 0·05 
and T = 0·1) comparison with the theoretical solution deteriorates. In 
particular, an increase in the time-step length progressively overestimates 
the viscoplastic strain increment, which is a characteristic of the Euler 
method of time stepping. I t is noted that the time-step length is not so 
critical in the perfectly viscoplastic case of Fig. 4.5 since the exact visco
plastic strain increment is in fact linear for this case. 

For the material properties assumed, the theoretical value of the limiting 
time step is given from (4.36) to be 1·0. It is seen from Figs. 4.5 and 4.6 that 
the time-step lengths employed in solution are well within this critical value. 
However, Fig. 4.6 shows that to achieve an accurate result even smaller 
time-step lengths must be taken. Thus although the theoretical value of the 
limiting time-step length guarantees numerical stability of the solution process 
it may not always lead to an accurate solution. 

The second example considered illustrates the redistribution of stress 
with time which generally takes place in viscoplastic problems. Figure 4.7 
shows two members in parallel which are subjected to an end load P which 
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is incrementally applied. The material properties for each element are 
included in Fig. 4.7 with the only difference between the two members being 
the initial yield stress of the materials. The load is applied in four incre
ments and steady state conditions are allowed to develop for each increment 
before application of further load. The end displacement with time is shown 
in Fig. 4.7. Steady state conditions are achieved for the first three load 
increments but not for the fourth since both elements, which behave perfectly 
plastically, have become yielded at this stage. 

4.13 Problems 
4.1 Develop the relationship between the applied stress, u, and the total 

strain, £, for the rheological model shown in Fig. 4.8. Plot the strain 
response with time when the model is subjected to a constant applied 
stress, UA. 

4.2 Repeat Problem 4.1 for the rheological model shown in Fig. 4.9. In 
this case the friction slider becomes active for U ~ Y where, for a 
linear strain hardening material, Y = uy + H' £vp. 

Ez 

a 

" 

I~ E 

Fig. 4.8 Problem 4.1. 

y 

a 

1'1 

E 

Fig. 4.9 Problem 4.2 . 

. 4.3 Use the unidimensional computer code developed in this chapter to 
determine the stress relaxation with time when the Maxwell model 
shown in Fig. 4.10 is subjected to a constant displacem~nt condition. 
The critical time-step length for this model can be shown to be 
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~t = 21rE. Solve the problem for several time-step lengths up to the 
critical value, thereby showing that numerical divergence occurs as 
soon as the limiting value is reached. For computation let E = 100, 
r = 0.01 and 4>p = 0·1. 

... o----JWVV'v~-------!1 1-1 --0-- - - 0 

E 'Y ~ -------1 
~ 

Fig.4.10 Problem 4.3. 

4.4 Modify the computer code developed in this chapter to allow solution 
of the material model of Problem 4.1. 

4.5 In Section 4.9, Subroutine CONVP, monitoring convergence to steady 
state conditions, was based on a global criterion. Modify this sub
routine so that convergence is based upon the condition 

1,}.€vpll I 
--X 100 ~ TOLER, (4.42) 
1~€vpll 

for each individual element. 

4.6 Develop the elastic stiffness matrix, K(e), for a two-node finite element 
in the form of a sphere and which is to be subjected to spherically 
symmetrical radial loading only. Assume a linear variation between 
nodes and note the following relationships 

ou 1 
Er = - = -[Ur-v(uo+u~)]; Uo = u~; or. E 

u 1 
EO = E~ = - = -[{l- v)uo - vUr], (4.43) 

r E 

in which u is the radial displacement and Er, EO, E¢> and Ur, UO, up are 
respectively the strain and stress components. Also express the stress 
components in terms of the nodal displacements. 

4.7 Use the stiffness matrix evaluated in Problem 4.6 to modify the one
dimensional viscoplastic program UNVIS to allow solution of spheri
cally symmetrical problems. Assume a Tresca yield criterion which 
implies commencement of yielding when Ur- Uo = 0'1"" 

4.8 Employ the program developed in Problem 4.7 to determine the vari
ation of the elasto-viscoplastic stress distribution with time in a sphere 
which is instantaneously loaded by an internal pressure of 500 Njmm2. 
The internal and external radii of the sphere are 10 cm and 25 cm 
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respectively, the elastic modulus E = 2 X 105 Njmm2, Poisson's ratio 
II = 0·3, the uniaxial yield stress ay = 300 Njmm2, hardening par
amater, H' = 0 and take the fluidity parameter y = 0·001. Compare 
your steady state solution with the theoretical elasto-plastic results of 
Ref. 2. 

4.14 References 
1. CORMEAU, I., Numerical stability in quasistatic elasto-visco-plasticity, Int. J. 

NlIl1l. Meth. Engng., 9, 109-127 (1975). 
2. HILL, R., The Mathematical Theory of Plasticity, Oxford University Press, 1950. 





Chapter 5 
Elasto-plastic Timoshenko 

beam analysis 
Written in collaboration with H. H. Abdel Rahman 

5.1 Introduction 
In this chapter we introduce some elasto-plastic beam formulations which 

are useful in their own right but which also provide insight into the elasto
plastic plate formulations presented later. 

There are two main beam theories on which we could base our studies: 

(i) Euler-Bernoulli beam theory. This theory, which is usually favoured by 
engineers because of its simplicity, takes no account of transverse shear 
deformation. The simplest Euler-Bernoulli beam element based on the dis
placement method is the well-known Hermitian element(lI with cubic 
displacements. Bending moments may vary linearly over this element. 

(ii) Timoshenko beam theory. This theory allows for transverse shear 
deformation effects. The simplest Timoshenko beam element is the Hughes 
element(2) with linear displacements and normal rotations. Bending moments 
are constant over this element. 

Although the Euler-Bernoulli theory is frequently adopted we choose the 
Timoshenko beam theory as a basis for our study of the elasto-plastic analysis 
of beams since we may make use of a finite element which involves constant 
bending moments and is more in keeping with the presentations given in the 
previous chapters. Furthermore, Timoshenko beam theory can rightly be 
considered as the one-dimensional precursor of Mindlin plate theory which 
is used in Chapter 9. 

Firstly in this chapter the basic assumptions of Timoshenko beam theory 
are outlined. The Hughes element formulation is then presented for the 
elastic case. 

There are two approaches to the elasto-plastic analysis of Timoshenko 
beams: 

(i) Non-layered approach. In this method, when the bending moment 
reaches the yield moment, the whole cross-section of the beam is assumed to 
become plastic instantaneously. This is however a convenient fiction as in 
reality there is always a gradual plastification of the beam with the outer 

121 
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fibres becoming plastic initially. The zone of plasticification then spreads 
inwards until the whole section ultimately becomes plastic. 

(ii) Layered rzpproach. In this method we attempt to capture the spread of 
plasticity over the depth of the beam. The beam is thus divided into a number 
of layers each of which may become plastic separately. As the number of 
layers is increased, this model provides a more realistic representation of the 
gradual spread of plasticity over the beam cross-section. 

Both non-layered and layered approaches are described in detail and 
program TIMOSH for the non-layered beams and program TIMLA Y for 
the layered beams are presented and their use is illustrated with the aid of 
some examples. 

5.2 The basic assumptions of Timoshenko beam theory 

5.2.1 Introductory comments 
There are several basic assumptions adopted, in the derivation of the 

governing equations of Timoshenko beam theory. Here we reiterate these 
assumptions for elastic, small deflection analysis and then in later sections 
we present some extensions of the theory to allow for elasto-plastic analysis. 

5.2.2 Assumed displacement field 
In a typical Timoshenko beam, such as the one shown in Fig. 5.1, it is 

usual to assume that normals to the neutral axis before deformation remain 
straight b~t not necessarily normal to the neutral axis after deformation. This 
implies that the axial displacement u at any point (x, z) may be expressed 
directly in terms of 8(x) the rotation of the normal so that 

u(x, z) = -z8(x) (5.1) 

Note that the normal rotation 8(x) is equal to the slope of the neutral axis 
dw/dx minus a rotation f3 which is due to the transverse shear deformation. 

o. 

o. 

8 

~ __ +-..,,~ ___ ii~~ ___ ~ ____ ~ __ ~ 
o. 

w. z 

Fig. 5.1 Timoshenko beam. 
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Thus we have 

dw 
8(x) = --~. 

dx 
(5.2) 

Notice also that the lateral displacement w at any point (x, z) is given by the 
lateral displacement at the neutral axis so that 

w(x, z) = w(x) (5.3) 

5.2.3 Stress-strain relationships 
In Timoshenko beam theory, the elastic stress-strain relationships used 

for plane stress analysis are usually adopted in a slightly modified form. For 
convenience we assume that the beam is loaded in the xz plane and thus for 
an isotropic elastic material the relevant stress-strain relationships are 

r ax 1 1 v 0 Ex l 
E 

CTz - I v 1 0 Ez 

I 
(5.4) 

Txz I 
(1- v2) I (I-v) 

0 0 Yxz 
I 2 I 

J L J J 

where E is the Young's modulus and v is the Poisson's ratio. 
If CTz is assumed to be equal to zero then 

EZ = -VEx (5.5) 

and by eliminating Ez from (5.4) and (5.5), it is possible to write the following 
stress-strain reiationship 

and TXZ = Gyxz (5.6) 

where for an isotropic material G = E/[2( 1 + v)] is the shear modulus. 

5.2.4 Strain-displacement relationships 
Usually small deflection theory is adopted and the axial strain Ex is given as 

EX = -. 
('X 

Ifapproximation (5.1) is adopted then this strain can be written as 

dO 
EX = -=-. 

dx 

Similarly the shear strain yxz is given as 

c,-U (. iV 
Yxz = -+

c= i.-x 

(5.7) 

(5.8) 

(5.9) 
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and if approximation (5.2) is adopted we obtain 

dw 
'Yxz = -8+- = (3. 

dx 

5.2.5 Virtual work expression 

(5.10) 

Consider a Timoshenko beam of depth t in which the breadth b varies with 
depth symmetrically about the neutral axis. The beam is subjected to a dis
tributed loading of intensity q. If the beam undergoes a set of virtual lateral 
displacements 8w, virtual normal rotations 88 and associated virtual cur
vatures -z[d(88)/dx] and virtual shear strains 8fJ then the virtu..lI work 
equation can bt! written as 

J.

l Jt/2 J,lJ(t/2) (d(88) ) J.l 
-z ax+8(3Txz dydzdx- 8wqdx = 0 (5.11) 

o -t/2 b(-t/2) dx 0 

or 

_d{_88_) M +8(3 Q)dx-J.l 8wqdx = 0 
dx 0 

where the bending moment 

J

t / 2 J b(t/2) 
M = zaxdydz 

-t/2 b(-t/2) 
(5.12) 

and the shear force 

J
t/2 J,b(t/21 

Q = Txzdydz. 
-t/2 b(-tI2) 

(5.13) 

Using (5.12) and (5.13), -if we substitute for ax and TXZ in (5.6) respectively 
we obtain 

(J
t
/
2 

J,b(t/21 ) ( d8 ) (d8 ) M = z2Edydz -- = EI --
-t/2 b(-t/2) dx dx 

(5.14) 

and 

(J

t/2 J,b(tI21 ) 
Q = Gdydz «(3) = GA (3 

-t/2 b(-t/2) 
(5.15) 

where EI is the flexural rigidity and GA, the shear rigidity, is replaced by GA 
where the area A is replaced by A/a. The parameter a is a correction factor 
to allow for cross-sectional warping. For a rectangular section a is usually 
taken as 1'5.* 

• Many different definitions of ex have been presented in the various papers on 
Timoshenko beams. Cowper(3) summarises some definitions for beams of various 
cross-sections. For example, he shows that ex may be taken as (12+ 11 v)/(I0+ IOv) for 
rectangular cross-sections and (7 + 6v)/(6+ 6v) for circular cross-sections. Here we 
take ex = 1 ·5 unless otherwise stated. 
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If we substitute for M and Q from (5.14) and (5.15) we can rewrite the 
virtual work equation (5.11) as 

J, l (_d(_SO_) EI_
dO 

+Sf3GA f3-S wq)dX = 0 
o dx dx 

(5.16) 

5.2.6 A comparison of various beam approximations 
In order to compare the various beam approximations consider a simply 

supported beam of rectangular cross-section, flexural rigidity EI, Poisson's 
ratio v, depth t and length L which is subjected to a uniformly distributed 
loading q. The lateral deflection in the elastic range is given as 

when plane stress (PS) assumptions are adopted, 

qL4 ([(X)4 3(X)2 5] (t)2 [1 (X)2]) 
(ii) w = 24EI L -2 L +16 + L [2a{l +v)] 4- L (5.l7b) 

when Timoshenko beam (TB) assumptions are adopted and 

... QL4f['X)4 3(X)2 5], 
(m) w = 24EIl (L -2 L + 16 f 

(5.l7c) 

when Euler-Bernoulli (EB) assumptions are adopted. 
Thus, for long slender beams in which (tiL) is small, EB theory is adequate 

If we take Cowper's value (3) of a = (12+ 11 v)/(10+ IOv) then the ratio of 
the second-order additional lateral deflections due to shear deformation 
obtained under TB and PS assumptions is (24 + 22v)/(24 + 15v) which varies 
from 1·00 to 1·11 as v varies from 0·0 to 0·5. Thus TB theory is an accurate 
theory for beams of all dimensions. 

5.3 Finite element idealisation for linear elastic Timoshenko beams 

5.3.1 Introduction 
The theoretical and programming aspects of the finite element analysis of 

linear elastic Timoshenko beams have been dealt with in detail in previous 
books by the authors<l, 5). Here we derive the stiffness matrix and con
sistent load vector for a linear element and set the scene for the analysis of 
elasto-plastic Timoshenko beams which will be discussed later. 

5.3.2 Displacement and strain representation 
In the Hughes element representation, the lateral displacement w IS 

represented by the relationship 
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(5.18) 

where WI (e) and W2(e) are the nodal lateral displacements at local nodes 1 
and 2 of element e and the shape functions (shown in Fig. 5.2) are 

and 

in which Xl (e) and X2(e) are the x-coordinates of local nodes 1 and 2, x(e) 

is the x-coordinate of a point within the element and I (e) is the length of 
the element. 

XI (e) X2(e) 

0-----------------0 
1 2 

Fig.5.2 Beam element shape functions. 

Similarly the normal rotation O(e) within element e is represented as 

(5.19) 

where 01 (e) and 02(el are the normal rotations at local nodes 1 and 2 of 
element e. 

or 

The curvature-displacement relationship can be expressed as 

(
dO )(el (dNl)(el (dN2)<e) 

- - = - -- 01 (el - -- 02(e) 
dx dx dx 

E/(e) = [0 _1_ 0 __ 1_] 
, l(el' , l(el 

W1(e) 

01 (el 

02(el 

where Ble' is the curvature-displacement matrix. 

(5.20) 
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The shear strain-displacement relationship is given as 

or 

ES(e) = [ __ 1_ 
[(e) , 

(X2(e) - x(e» 

I(e) 

1 _ (x(e) -Xl (e»] 

, [(el' I(el 

where Bs(el is the shear strain-displacement matrix. 

5.3.3 Stiffness matrix evaluation 

Wl(e) 

(5.21) 

Given the element strain-displacement relationships outlined in Section 
5.3.2, Hughes has shown that using a virtual work approach the governing 
equations can be expressed as 

(5.22) 

where the submatrices of Kf and Ks and subvectors of f for element e can 
be written as 

f
'" (el 

f(el = . 2 [Nl (el, 0, N2(el, OF' q dx. 
'" (el . I 

(5.23) 

The flexural element stiffness matrix can be evaluated usmg a I-point 
Gauss-Legendre rule and takes the form 

(El)J ~ 
Kf(el = -

I . 0 

o 
1 

o 
o -1 

o l 
o -1 I 

o 0 

o 

o J 

(5.24) 

If Ks(el is evaluated exactly using a 2-point Gauss-Legendre rule we obtain 
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I I (el 

1 - -1 
2 2 

[ 12 I 12 
- -GA (e) 2 3 2 6 

Ks(el = (-I ) 
I I 

(5.25) 

-1 1 
2 2 

I [2 I 12 
- -
2 6 2 3 

Unfortunately it has been shown that with this formulation, overstiff sol
utions are obtained. This phenomenon, known as locking, may be 'cured' 
by integrating K8 (el with a I-point Gauss-Legendre rule. If such a selectively 
integrated element is adopted we find that 

I [ (el 

1 - -1 
2 2 

[ [2 I [2 
- -

(GAr 2 4 2 4 
Ks(e) = -[-

I I 
(5.26) 

-1 1 
2 2 

[ [2 [ [2 
- -
2 4 2 4 

and the results obtained are excellent. 
The consistent nodal force vector is given as 

[
(q/)(e) (ql)(e)] 

f (el = 0 0 
2 ' , 2 ' (5.27) 

which, unlike the Euler-Bernoulli cubic Hermitian element, only has 
lateral nodal point forces. 

For the nonlayered elasto-plastic Timoshenko beam finite element analysis, 
when the beam bending moment reaches the yield moment Mo, the whole 
element becomes plastic and acts as a plastic hinge. In such a situation the 
flexural rigidity EI is replaced by an elasto-plastic flexural rigidity (EI)ep 
whereas the shear rigidity G A is assumed to be unchanged. 

5.3.4 Element stress resultants 
We can obtain expressions which enable us to calculate the bending 

moments and shear forces within each element using (5.14) and (5.15). The 
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bending moment, which is constant in each element e, is given as 

Wl (e) 

M(e) = (EI)(e) B,(e) rp(e) = (El)(e) [0, ,(Ie)' 0, __ 1_] 
,(e) 

( 

EI)(e) 
= -,- (lh (e) - 82(e»). (5.28) 

The shear force varies linearly over each element but we evaluate it at 

Xl (e) + X2(e) 

X=----
2 

and assume it to be constant over the element. This is consistent with the 
practice of using selective integration in the evaluation of K(e). The shear 
force is therefore given as 

WI (e) 

-~] 
81 (e) 

W2(e) 

~ (( W2(e) - WI (e») ( 81 (e) + 82(e) )' 
= (GA )(e) - f. 

l(e) 2 

82(e) 

(5.29) 

5.4 Elasto-plastic nonlayered Timoshenko beams 

5.4.1 The yield moment 
Consider a Timoshenko beam subjected to a bending moment. Timo

shenko's assumptions imply that the axial stress and strain vary linearly 
across the depth of the section. As the bending moment is increased the 
yield stress is attained at the top and bottom fibres and with a further increase 
the yield will spread from these outer fibres inwards until the two zones of 
yield meet. The cross-section is then said to be fully plastic. It should be 
noted that the interaction of ax and 'Txz has been ignored during yield. This 
is inexact, but experience shows that the effect is not of prime importance 
especially when thin beams are considered. 

The value of this ultimate moment in the fully plastic condition can be 
calculated in terms of the yield stress 0'0.* Thus 

J, 
b(t/2) J t/2 

Mo = z O'odzdy 
b( -t/2) -t/2 

(5.30) 

• Note that for beam and plate problems the uniaxial yield stress is designated by 
.00 and not oy. 



130 FINITE ELEMENTS IN PLASTICITY 

and for a rectangular beam of breadth b, Mo = uo(bt2/4). However, it should 
be noted that the assumption used in the finite element solution implies that 
the whole cross-section becomes plastic as soon as the bending moment 
reaches its yield value Mo. This means that, for the beam case shown in 
Fig. 5.3, the whole cross-section is assumed to be plastic when the bending 
moment of situation (c) becomes equal to the bending moment of situ
ation (d)-in which case the extreme fibre stress in situation (c) exceeds the 
actual yield stress of the material. 

- -

(a) (b) (c) (d) 

Fig. 5.3 Yielding of non-layered beam. 

5.4.2 Elasto-plastic bending 
As mentioned earlier, elasto-plastic behaviour is characterised by an 

initial elastic material response with an additional plastic deformation when 
the bending moment IMI exceeds the yield moment Mo. The plastic defor
mation is irreversible on unloading and its onset is governed by a very 
simple yield criterion. Post-yield deformation usually occurs with a con
siderably reduced material stiffness. 

The moment-curvature relationship for a Timoshenko beam of elasto
plastic material is shown in Fig. 5.4. The beam initially deforms elastically 
with a flexural rigidity of EI until the ultimate bending moment is reached 
at which stage the whole beam,cross-section becomes plastic. On increasing 
the load further, the material is assumed to exhibit linear strain-hardening 
characterised by the tangential flexural rigidity (EI)T. 

At some stage after initial yielding consider a further load application 
resulting in an incremental increase of bending moment accompanied by a 
change of curvature d€f. Assuming that the curvature can be separated into 
elastic and plastic components, so that 

(5.31) 

we define as a strain hardening parameter 
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Bending 
Moment 

Elastic 
behaviour 
slope EI 

Slope EI 
I 

----J f---
VI 1 
1-1----1 
I I : 
1 1 I 
I I I 
I I I 
1.,11( J I. 

(dE,). 1 I (dE,)p I 

I I I 

~ I 

response 
slope (El)r 

Curvature 

Fig. 5.4 Moment curvature relationship for a Timoshenko beam. 

dM 
H'=--

(dEf)p 

This can be interpreted as the slope of the strain-hardening portion of the 
moment-curvature curve after the removal of the elastic curvature compo
nent. Thus 

dM 
H'=----

dEf-(dEf)e 
(5.32) 

1 - [(El)r/EI] 

It is therefore possible to rewrite (5.31) as 

dM elM dM(H'1 EI) 
dEf = EI-: H-; = EIH' (5.33) 

and then the incremental moment-curvature relationship can be written in 
the form 

EIH' 
dM = dEf. 

(EI-rH') 
(5.34) 

Thus during yielding the incremental stress-strain resultant relationship 
IS 

dM = EI (1 - EI )dEf 
EI-LH' 

dQ = GA dEs. (5.35) 
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The shear force/shear strain relationship is always elastic whereas the 
moment-curvature relationship is elasto-plastic. After yielding the flexural 
rigidity EI is replaced by 

( 
EI) EI 1- . 

EI+H' 

If the hardening parameter H' is equal to zero then the material behaviour 
is elasto-perfectly plastic and as mentioned in Section 3.5 for elasto-plastic 
axial bar elements this may lead to tangential stiffness matrices which are 
singular. This difficulty can also be avoided by use of the initial stiffness 
method in which the elastic element stiffnesses are employed at every stage 
of the computation thereby guaranteeing a positive definite assembled 
stiffness matrix. 

5.4.3 Solution of nonlinear equations 
Let us now generate the nonlinear equilibrium equations using the virtual 

expression (5.11). In order to do this we require the global rather than the 
element expressions for the lateral displacements, rotation, curvature and 
shear strain. At any point in the finite element mesh the lateral displacement 
and rotation can be obtained from the expression 

[ o
w ] = NffJ (5.36) 

where the shape function matrix is 

N = [ Nt, 0, N2, 0, ... , Nn , ° ] 
0, Nt, 0, N2, ... , 0, Nn 

(5.37) 

and the vector of nodal di&placements is 

(5.38) 

where Wi, 8, and N, are the lateral displacement, rotation and global shape 
functions associated with node i. 

The curvature and shear strain at any point within the entire finite element 
mesh is given as 

d8 dw 
-- = BfffJ and --8 = BsffJ 

dx dx 
(5.39) 

where 
Bf = [0, _ dNI, 0, _ dN2, •.. , 0, _ dNn] 

dx dx dx 
(5.40) 

and 
Bs = [dNI -NI dN2 -N2, 

dx ' , dx' 

dNn 
(5.41) .. -, --, 

dx 
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Virtual curvatures and shear strains are given as 

~S~ ~S~ 
- = Bf SffJ and - SO _ B8 SffJ 

dx dx 
(S.42) 

respectively, where the vector of virtual nodal displacements is written as 

SffJ = [SWl, SOl, SW2, S02, •.. , SWn, SOn]T. (S.43) 

Thus the virtual work expression (S.11) can now be written as 

I: [89']T [B!)T M dx+ s: [89']T [Be)T Qdx 

- I~ [89']T [N]T q dx = 0 (5.44) 

where (S.4S) 

Since (S.44) must be true for any set of virtual displacements SffJ then we 
have 

or 

U: [B!)T M dx+ I: [B,)T Qdx ) - s: [N)Tqdx = 0 

p-/= o. 
In fact this equation is identical to (S.22) when there is no plasticity. 

(S.46) 

Unfortunately in elasto-plastic problems M is a nonlinear function and 
in general we can only predict the vector p approximately. Thus (S.46) is 
nonlinear and since p is only approximately known than p -/ will equal a 
residual value "'(ffJ) which we attempt to reduce to zero in our solution 
procedure. 

We evaluate contributions to p element by element and assemble in the 
usual manner. The contribution from element e has the form 

IX (el 0 r(eJ p(el = 2 M(e1dx+ 2 

x (el 1 x (el 
1 1 

I(el 

0 

1 

I(el 

1 

I(el 

X(el -x (el 
2 

I(el 

1 

I(e) 

x (el _x(el 
I 

I(e) 

Q(e) dx 

[ 

(Q/)(e) (QI)(e)] T 
= - Q(el, M(e) - 2 ,Q(e), - M(e) - 2 . 

*The second integral evaluation is equivalent to using a I-point Gauss rule. 

(S.47)* 
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DATA 

Input data defining geometry, loading and 

I boundary conditions, material properties, etc. 

I 
INITAL 

Input data for current increment. 

J 
I 

INCREM 

Initialize accumulative arrays to zero. 
Update load vector. 

I 
I 

NONAL 

Set indicator to identify type of solution algorithm. 

Is new 

No element stiffness 
g,. matrix required? 

8 
..J r-g,. 

~ 8 Yes 
u.l ..J 
::E z STIFFB u.l a 
'" S u Calculate the element stiffness matrices Z - and store on disc. 
~ 

u.l 
f-

a :.:::' I 
..J I 

ASSEMB and GREDUC or RESOL V and BAKSUB 

Assemble global stiffness matrix (or take 
previous one) and global load vector and solve 
the resulting equations for unknowns. 

I 
REFORB 

Calculate the residual force vector. 

• I 
CONUND 

No Has solution converged? 

I Yes 

RESULT 

Output the results. 

~ 

Fig. 5.5 Overall structure of program TIMOSH. 
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Note that the appropriate value of bending moment At (e) is inserted in 
(5.47). 

Table 5.1 shows the complete sequence of nonlinear equation solving 
which is very similar to the one adopted for the axially-loaded bars in 
Chapter 3. 

1. Begin load increment. 
Set f = f +~f, iteration counter i = 0 and 'IIi = ~f + 'II (that is, include 
equilibrium correction from previous increment). 

2. Evaluate the new tangential stiffness matrix K1, if necessary. 
3. Solve 'IIi = KT !:,.tpi 
4. Evaluate tp = tp + ~tpi. 
5. For each element evaluate M(e) and Q(C). Check M(C) and adjust its value accord

ingly to account for any plastic behaviour. Evaluate the element residual force 
vector [tp(f)r+! = p(e) - f(C) and assemble into the global residual force vector 
'IIi+!. 

6. Check ~tpi for convergence. 
7. If solution has converged set'll = tpi+ 1 and go to step 1, otherwise set i = i -'·1 

and go to step 2. 

Table 5.1 Solution procedure for elasto-plastic nonlayered Timoshcnko beam 
analysis. 

5.4.4 Overall program structure of TIMOSH 
A modular approach is adopted for program TIMOSH. In fact the 

overall structure is identical to the structure in the programs of Chapter 3. 
Figure 5.5 shows the overall structure of TIMOSH. Routines DATA, 
INITAL, INCREM, NONAL, ASSEM B, GREDUC, BAKSUB, 
CONUND, RESOLV and RESULT have already been described in Chap
ter 3. The only new routines are STI FFB, REFORB and, of course, the 
MASTER routine BEAM. 

5.4.5 New routines for nonlayered elasto-plastic Timoshenko beam analysis 
Master REA M The master calling routine BEAM simply organises the 
calling of the main routines as described in Fig. 5.5. 

MASTER BEAM EPBM 1 c····· ........................... * ••• ** •• *******************************EPBM 2 
C EPBM 3 
C··· ELSTO-PLASTIC NONLAYERED TIMOSHENKO BEAM PROGRAM EPBM 4 
C EPBM 5 
c····· .. ·***.*.*****.** ••••••• ******************************************EPBM 6 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, EPBM 7 
KRESL,NCHEK,TOLER,NALGO, NSVAB, NDOFN,NINCS, NEVAB, EPBM 8 

• NITER, NOUTP ,FACTO EPBM 9 
COMMON/UNIM2IPROPS(5,4),COORD(26)lLNODS(25,2)lIFPRE(52), EPBM 10 

• FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), EPBM 11 
MATNO(25),STRES(25,2),PLAST(25),XDISP(52), EPBM 12 
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CALL DATA 
CALL INITAL 
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TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), 
REACT(52) ,FRESV(1352},PEFIX(52) ,ESTIF(4,4) 

DO 30 IINCS=1,NINCS 
CALL INCLOD 
DO 10 IITER=1,NITER 
CALL NONAL 
IF(KRESL.EQ. 1) CALL STIFFB 
CALL ASSEMB 
IF(KRESL.EQ.1) CALL GREDUC 
IF (KRESL. EQ. 2) 'CALL RESOLV 
CALL BAKSUB 
CALL REFORB 
CALL CONUND 
IF(NCHEK.EQ.O) GO TO 20 
IF(IITER.EQ.1.AND.NOUTP.EQ.1) CALL RESULT 
IF(NOUTP.EQ.2) CALL RESULT 

EPBM 13 
EPBM 14 
EPBM 15 
EPBM 16 
EPBM 11 
EPBM 18 
EPBM 19 
EPBM 20 

10 CONTINUE 
WRITE(6,900) 

EPBM 21 
EPBM 22 
EPBM 23 
EPBM 24 
EPBM 25 
EPBM 26 
EPBM 27 
EPBM 28 
EPBM 29 
EPBM 30 
EPBM 31 
EPBM 32 
EPBM 33 
EPBM 34 
EPBM 35 
EPBM 36 
EPBM 31 
EPBM 38 

900 FORMAT(1HO,5X,'SOLUTION NOT CONVERGED') 
STOP 

20 CALL RESULT 
30 CONTINUE 

STOP 
END 

Subroutine STIFFB The purpose of this routine is to evaluate the element 
stiffness matrices and store them on disc prior to their use in the assembly 
and equation solving routines. 

1 
C· •••••••••••••••••••••••••••••••••••••••••••••••••••• ****'*"*******"*STFB 2 

SUBROUTINE STIFFB STFB 

C mB 3 
C *11 CALCULATES ELEMENT STIFFNESS MATRICES STFB 4 
C mB 5 
C'*"'**"'****"'**'*'*'*'****'*""'**'**'**'**'*'"""""*'***"*"STFB 6 

COHHON/UNIH1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, STFB 1 
KRESL, NCHEK,TOLER, NALGO, NSVAB, NDOFN, NINCS, NEVAB, STFB 8 
NITER, NOUTP, FACTO STFB 9 

COHHON/UNIH2IPROPS(5,4) ,COORD(26) ,LNODS(25,2) ,IFPRE(52), STFB 10 
FIXED(52),TLOAD(25,4),RLOAD(25, 4),ELOAD(25,4), STFB 11 
MATNO(25),STRES(25,2),PLAST(25},XDISP(52), STFB 12 
TDISP(26,2),TREAC(26,2),ASTIF(52.52),ASLOD(52), STFB 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4) STFB 14 

REWIND 1 
DO 20 IELEM= 1 , NELEH 
LPROP=MATNO(IELEM) 
EIVAL=PROPS(LPROP,1) 
SVALU=PROPS(LPROP,2) 
HARDS=PROPS(LPROP,4) 
NODE1=LNODS(IELEM,1) 
NODE2=LNODS(IELEH,2) 
ELENG=ABS(COORD(NODE2)-COORD(NODE1» 
IF(PLAST(IELEM) .NE.O.O) EIVAL=EIVAL*( 1.0-EIVAL/(EIVAL+HARDS» 
VALU1=0.5*SVALU 
VALU2=SVALU/ELENG 
VALU3=EIVAL/ELENG 
VALU4=0.25*SVALU*ELENG 
ESTIF(1,1)= VALU2 
ESTIF(1,2)= VALU1 

STFB 15 
STFB 16 
STFB 11 
STFB 18 
STFB 19 
STFB 20 
mB.21 
STFB 22 
STFB 23 
STFB 24 
STFB 25 
mB 26 
STFB 27 
STFB 28 
STFB 29 
STFB 30 
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ESTIF(1,3)=-VALU2 
ESTIF(1,4)= VALU1 
ESTIF(2.2)= VALU3+VALU4 
ESTIF(2,3)=-VALU1 
ESTIF(2,4) =-VALU 3 +VALU 4 
ESTIF(3,3)= VALU2 
ESTIF(3,4)=-VALU1 
ESTIF(4,4}= VALU3+VALU4 
00 10 ISTIF=1,4 
00 10 JSTIF=ISTIF,4 

10 ESTIF(JSTIF,ISTIF}=ESTIF(ISTIF,JSTIF) 
WRITE ( 1} ESTIF 

20 CONTINUE 
RETURN 
END 

Rewind disc ready for writing element stiffnesses. 
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STFB 31 
STFB 32 
STFB 33 
STFB 34 
STFB 35 
STFB 36 
STFB 37 
STFB 38 
STFB 39 
STFB 40 
STFB 41 
STFB 42 
STFB 43 
STFB 44 
STFB 45 

STFB 15 
STFB 16-38 

STFB 39-41 
STFB 42 

For each element evaluate the upper triangular portion of the 
element stiffness matrix K(e). Note that if plasticity has taken 
place the elastic EI is replaced by the elasto-plastic (EI)T. 
Obtain using symmetry the lower triangular portion of K(e) . 

Write all element stiffness matrices on to disc. 

Subroutine REFO RB This routine evaluates the equivalent nodal forces. 

SUBROUTINE REFORB RFRB 1 
C····· •••••• *********************************.******·******·**.**** •• *.*RFRB 2 
C RFRB 3 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFRB 4 
C RFRB 5 
C·.*·*.*.**************************************.*********************.**RFRB 6 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLOAD,NPROP,NNODE,IINCS,IITER, RFRB 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, RFRB 8 
NITER, NOUTP , FACTO RFRB 9 

COMMON/UNIM2IPROPS(5.4),COORD(26},LNODS(25,2),IFPRE(52), RFRB 10 
FIXED(52},TLOAD(25,4),RLOAD(25 l 4},ELOAD(25,4}, RFRB 11 
MATNO(25),STRES(25,2),PLAST(25J,XDISP(52}, RFRB 12 
TDISP(26.2),TREAC(26.2},ASTIF(52,52),ASLOD(52), RFRB 13 
REACT(52),FRESV(1352},PEFIX(52),ESTIF(4,4) RFRB 14 

00 10 IELEM= 1 , NELEM RFRB 15 
DO 10 IEVAB=1,NEVAB RFRB 16 

10 ELOAD{IELEM,IEVAB}=O.O RFRB 11 
DO 70 IELEM= 1 , NELEM RFRB 18 
LPROP=MATNO(IELEM} RFRB 19 
EIVAL:PROPS(LPROP,1) RFRB 20 
SVALU=PROPS(LPROP,2} RFRB 21 
YIELD=PROPS(LPROP,3) RFRB 22 
HARDS:PROPS( LPROP , 4) RFRB 23 
NODE1=LNODS(IELEM,1) RFRB 24 
NODE2=LNODS(IELEM,2) RFRB 25 
ELENG=ABS(COORD(NODE2)-COORD(NODE1» RFRB 26 
WNOD1=XDISP(NODE1*NDOFN-1) RFRB 21 
WNOD2=XDISP(NODE2*NDOFN-1) RFRB 28 
THTA1=XDISP(NODE1*NDOFN) RFRB 29 
THTA2:XDISP{NODE2*NDOFN} RFRB 30 
STRAN=(THTA1-THTA2)/ELENG RFRB 31 
STLIN=STRAN.EIVAL RFRB 32 
STCUR:STRES(IELEM, 1 )+STLIN RFRB 33 
PREYS=YIELD+HARDS*ABS(PLAST(IELEM» RFRB 34 
!F(ABS(STRES{IELEM,1» .GE.PREYS) GO TO 20 RFRB 35 
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ESCUR=ABS(STCUR)-PREYS 
IF(ESCUR.LE.O.O) GO TO 40 
RFACT=ESCURlABS(STLIN) 
GO TO 30 

20 IF(STRES(IELEM,1).GT.0.0.AND.STLIN.LE.O.O) GO TO 40 
IF(STRES(IELEM,1).LT.0.O.AND.STLIN.GE.O.O) GO TO 40 
RFACT:1.0 

30 REDUC=1.0-RFACT 
STRES(IELEM,1):STRES(IELEM,1)+REDUC*STLIN+ 

• RFACT*EIVAL*(1.0-EIVALI(EIVAL+HARDS»*STRAN 
PLAST(IELEM)=PLAST(IELEM)+RFACT*STRAN*EIVAL/(EIVAL+HARDS) 
GO TO 50 

40 STRES(IELEM,1)=STRESCIELEM,1)+STLIN 
50 STRES(IELEM,2):STRESCIELEM,2)+(SVALU/ELENG)*(WNOD2-WNOD1) 

• -0.5*SVALU*(THTA1+THTA2) 
ELOAD(IELEM,1)=ELOADCIELEM,1)-STRES(IELEM,2) 
ELOAD(IELEM,2):ELOAD(IELEM,2)+STRES(IELEM,1) 

• -0.5*ELENG*STRES(IELEM,2) 
ELOAD(IELEM,3)=ELOAD(IELEM,3)+STRES(IELEM,2) 
ELOAD(IELEM,4):ELOAD(IELEM,4)-STRES(IELEM,1) 

• -0.5*ELENG*STRES(IELEM,2) 
10 CONTINUE 

RETURN 
END 

RFRB 15-17 Zero space for storing p. 
RFRB 18-57 For each element evaluate p(e) and assemble into p. 

RFRB 36 
RFRB 31 
RFRB 38 
RFRB 39 
RFRB 40 
RFRB 41 
RFRB 42 
RFRB 43 
RFRB 44 
RFRB 45 
RFRB 46 
RFRB 41 
RFRB 48 
RFRB 49 
RFRB 50 
RFRB 51 
RFRB 52 
RFRB 53 
RFRB 54 
RFRB 55 
RFRB 56 
RFRB 51 
RFRB 58 
RFRB 59 

5.4.6 Examples of nonlayered elasto-plastic Timoshenko beam analysis 
Two numerical examples are considered. The first example, Example 5.1, 

involves the yielding of a rectangular simple beam under uniformly dis
tributed load. The beam material has the following properties: 

E = 210·0 kNjmm 2 

v = 0·3 
GO = 0·25 kNjmm2 
H'= 0·0 

and the beam proportions are: 
b = 150 mm 
t = 300 mm 
I = 3000 mm 

Typical input data is provided in Appendix IV. 
The problem, finite element idealisation employed and the results are 

illustrated in Fig. 5.6, which shows that the beam fails as soon as a plastic 
hinge forms at the centre of the beam. Note that the beam material is 
assumed to have no strain hardening. 

The second example considered, Example 5.2, is the clamped I beam 
shown in Fig. 5.7. The beam has the same material properties as those of 
Example 5.1. 

The dimensions and finite element discretisation of the beam are given in 
Fig. 5.7; the 10ad-dispJacement relationship at the beam centre is also pro
vided. It is seen that there is an initial loss of stiffness corresponding to the 
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yielding of the end sections followed by a further reduction when the central 
section becomes plastic resulting in a beam failure mechanism. 

5.5 Elasto-plastic layered Timoshenko beams 

5.5.1 Yielding of layered beams 
In the 'layered' approach the beam or the plate is subdivided into a chosen 

number of layers, as shown in Fig. 5.8. 

Layer i 

(a) Layered beam 

(b) Layered plate 

Fig. 5.8 Layered subdivision of beam and plate. 

In the finite element solution it is assumed that as soon as the stress in the 
middle of the outer layers reaches the yield value, then the outer layers 
become plastic, while the rest of the layers remain elastic, as shown in 
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Fig.5.9 Yielding of layered beam. 

Fig. 5.9. Then, as plastification propagates, more layers become plastic, 
until the whole cross-section eventually becomes plastic. 

5.5.2 Formation of the stiffness matrix in the layered approach 
In the layered approach, we work in terms of stresses and not in terms of 

stress resultants as in the nonlayered approach. The state of stress at the 
middle of a layer is taken as representative for the entire layer. 

Contributions to the stress resultants M and Q are found for each layer 
separately by integrating over the layer thickness only. The bending moments 
and shear forces are then found from the contributions of all the layers of 
the beam element. 

The displacement field, stress-strain relationship and strain-displacement 
relationship are given in (5.1)-(5.10). 

The virtual work expression is given by (5.11) and when we evaluate the 
bending moment M and shear force Q we use a mid-ordinate rule as follows: 

where 

and 

M = EI ( - ::) and Q = GA " 

El = .L El bl Zl2 Il 
1 

GA=2:Glb l l l 
I 

and where hi is the layer breadth 
II is the layer thickness 
Zl is the z-coordinate at the middle of the layer 
El is the Young's modulus of the layer material 

and Gl is the Shear modulus of the layer material. 

(5.48) 

(5.49) 

(5.50) 

'r 
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However, if the stress at the middle surface of a layer reaches the uniaxial 
yield stress of the layer material, the whole layer is considered to be plastic 
and El is replaced by 

EI(I- El ), 
El--,;---H ' 

where H' is the uniaxial strain hardening parameter. As mentioned before, 
the shear force-shear strain relationship is always elastic. 

5.5.3 Solution of nonlinear equations 
Recall that the virtual work expression (5.11) has the form 

I
t It/2 Ib

(t!2) f d( Sf) \ Ii 
1-=. ax+o{3TxzJdyd=dx- OH'qdx = O. 

o -t/2 b(-t/2) \ dx 0 

(5.5]) 

The mid-ordinate rule is again used to evaluate the first two integrals in 
(5.51) so that we obtain 

(5.52) 
where 

PI ~ I: [B,]T Mdx 

and 

J
' / 

ps = [BsY Qdx 
() 

in which BI , Bs and Of!J have been defined in (5.40), (5.41) and (5.43) respec
tively and in which 

and 

M = "'. bl ax/ =l f/ 
/ 

Q = '> hi T xzl fl. 
I 

(5.53 ) 

(5.54) 

Note that axl and Txzl are the direct and shear stresses in the layer respec
tively. Since (5.52) is true for any arbitrary set of virtual displacements then 

(5.55) 

Contributions to PI and ps may be evaluated separately from each element 
so that 

I
x (e) I\'" (el 

PI(e) = 1 [Ble)]T !VI (t') dx = . 2 

X (el X (el 
I J 

[ (
'M)(el (M)(el] T o - 0 - - dx , I " I 

= [0, M(e), 0, -M(el)T (5.56) 
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and 

_ --2
1
] T ?i(e1dx 2' /(el' ~ 

(5.57) 

The complete sequence of nonlinear equation solving is very similar to 
the one adopted in Table 5.1 for the nonlayered beam. Step 5 is now written 
as: 
5. For each element evaluate for each layer axl (e) and Txzl (el. Check 

axl (el and adjust its value accordingly to account for any plastic 
behaviour. Evaluate the stress resultants M(el and Q(el and hence 
evaluate the residual force vector [f//<el]Hl = p(el _/(el. Assemble 
[f//(el]i+l into the global residual force vector f//i+1. 

5.5.4 Overall structure of layered beam program TIMLA Y 
The overall structure of the layered beam program is exactly the same as 

that of the non layered beam program given in Fig. 5.5. Subroutine STIFBL 
replaces STIFFB and subroutine RFORBL replaces REFORB. Subroutine 
STIFBL caBs a further new routine called LAYER. The master routine 
BEML has minor changes as shown in the next section. 

5.5.5 Modified and new routines 
Master BEML This routine is almost identical to routine BEAM described 
earlier. 

MASTER BEML LYBM 1 
2 
3 
4 
5 
6 

C********** •••• **.****.**********· •••• ***.********.*************'*******LYBM 
C LYBM 
C *** ELSTO-PLASTIC LAYERED TIMOSHENKO BEAM PROGRAM LYBM 
C LYBM 
C***,*************************"********,***,,,******,**"'*'**'**'**'**LYBM 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLAYR,NPROP,NNODE,IINCS,IITER, 
KRESL,NCHEK,TOLER,NALGO, NSVAB,NDOFN, NINCS, NEVAB, 
NITER,NOUTP,FACTO 

COMMON/UNIM2IPROPS(5,25),COORD(26),LNODS(25,2) ,IFPRE(52) , 
FIXED(52) ,TLOAD(25 ,4) ,RLOAD(25,4) ,ELOAD(25,4), 
MATNO(25),STRES(25,2) ,PLAST(250) ,XDISP(52), 
TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4), 
STRSL(250,2) 

CALL DATA 
CALL INITAL 
DO 30 IINCS=1,NINCS 
CALL INCLOD 
DO 10 IITER=l,NITER 
CALL NONAL 
IF(KRESL.EQ.1) CALL STIFBL 
CALL ASSEMB 
IF(KRESL.EQ. 1) CALL GREDUC 

LYBM 7 
LYBM 8 
LYBM 9 
LYBM 10 
LYBM 11 
LYBM 12 
LYBM 13 
LYBM 14 
LYBM 15 
LYBM 16 
LYBM 17 
LYBM 18 
LYBM 19 
LYBM 20 
LYBM 21 
LYBM 22 
LYBM 23 
LYBM 24 
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IF(KRESL.EQ.2) CALL RESOLV 
CALL BAKSUB 
CALL RFORBL 
CALL CONUND 
IF(NCHEK.EQ.O) GO TO 20 
IF(IITER.EQ.1.AND.NOUTP.EQ.1) CALL RESULT 
IF(NOUTP.EQ.2) CALL RESULT 

10 CONTINUE 
WRITE(6,900) 

900 FORMAT(1HO,5X, 'SOLUTION NOT CONVERGED') 
STOP 

20 CALL RESULT 
30 CONTINUE 

STOP 
END 
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LYBM 25 
LYBM 26 
LYBM Zl 
LYBM 28 
LYBM 29 
LYBM 30 
LYBM 31 
LYBM 32 
LYBM 33 
LYBM 34 
LYBM 35 
LYBM 36 
LYBM 31 
LYBM 38 
LYBM 39 

Subroutine STIFBL This routine calculates the element stiffness matrices 
for the elasto-plastic layered Timoshenko beam element. 

SUBROUTINE STIFBL STBL 
C···········*·*.****.******** •• ***·********·*********·**.*.** •• * •• ••• ••• STBL 

1 
2 
3 
4 
5 
6 

C STBL C... CALCULATES ELEMENT STIFFNESS MATRICES STBL 
C STBL 
C*.······**·*···.· •••• ***·**··*·****************··***·.* •• * •••• * •••••••• STBL 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLAYR,NPROP,NNODE,IINCS,IITER, 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, 
NITER, NOUTP,FACTO 

COMMON/UNIM2/PROPS(5.25),COORD(26),LNODS(25,2),IFPRE{52), 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD{25,4), 
MATNO(25),STRES(25,2),PLAST(250),XDISP(52), 
TDISP(26,2),TREAC(26.2),ASTIF(52.52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4), 
STRSL(250,2) 

REWIND 1 
DO 20 IELEM= 1 , NELEM 
LPROP=MATNO(IELEM) 
CALL LAYER(IELEM,EIVAL,SVALU) 
HARDS:PROPS(LPROP,4) 
NODE1:LNODS(IELEM,1) 
NODE2:LNODS(IELEM,2) 
ELENG:ABS(COORD(NODE2)-COORD(NODE1» 
VALU1=0.5·SVALU 
VALU2:SVALU/ELENG 
VALU3:EIVALIELENG 
VALU4:0.25·SVALU·ELENG 
ESTIF(1,1):VALU2 
ESTIF(1,2):VALU1 
ESTIF(1.3)=-VALU2 
ESTIF(1.4): VALU1 
ESTIF(2.2)= VALU3+VALU4 
ESTIF(2,3): -VALU1 
ESTIF(2,4): -VALU3+VALU4 
ESTIF(3,3): VALU2 
ESTIF(3,4):-VALU1 
ESTIF(4,4): VALU3+VALU4 
DO 10 ISTIF=1.4 
DO 10 JSTIF:ISTIF,4 

10 ESTIF(JSTIF,ISTIF):ESTIF(ISTIF,JSTIF) 
WRITE( 1) ESTIF 

20 CONTINUE 
RETURN 
END 

STBL 1 
STBL 8 
STBL 9 
STBL 10 
STBL 11 
STBL 12 
STBL 13 
STBL 14 
STBL 15 
STBL 16 
STBL 11 
STBL 18 
STBL 19 
STBL 20 
STBL 21 
STBL 22 
STBL 23 
STBL 24 
STBL 25 
STBL 26 
STBL Zl 
STBL 28 
STBL 29 
STBL 30 
STBL 31 
STBL 32 
STBL 33 
STBL 34 
STBL 35 
STBL 36 
STBL 31 
STBL 38 
STBL 39 
STBL 40 
STBL 41 
STBL 42 
STBL 43 
STBL 44 
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STBL 19 Call routine LAYER which evaluates approximate values of £1 
and exact values of GA using a mid-ordinate rule. Note that cer
tain layers may be plastic. 

Subroutine RFO RBL This routine evaluates p for the layered beam using 
the mid-ordinate rule. 

SUBROUTINE RFORBL RFRL 1 
2 
3 
4 
5 
6 

c***********************************************************************RFRL 
C RFRL 
C *** CALCULATES INTERNAL EQUIVALENT NODAL FORCES RFRL 
C RFRL 
c***********************************************************************RFRL 

COMMON/UNIM1/NPOIN,NELEM,NBOUN,NLAYR,NPROP,NNODE,IINCS,IITER, 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, 
NITER, NOUTP,FACTO 

COMMON/UNIM2IPROPS(5,25),COORD(26),LNODS(25,2),IFPRE(52), 
FIXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), 
MATNO(25),STRES(25,2),PLAST(250),XDISP(52), 
TDISP(26,2),TREAC(26,2),ASTIF(52,52),ASLOD(52), 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4), 
STRSL(250,2) 

DIMENSION STRAN(2) 
DO 15 IELEM= 1 , NELEM 
DO 10 IEVAB=1,NEVAB 

10 ELOAD(IELEM,IEVAB)=O.O 
DO 15 IDOFN=1,NDOFN 

15 STRES(IELEM,IDOFN)=O.O 
KLAYR=O 
DO 70 IELEM= 1 , NELEM 
LPROP=MATNO(IELEM) 
YOUNG=PROPS(LPROP,1) 
SHEAR=PROPS(LPROP,2) 
YIELD=PROPS(LPROP,3) 
HARDS=PROPS(LPROP,4) 
THKTO=PROPS(LPROP,5) 
NODE1=LNODS(IELEM,1) 
NODE2=LNODS(IELEM,2) 
ELENG=ABS(COORD(NODE2,)-COORD(NODE1) ) 
WNOD1=XDISP(NODE1*NDOFN-1) 
WNOD2=XDISP(NODE2*NDOFN-1) 
THTA1=XDISP(NODE1*NDOFN) 
THTA2=XDISP(NODE2*NDOFN) 
STRAN(1)=(THTA1-THTA2)/ELENG 
STRAN(2)=(WNOD2-WNOD1)/ELENG 

-0.5*(THTA1+THTA2) 
ZMIDL=-THKTO/2.0 
KOUNT=5 
DO 50 !LAYR= 1 , NLAYR 
KLAYR=KLAYR+1 
KOUNT=KOUNT+ 1 
BRDTH=PROPS(LPROP,KOUNT) 
KOUNT =KOUNT + 1 
THICK=PROPS(LPROP,KOUNT) 
ZMIDL=ZMIDL+THICKl2.0 
STLIN=YOUNG*STRAN(1)*ZMIDL 
STCUR=STRSL(KLAYR,1)+STLIN 
PREYS=YIELD+HARDS*ABS(PLAST(KLAYR» 
IF(ABS(STRSL(KLAYR,1».GE.PREYS) GO TO 20 
ESCUR=ABS(STCUR)-PREYS 
IF(ESCUR.LE.O.O) GO TO 40 
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RFACT:ESCUR/ABS(STLIN) 
GO TO 30 

20 IF(STRSL(KLAYR,1).GT.0.0.AND.STLIN.LE.0.0) GO TO 40 
IF(STRSL(KLAYR,1).LT.0.0.AND.STLIN.GE.0.0) GO TO 40 
RFACT:1.0 

30 REDUC:1.0-RFACT 
STRSL(KLAYR,1):STRSL(KLAYR,1)+REDUC*STLIN+ 

RFACT*YOUNG*(1.0-YOUNG/(YOUNG+HARDS»*STRAN(1)*ZMIDL 
PLAST(KLAYR):PLAST(KLAYR)+RFACT*STRAN(1)*YOUNG/(YOUNG+HARDS) 

.*ZMIDL 
GO TO 45 

40 STRSL(KLAYR,1):STRSL(KLAYR,1)+STLIN 
45 STRSL(KLAYR,2):STRSL(KLAYR,2)+STRAN(2)*SHEAR 

STRES(IELEM,1):STRES(IELEM,1)+STRSL(KLAYR,1)* 
BRDTH*THICK*ZMIDL 

STRES(IELEM,2):STRES(IELEM,2)+STRSL(KLAYR,2)* 
BRDTH*THICK 

ZMIDL:ZMIDL+THICKl2.0 
50 CONTINUE 

ELOAD(IELEM,1):ELOAD(IELEM,1)-STRES(IELEM,2) 
ELOAD(IELEM,2):ELOAD(IELEM,2)+STRES(IELEM,1) 

• -0.5*ELENG*STRES(IELEM,2) 
ELOAD(IELEM,3):ELOAD(IELEM,3)+STRES(IELEM,2) 
ELOAD(IELEM,4):ELOAD(IELEM,4)-STRES(IELEM,1) . 

70 CONTINUE 
RETURN 
END 

-0.5*ELENG*STRES(IELEM,2) 
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Subroutine LA YER This routine evaluates EI and cA using the mid
ordinate rule. Note that certain layers may be plastic and therefore have a 
modified E. 

SUBROUTINE LAYER (IELEM, EIV AL, SV ALU) LAYR 1 
C •••••••• ***.*********.*.*** •• ***** •• *.*********************************LAYR 2 
C LAYR 3 
C *** CALCULATES INTEGRATED VALUES FOR EI AND GA THROUGH DEPTH LAYR 4 
C LAYR 5 
C* •••• ****************************************************.*************LAYR 6 

COMMON/UNIMl/NPOIN,NELEM,NBOUN,NLAYR,NPROP,NNODE,IINCS,IITER, LAYR 7 
KRESL,NCHEK,TOLER,NALGO,NSVAB,NDOFN,NINCS,NEVAB, LAYR 8 
NITER ,NOUTP , FACTO LAYR 9 

COMMON/UNIM2IPROPS(5,25),COORD(26),LNODS(25,2),IFPRE(52), LAYR 10 
FlXED(52),TLOAD(25,4),RLOAD(25,4),ELOAD(25,4), LAYR 11 
MATNO(25),STRES(25,2) ,PLAST(250),XDISP(52) , LAYR 12 
TDISP(26 ,2) ,TREAC(26,2),ASTIF(52,52) ,ASLOD(52), LAYR 13 
REACT(52),FRESV(1352),PEFIX(52),ESTIF(4,4), LAYR 14 
STRSL(250,2) LAYR 15 

EIVAL:O.O 
SVALU:O.O 
LPROP:MATNO(IELEM) 
KLAYR:(IELEM-l)*NLAYR 
SHEAR:PROPS(LPROP,2) 
HARDS:PROPS(LPROP,4) 
THKTO:PROPS(LPROP, 5) 
ZMIDL:-THKTO/2.0 
KOUNT:5 
DO 10 lLAYR: 1, NLAYR 
KLAYR:KLAYR+1 
YOUNG:PROPS(LPROP,') 
IF(PLAST(KLAYR).NE.O.O) YOUNG:YOUNG*(1.0-YOUNG/(YOUNG+HARDS» 

LAYR 16 
LAYR 17 
LAYR 18 
LAYR 19 
LAYR 20 
LAYR 21 
LAYR 22 
LAYR 23 
LAYR 24 
LAYR 25 
LAYR 26 
LAYR 27 
LAYR 28 
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KOUNT:KOUNT+ 1 
BRDTH:PROPS(LPROP,KOUNT) 
KOUNT:KOUNT+ 1 
THICK:PROPS(LPROP,KOUNT) 
ZHIDL:ZHIDL+THICKl2.0 
EIVAL:EIVAL+YOUNG*BRDTH*THICK*ZHIDL*ZMIDL 
SV ALU:SV ALU+SHEAR*BRDTH*THICK 
ZHIDL:ZHIDL+THICKl2.0 

10 CONTINUE 
RETURN 
END 

5.5.6 Examples of layered elasto-plastic Timoshenko beam analysis 

LAYR 29 
LAYR 30 
LAYR 31 
LAYR 32 
LAYR 33 
LAYR 34 
LAYR 35 
LAYR 36 
LAYR 37 
LAYR 38 
LAYR 39 

The third example considered in this chapter is the elasto-plastic analysis 
of the simple beam of Example 5.1. The layered solution is adopted in this 
case. A typical input data listing is provided in Appendix IV. 

The results for both non layered and layered solutions to this beam prob
lem are reproduced in Fig. 5.10. 

The last example to be considered here is the layered solution of the 
clamped I-beam given in Example 5. I. 

Again, both nonlayered and layered solution results are illustrated in 
Fig. 5.11. 

From Figs. 5.10 and 5.11 it is obvious that the layered solution is more 
realistic. Yielding takes place gradually through the layers, resulting In 

smoother curves representing the load-displacement relationship. 

5.6 Problems 

5.1 Derive the main expressions for the elasto-plastic analysis of Timo
shenko beams using elements with 

(i) Quadratic shape functions 

(X(e) - X2(e»(X(e) - xa(e» 
NI(e) = ---------

(Xl (e) - X2(e»(XI (e) - xa(e» 

(X(e) - Xl (el)(X(el - Xa(e» 
N2(e) = ---------

(X2(e) - Xl (el)(X2(el - xa(el) 

(X(e) - Xl (el)(x(e) - X2(el) 
Na(e) = ---------

(Xa(e) - Xl (el)(X3(el - X2(e» 
(5.58) 
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(ii) Cubic shape functions 

(X(f) -Xl (f»(X(eJ -X3(f»(X«(') -X-t(P» 

(X~(e) -Xl(I'»(X~(eJ -X3(e»(X~(e) -X-t(e» 

(X«(') -Xl (e) )(x«(') - X2(f»(X(e) -X.I(e» 

(X3(1') - Xl (e»(X3«(') - X2(1'»(X3(1') - X4(e» 

(x(l') -Xl(I'»(X«(') -X2(1'»(X(I') -X3(f» 

N.I(e) = ---
(X-t (e) - Xl (f»{X.l (el - X2(e»(X4 (e) - X3(e» 

(5.59) 

For the quadratic and cubic elements usc 2-point and 3-point Gauss
Legendre integration rules respectively. 

5.2 Develop a layered finite element Timoshcnko beam program which 
allows for combined in-plane and bending behaviour of axially loaded 
beams or beams with cross-sections which are nonsymmetric about the 
neutral axis. Choose a displacement representation of the form 

li(x, =) = uo(x) -z(}x(x) (5.60) 

in which uo(x) is the axial displacement at the neutral axis. 
5.3 Use the concepts developed in Chapters 4 and 5 to develop the necessary 

relationships for layered and non layered elasto-viscoplastic Timoshenko 
beam analysis. 

5.4 (i) Evaluate the additional stiffness terms required to represent the 
Winkler foundation by a 2-node linear Timoshenko beam element. For 
a foundation modulus k note that the additional virtual work term 
associated with the clastic foundation is 

J: 8wkwdx 

in which DW is the virtual lateral displacement. 
(ii) Modify programs TIMOSH and TIMLA Y to allow for beams on 
elastic foundations. 
(iii) Use the program to analyse a uniformly loaded, simply supported 
beam on a Winkler foundation. The elastic elosed form solution for 
an Euler-Bernoulli beam predicts lateral displacements 

00 

H' = L 
n=l, 3, 5, ... 

1 + kL 4/(114 7T4 EJ) 

I17TX 
S111-

L 
(5.61 ) 
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and bending moments 

00 

M= ~ 
n=l,3,5, ... 

4qL2j(n7T)3 n7TX 
------ sm --. 
1 +kL4j(n4 7T4 EI) L 

(5.62) 

Compare the elastic results from the modified programs with the above 
solution for various values of kL4jEI and tjL where EI is the flexural 
rigidity, t is the thickness and L is the length of the beam. 
(iv) For a given yield stress, GO, evaluate the ultimate load for various 
values of kL4jEI and tjL. 

5.5 (i) Consider the problem of finding the elastic deflections of a simply 
supported beam of length L, flexural rigidity EI, shear rigidity GA which 
is subjected to a uniform load q. The beam is elastically supported 
at mid-span by a single linear spring of stiffness K. Modify programs 
TIMOSH and TIMLA Y to solve this problem. Check your finite 
element solutions by noting that the elastic Euler-Bernoulli solution 
is given as 

4qL4 
lV =--

El 

00 

~ 
sin(n7TxjL) 

n=l,3,5, ... 

00 

~ ( sin(n1T/2) :~n(nTTX/L) ) (5.63) 
n=l, 3,5, ... 

in which 

5qL4 /( KL3 ) 
S = 384EI 1+ 48£1 . (5.64) 

(ii) When the load carried by the elastic support reaches a value F the 
supported beam becomes perfectly plastic. How can this be catered for 
in the modified version of TIM OSH and TI M LA Y ? 

5.6 Use program TIMLA Y to examine the effects of choosing 
(i) different load incrementations 
(ii) various convergence tolerances 
(iii) various numbers of layers 
on the example given in Section 5.4 and also Problems 5.4 and 5.5. 
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Chapter 6 
Preliminary theory and standard 
subroutines for two-dimensional 

elasto-plastic applications 

6.1 Introduction 
In Part II of this text we extend the concepts and techniques developed in 

Part I for one-dimensional situations to now permit the solution of two
dimensional problems. In particular the following applications are presented: 

• Chapter 7 discusses the solution of elasto-plastic problems conforming 
to either plane stress, plane strain or axially symmetric conditions. 

• Chapter 8 deals with plane stress/strain and axisymmetric problems 
where the material exhibits a time-dependent elasto-viscoplastic 
behaviour. 

• Chapter 9 covers elasto-plastic plate bending situations. 

The nonlinear algorithms developed in Chapter 2 will be employed in 
solution. These processes are general and the main modifications necessary 
are those appropriate to two-dimensional continuum theory or plate bending 
expressions which must now be used. For example the level of initial yielding 
will now be dependent on three or more independent stress components in 
place of the uniaxial case considered earlier. 

The development of an elasto-plastic stress analysis program requires all 
of the basic features of the corresponding elastic program. In particular the 
same basic element formulation is employed and a wide choice of element 
types is available. In this text we consider three different element types all 
based on an isoparametric formulation. The elements in~luded are illustrated 
in Fig. 6.1 and are: 

• The 4-node isoparametric quadrilateral element with linear displace
ment variation, Fig. 6.1(a). 

• The 8-node Serendipity quadrilateral element with curved sides and a 
quadratic variation of the displacement field within the element, 
Fig.6.1(b). 

• The 9-node Lagrangian quadrilateral element which additionally has 
a central node, Fig. 6.1 (c). 

The basic theoretical expressions for these elements are provided in Section 
6.3. The use of these higher order elements leads to particularly efficient 

157 
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4 3 

C9 
2 

Local node 
number ~, ,/, 

-I -I 
1. I -I 
3 I I 
.j -I I 

Fig.6.1(a) The 4-node isoparametric quadrilateral element and shape functions. 

elasto-plastic solution packages. In order to simplify matters as much as 
possible consideration is restricted to isotropic situations. * 

For all the plasticity applications presented in this text the classical 
incremental theory is employed with the full eiasto-plastic material response 
being reproduced. Thus we are not concerned with limit state behaviour as 
predicted by rigid-plastic theories, etc. 

Consideration is limited to small deformation situations where the strains 
can be assumed to be infinitesimal and Lagrangian and Eulerian geometric 
descriptions then coincide. 

• Extension to orthotropic situations is feasible and has indeed been dealt with in 
Ref. I. 
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N!"= \1.(1 +EE,)(I +~~,)(H,+~~.-I), i= 1,3,5,7, 

• for midside nodes 

Lo(.'al node 
numhc-f {. ~. 

-\ - \ 

~ (I -\ 
3 \ -\ 
~ \ II 
5 \ \ 
I> II \ 
7 -\ \ 
X -\ II 
~ II II 

Fig. 6.1(b) The 8-node Serendipity quadrilateral element. 
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• for comer nodes 

N!')=!4(e'+~t»(T/'+T/T/i)' ;=1,3, 5, 7, 

• for midside nodes 

N!') = Y'T/HT/' - T/T/i)(l - ~') + V,E1(e' - ~Ei)(1 - 'I'), i = 2, 4, 6, 8, 

• for central node 
N!') = (I - e')(1 - 'I')' 

Fig. 6.1(c) The 9-node Lagrangian quadrilateral element. 
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Fig. 6.1(c) The 9-node Lagrangian quadrilateral element (continued). 

For each application, a computer code is developed which allows the 
solution of practical problems. The computation times of elasto-plastic 
problems are relatively high with solution costs being typically ten times 
those of the corresponding linear elastic analysis. Of course a direct com
parison would depend on the extent of plastic yielding and how close to the 
ultimate load carrying capacity a solution is sought. In view of these rel
atively high computer costs it is essential that the codes developed should be 
as efficient as possible and that any numerical techniques which reduce the 
computational requirements be employed. Since the main aim of this text 
is to fulfil a teaching role some compromise must however be inevitably made 
between program clarity and efficiency. The applicability of the programs 
presented is demonstrated by the solution of practical examples. Detailed 
user instructions for all of the computer programs presented in Part II of 
this text are provided in Appendix II. 

In Section 6.2 the basic expressions for the linear elastic finite element 
analysis of two-dimensional continua and plate bending problems are pre
sented. Section 6.3 outlines the principles of isoparametric element formu
lation with particular attention being given to the role of numerical 
integration. Standard subroutines pertaining to linear elastic finite element 
'analysis are reviewed in Section 6.4 and some subroutines common to the 
three nonlinear applications considered in Chapters 7, 8 and 9 are presented 
in Section 6.5. 
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6.2 Virtual work expressions for various solid mechanics applications 

6.2.1 Introduction 
In this section we briefly describe various two-dimensional solid mechanics 

finite element applications in the elastic range only. Later in Chapters 7-9 
we demonstrate how elasto-plastic or elasto-viscoplastic behaviour may be 
included in these applications using finite elements. 

In Part I we presented some very simple finite element representations. By 
contrast, in Part II we include numerically integrated isoparametric quadri
lateral elements. 

6.2.2 Virtual work expression 
If a body is subjected to a set of body forces b then by the Virtual Work 

Principle we can write 

(6.1) 

where u is the vector of stresses, t is the vector of boundary tractions, OU is 
the vector of virtual displacements, OE is the vector of associated virtual 
strains, n is the domain of interest, rt is that part of the boundary on which 
boundary tractions are prescribed and l'u is that part of the boundary on 
which displacements are prescribed. 

6.2.3 Plane stress 
Consider some typical plane stress problems shown in Fig. 6.2. Typically 

a thin plate is subjected to loads applied in the xy plane, that is the plane of 
the structure. (21 The thickness of the plate is assumed to be small compared 
with the plan dimensions in the xy plane. Stresses are assumed to be constant 
through the thickness of the plate and Uz, Tzx and Tzy are ignored. Thus the 
displacements may now be expressed as 

U = [u, V]T, (6.2) 

where u and v are the in-plane displacements III the x and y directions 
respectively. 

The strain components may be list.ed in the vector 

(6.3) 

where for small displacements the normal strains are given as 

au CV 
Ex =-, ox 

fEy =-, 
cy 
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Fig. 6.2 Typical plane stress problems. 

and the shear strain is given as 
(II (I' 

Yxy = -~-. 
cy ix 

Note that virtual displacements arc listed in the vector 

l3u = [1311, I3vV, 

and the associated virtual strains are 

_ [2(I3U) 2(l3v) 
13£ - , , 

ex iT 

i~I3U) , C~IiV)] T. 

('\' ex 

, 
\ 
I 

j , 

The relevant stress-strain relationships may be written as 

u = DE, 
where 

in which u'" and Uy are the normal stresses and Txy is the shear stress. 

f-
f-
I--
f-<o 
1-
f-
1-

(6.4) 

(6.5) 

(6.6) 

For linear elastic situations the stress-strain or constitutive matrix IS 
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in which E and v are the elastic modulus and Poisson's ratio respectively. 
The body forces b are written as 

(6.8) 

in which bx and bv are the body forces per unit volume in the x and y direc
tions respectively. 

Boundary tractions t may be expressed as 

t = [Ix, IvjT, (6.9) 

in which Ix and Iv are the boundary tractions per unit length. 
An element of volume dO. is given as 

dO. = Idxdy, (6.10) 

where I is the plate thickness. 

6.2.4 Plane strain 
For plane strain problems the thickness dimension normal to a certain 

plane (say the xy plane) is large compared with the typical dimensions in 
the xy plane and the body is subjected to loads in the xy plane only. For 
plane strain problems(2) it may be assumed that the displacements in the 
z direction are negligible and that the in-plane displacements u and v are 
independent of z. Figure 6.3 illustrates some typical plane strain problems. 

The displacements are then listed in the vector 

u = [u, vjT, (6.11) 

(a) 

(b) 

Fig. 6.3 Typical plane strain problems. 
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in which u and v are the in-plane displacements in the x and y directions 
respectively. 

The in-plane strain components may be expressed as 

(6.12) 

where .oz, .oy and Yzy have the same meaning as the strain components in 
plane stress applications. 

Again the virtual displacements and associated virtual strains are respec
tively given as 

Su = [Su, SvjT, (6.13) 

and 
Sf: = [O(SU), o(Sv) , a(su): 2(SV)] T. 

oX oy oy ox 
(6.14) 

The stress-strain relationships may be written in the form 

(6.15) 

where the stresses (1 = [ax, ay, 'TxvjT have the same meaning as the stresses 
in plane stress applications. 

For linear elastic materials the stress-strain or constitutive matrix D is 
given as 

(I -v) )J 0 l E 
D= v (I-v) o ' (6.16) 

(1 +v)(1 -2)1) (1~2") j 0 0 

Note that the stress normal to the xy plane is nonzero and may be evaluated 
as 

(6.17) 

The body forces b and surface tractions t have the same meaning as those 
adopted for plane stress problems. 

A typical element of volume is given as 

dQ = dxdy. (6.18) 

under the assumption that a unit slice of the problem is being analysed. 

6.2.5 Axisymmetric solids 
For a three-dimensional solid which is symmetrical about its centreline 

. axis (which coincides with the z axis) and which is subjected to loads and 
boundary conditions that are symmetrical about this axis, then the behav
iour(Z) is independent of the circumferential coordinate B. Figure 6.4 shows 
a typical axisymmetric solid. 
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Axisymmclric 
loading. 

Fig. 6.4 A typical axisymmetric solid. 

The displacements may here be expressed as 

u = Lu, w)T, 

Axisymmelri(' 
loading 

(6.19) 

where u and ware the displacements·in the rand z directions respectively. 
The nonzero strains are given as 

E = [Er, Iff;' EZ, Yrz]T, 

where for small displacements, the normal strains are given as 

Bu 
f£r = -, 

or 
and the shear strain is 

U 
EO = - and 

r 

ou cw 
Yrz = --j--. 

8z C,. 

elF 
Ez = 8=' 

(6.20) 

Virtual displacements and associated virtual strains are respectively given as 

Ilu = [Ilu, Ilw)T, (6.21) 
and 

[
O(8U) 

IlE = ,. , 
cr 

8u c(Sw) ; i(~W)] 7·. 
cr 

c(8u) 

r cz c: 
The stress-strain relationships are given as 

(T = DE, (6.23) 

where (T = [ar, ao, az, Trz)T, in which crr, cro and crz are the normal stresses 
in the r, 8 and z directions respectively and Trz is the shear stress in the rz 
plane. 
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For linear elastic materials, the stress-strain matrix is given as 

(I-v) v 0 0 

E v (1-1') V 0 
D= 

0+1')(1-21') 0 V (I-v) 0 
(I -21') 

0 0 0 

(6.24) 

2 

The bo·!y forces are given as 

b = [br. bz]T, (6.25) 

where br and b. are the body forces/unit volume in the rand z direction 
respectively. 

The boundary tractions may be expressed as 

t = [lr,I.)T, (6.26) 

where IT and t. are the boundary tractions/unit surface In the rand z 
directions. 

An elemental volume is given as 

dO. = 27Tr dr dz. (6.27) 

6.2.6 Mindlin plates 
In Mindlin plate theory it is possible to allow for transverse shear 

deformation. It thus offers an alternative to classical Kirchhoff thin plate 
theory. The main assumptions are that: 

(a) displacements are small compared with the plate thickness, 
(b) the stress normal to the midsurface of the plate is negligible, 
(c) normals to the midsurface before deformation remain straight but not 

necessarily normal to the midsurface after deformation. 

A typical Mindlin plate is shown in Fig. 6.5. Note that Mindlin plate 
theory is the two-dimensional equivalent of Timoshenko beam theory 
which was discussed in Chapter 5. 

The main displacement parameters can be expressed 

(6.28) 

in which w is the lateral plate displacement normal to the xy plane and 
variables ()x and ()y are the normal rotations in the xz and yz planes. Here 
it should be noted that 

CIV 
()x = - -rfox and 

ex 
(6.29) 

where Ox and ()y are the rotations of the normal in the xz and yz planes 
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Fig. 6.5 A typical Mindlin plate. 

respectively and are integrated measures of the transverse shear strain. In 
thin plate theory it is assumed that shear rotations <Px and <py, defined below, 
are equal to zero. 

The strains, or more exactly the strain resultants, may be expressed as 

E = [rx, ry, I'xy, <Px, <py]T, 

where the curvatures are given as 

aox aoy 
rx = -- and ry = 

ex ey 
and the twisting curvature is 

(
OOy o Ox) 

rxy = - -+-. ax oy 

The shear strains are expressed as 

(6.30) 

(6.31 ) 

Virtual displacements and rotations and associated virtual curvatures and 
shear strains are respectively given as 

Su = [Sw, SOx, SOyF, (6.32) 
and 

SE = [-
o(SOx) c(SOy) c(SOx) e(8ey) 

, , 
ox cy oy ox 

o(/lw) 
/lOx, 

c(Sw) SOy] T. 

aX oy 
(6.33) 
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The constitutive relationships are given in the form 

(f = D £, (6.34) 
where 

(f = [Mx, My, M xy, Qx, QyF, 

in which Mx and My are the direct bending moments and Mxy is the twisting 
moment. The quantities Qx and Qy are the shear forces in the xz and yz 
planes. 

For an isotropic elastic material 

D vD 0 0 0 

vD D 0 0 0 

D= 0 0 
(I -v) 

0 0 (6.35) D 
2 

0 0 0 s 0 

0 0 0 0 S 

in which for a plate of thickness t 

Et3 GI 
D= and s=-

12(1 -v2) 1.2' 

where G is the shear modulus and the factor 1.2 is a shear correction term. 
Here we will not consider surface tractions. For a more complete dis

cussion of this and other aspects of Mindlin plate theory the reader is 
directed to the work of Hughes and his coworkers.(3) We will only consider 
body forces of the form 

b = [q, 0, OF, (6.36) 

where q is the lateral distributed loading per unit area. 
An elemental plate area is given as 

dO. = dx dy. (6.37) 

6.3 Isoparametric finite element representation 

6.3.1 Governing equations 
In this section we present the discretised governing equations for the 

solid mechanics applications described in Sections 6.2.3-6.2.6. In a finite 
element representation, the displacements and strains and their virtual 
counterparts may be expressed by the relationships 

(6.38) 
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(6.39) 

where, for node i, dt is the vector of nodal variables,* Odt is the vector of 
virtual nodal variables, Ni = I Nt is the matrix of global shape functionst 
and Bt is the global strain--displacement matrix. The total number of nodes 
in the whole mesh is n. 

If (6.38) and 6.39) are substituted into the virtual work expression (6.1) 
then we obtain 

and since (6.40) must be true for an arbitrary set of virtual displacements Sdt 
then we have for each node i an equation of the form 

(6.41) 

If we use C(O) isoparametric finite element representations we can evaluate 
contributions to (6.41) separately from each element. 

The displacements can be expressed in the usual way as 

(6.42) 

where, for local node i of element e, N(e) = I N{e) is the matrix of shape 
functions and the vector of variables is dt(e'. There are r local nodes in each 
element e. 

Typical 4-, 8- and 9-node isoparametric element shape functions are 
shown and listed in Figs. 6.I(a), (b) and (c) respectively. . 

Note that in an isoparametric representation we may use the following 
representation for the x and y coordinates within an element 

• In Part I of this text the nodal variables were symbolised by qI; since for non- . 
structural applications, such as nonlinear heat cOl1duction, these parameters are not 
associated with displacements. In Parts II and III, for the continuum and plate situations 
considered, the nodal variables are always the displacement (and rotation) components 
and will now be symbolised by d. 

t Note that I is the p xp identity matrix in which p=2 for the plane stress, plane 
strain and axisymmetric applications and p = 3 for the Mindlin plate applications. 
N, is the global shape function for node i. 
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(6.43)* 

in which Nj(el are the same shape functions used in the displacement rep
resentation. We may then evaluate the Jacobian matrix as 

r r 2 oNi(el 2 0Nj(el 
ox by x/(el Yt(el 

bg j~l ag 
ag og i~l 

I(el - - (6.44) 
ax by r r 2 aNj(el 2 bNj(el 
CT} CT} Xj(el Yt(el 

j~l aT} 1~1 aT} 

The inverse of I(el is then evaluated using the expression 

a~ (1) by by 

1. (.'x ex 1 (1) N 
[/(el]-l 

ag (1) det ](e) ax (.;x 
(6.45) 

J cY oy ('.1) o~ 

The strain displacement relationships are expressed as 

( 6.46) 

in which Bi(e) is the strain matrix. 
The discretised elemental volume (or area in the case of Mindlin plates) 

is given as 
(6.47) 

where h(e) has been defined in Table 6.1 in which we also summarise the 
expressions for dj(e), Bi(e) and dn<e) for the four applications. 

The Cartesian shape function derivatives used in the strain-displacement 
matrices in Table 6.1 may be obtained using the chain rule of differentiation 

cg iW,(el 2T} 
---+--, ' 
2~ ax cT} ox 

• For axisymmetric problems replace x and y by rand z respectively. 

(6.48) 
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Application d;(el B;(el dQ<el 
( 0

o
:;) (el 0 

[ Uj(el) (O;irl (el det J(el dgdTJ Plane stress 0 Vj(el 

C;ty"1 (::tr
l 

(O:ty"1 0 

Plane strain 
[ Uj(el] 

0 (O;irl det J(el dg dTJ 
Vi(el 

c~irl 
cy 

(0:Vl r l 
ex 

- (aNi) (el -
0 or 

(~tY'1 0 [ Uj(el ] 
Axial symmetry 

(o:;r
l 217'r(el det J(el dgdTJ Wt(el 

0 

(C.N;) (el 
_ (Z 

(ONi) (el 
cr _ 

r 

( _OO:tY'1 0 0 

0 0 
( _ ONi) (el 

,.. - . 2y 
Wi(el 

Mindlin plate (J,,;(el 0 ( _ C;irl ( _ C~irl det J(el dgdTJ 

(Jyi(el 
- - ( ~N;Y'I -NI(el 0 

ex 

(2
2
:;) (el 0 -Ni(el 

Table 6.1 Nodal displacements. strain matrices and elemental volumes or areas 
for two-dimensional solid mechanics applications. 
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and 

in which the terms B~/Bx, B7}/Bx, B7}/By and B~/By may be obtained from 
the inverse of the Jacobian matrix given in (6.45). 

Since we have a linear stress-strain relationship within each element of 
the form 

T 

u(e) = D(e) E(e) = D(e) (L Bj(e) dj(e») , (6.49) 

J-l 

then the contribution from element e to the first term in (6.41) is given as 

(6.50) 

where K,,(e) is the submatrix of element stiffness matrix K(e). 
The contribution from element e to the second term in (6.41) is given as 

In (e) = f [N;(e)]T b(e) dO.. 
, (e) 

!) 

(6.51) 

For the third term, the contribution from element e is 

'"T (e) = I [N·(e)]Tt(e)dr 
J~ t (e) t , 

1', 

(6.52) 

where rt(e) is that part of f t which coincides with a boundary of element e. 
Of course for many elements there win be no contribution to IT,(e). 

6.3.2 Evaluation of the stiffness matrix and consistent load vector 
Let us now consider the evaluation of K. 
The integration is now performed in the natural coordinate system. Thus 

the submatrix of the stiffness matrix K(e)jiQk!ng Il9iIestan~ j has the form 
., 

(6.53) 

The elements of K,/e) are evaluated numerically. If the integrand in (6.53) 
is denoted as 

(6.54) 
tlten 

(6.55) 
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The numerical integration for a quadrilateral element with /I x /I sampling 
points leads to 

(6.56) 

where Wp and Wq are weighting factors and ap, ijq) is a sampling position. 
The consistent nodal forces at node i caused by body forces are 

f
ll 

fIJ,<') = 
-1 

(6.57) 

The components of fTJt(e) are evaluated numerically. If the integrand in 
(6.57) is denoted as 

(6.58) 
then 

f+l f+l fIJi (e) = gi(e) dtd1). 
-1 -1 

(6.59) 

The numerical integration for a quadrilateral with n xn sampling points 
leads to 

(6.60) 

where Wp and Wq are weighting factors and ap, ijq) is a sampling position. 
The consistent nodal forces for boundary tractions have been dealt with 

in the authors' previous book(4) and will be summarised in Section 6.4.5. 
The computer implementation of numerically integrated isoparametric 

elements has been described in detail in the text of Finite Element Program
ming.(4) Here we simply summarise in Fig. 6.6 the main steps involved in 
evaluating the element stiffness matrix. 

6.4 Standard subroutines for linear efastic finite element analysis 
Many of the subroutines required for elasto-plastic finite element analysis 

are common to the corresponding linear elastic application. In this section 
we present all the standard linear elastic subroutines required for later use 
in Chapters 7, 8 and 9. The function of each subroutine is explained and a 
FORTRAN listing is provided. The subroutines presented are drawn from 
Ref. 4 where a detailed description is provided. 

In order to make all subroutines modular in form we have adopted a 
type of dynamic dimensioning. Thus no COMMON blocks are used in the 
programs in Part II. Dimensions are fixed in the main or master routine and 
all necessary information is transmitted between routines by the use of 
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SUBROUTINE STIF2D 

Dimensions and common blocks . 

.----- Enter loop over all elements. 

Retrieve element geometry and material properties for the current 
element. 

Zero the stiffness array. 

Call a routine which sets up D(e) the constitutive matrix. 

Enter loops covering all integration points. 

Look up sampling position for the current integration point (tp, ijq ). 

Call shape function routine SFR2-given (tp, ijq) this will return 
the shape functions Ni(e) and their derivatives aN;(e)lbf and 
cNt(e)lo1] at the point (gp, ijq). 

Call JACOB2-given NI(e), 6Wt(e)lag and aN;(e)la1] at point (gp, ijq); 

this will return Cartesian shape function derivatives aN;(e)lax and 
oN;(e) Icy, the Jacobian matrix I(e), its inverse [I(e)]-l and its 
determinant det I(e) and the x and y (or rand z) coordinates all 
at the point (gp, ijq). 

Call strain matrix routine-given Ni(e), c!Ni(e)lax and aNi(e)lay at 
ap, ijq) this will return the strain matrix Bi(e). 

Call a routine to evaluate D(e) B(e). 

Evaluate [B;(e)]D(e) B/e) det I(e) X integration weights and assemble 
them into the element stilTness array Ki/e). 

Assemble D(e) B(e) into a stress array for later evaluation of stresses 
from the nodal displacements. 

'----- End integration loops. 

Write stiffness matrix and stress matrix onto file for use in the 
solution routine. 

~---End element loop. 

RETURN 
END 

Fig. 6.6 Evaluation of element stiffness matrices for numerically integrated 
isoparametric elements. 
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arguments (and also peripherals in certain instances). Apart from the modu
larity, this approach has the advantage that maximum dimensions can be 
updated in a very simple and straightforward manner. Only the DIMEN
SION statement in the main segment and some statements in a subroutine 
which sets the maximum dimensions sizes need modification. 

As an example, the relevant statements in a dynamically dimensioned 
program are listed below. 

PROGRAM 
DIMENSION 

FRED ( ) 
AMA TX (200, 5), * 

CALL DIMENS (MROWS, MCOLS) 

CALL DUMMY (AMATX, MROWS, MCOLS) 

STOP 
END 

SUBROUTINE DIMENS (MROWS, MCOLS) 
MROWS =200* 
MCOLS = 5* 
RETURN 
END 

SUBROUTINE 
DIMENSION 

RETURN 
END 

DUMMY (AMATX, MROWS, MCOLS) 
AMATX (MROWS, MCOLS) 

Note that AMATX ( ) has fixed dimensions in the main routine FRED. 
Subroutine DIMENS assigns values of 200 and 5 to the dimensions MROWS 
and MCOLS respectively.t In subroutine DUMMY we transmit AMATX, 

t Alternatively a DATA statement can be used. 
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MROWS and MCOLS via the argument and therefore the DIMENSION 
statement in DUMMY refers to AMATX (MCOLS, MROWS) and not 
AMATX (200, 5). To update FRED for arrays AMATX with different 
maximum dimensions, we simply modify those statements indicated by an 
asterisk. 

Note also that the use of such arguments is not very expensive since only 
the address of the first term of an array is passed through the argument and 
not of all the terms in the array. 

More sophisticated versions of this approach can be implemented as 
illustrated in the book by Irons and Ahmad.(S) Such approaches undoubtedly 
save core storage but they do require careful housekeeping and checking 
procedures. 

In Part III we have generally dispensed with the use of maximum dimen
sion variables in the programs. Thus main segment FRED would then be 
written as 

PROGRAM FRED ( ) 
DIMENSION AMATX (200,5), ... 

CALL 

STOP 
END 

SUBROUTINE 
DIMENSION 

RETURN 
END 

DUMMY (AMATX) 

DUMMY (AMATX) 
AMATX (200, l)t 

Although this approach uses nonstandard FORTRAN IV it does work on 
most machines and it has been adopted elsewhere in the literature.(6) If 
more than one subroutine such as DUMMY uses AMATX then the relevant 
dimensions must be identical in all of these subroutines. 

The list of variables in the argument list will differ between linear and 
nonlinear applications. For each subroutine presented in this section the 
form of the argument list and the dimension statements will be those required 
for two-dimensional elasto-plastic applications. 

t Note that AMATX (number, t) will also workprovided that number.;; 200. 
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6.4.1 Subroutine NODEXY for generating coordinate values for midside 
nodes 

For the quadratic 8- and 9-node elements described in Section 6.3 sub
routine NODEXY checks each midside node (a midside node being recog
nisable from the element topology cards). If both coordinates of a mid side 
node are found to be zero, its coordinates are linearly interpolated between 
the two adjacent corner nodes. Subroutine NODEXY is common to plane 
stress/strain, axisymmetric and plate bending situations. 

SUBROUTINE NODEXY(CooRD,LNODS,MELEM,MPOIN,NELEM,NNODE) NODE 1 
C·······································*············· ••••• * ••••• *** •• NODE 2 
C NODE 3 
C·*** THIS SUBROUTINE INTERPOLATES THE MIDE SIDE NODES OF STRAIGHT NODE ~ 
C SIDES OF ELEMENTS AND THE CENTRAL NODE OF 9 NODED ELEMENTS NODE 5 
C NODE 6 
C···*·**········**·**********····*····*·*****·**·*···*.****.********** NODE 7 

DIMENSION CooRD(MPOIN,2),LNODS(MELEM,9) NODE 8 
IF(NNODE.EQ.~) RETURN NODE 9 

C NODE 10 
C... LOOP OVER EACH ELEMENT NODE 11 
C NODE 12 

DO 30 IELEM=1,NELEM NODE 13 
C NODE 1~ 
c... LOOP OVER EACH ELEMENT EDGE NODE 15 
C NODE 16 

NNOD1=9 NODE 17 
IF(NNODE.EQ.8) NNOD1=7 NODE 18 
DO 20 INODE=1

I
NNOD1,2 NODE 19 

IF(INODE.EQ.9 GO TO 50 NODE 20 
C NODE 21 
c··· COMPUTE THE NODE NUMBER OF THE FIRST NODE NODE 22 
C NODE 23 

NODST=LNODS(IELEM,INODE) NODE 2~ 
IGASH=INODE+2 NODE 25 
IF(IGASH.GT.8) IGASH=1 NODE 26 

C NODE 27 
C··· COMPUTE THE NODE NUMBER OF THE LAST NODE NODE 28 
C NODE 29 

NODFN=LNODS(IELEM,IGASH) NODE 30 
MIDPT=INODE+ 1 NODE 31 

C 'NODE 32 
C··· COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE NODE 33 
C NODE 3~ 

NODMD=LNODS(IELEM,MIDPT) NODE 35 
TOTAL=ABS(CooRD(NODMD,1»+ABS(CooRD(NODMD,2» NODE 36 

C \ 
NODE 37 

C··· IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO NODE 38 
C INTERPOLATE BY A STRAIGHT LINE NODE 39 
C NODE ~O 

IF(TOTAL.GT .0.0) GO TO 20 NODE ~1 

KOUNT=1 NODE ~2 
10 COORD(NODMD,KOUNT)=(COORD(NODST,KOUNT)+cooRD(NODFN,KOUNT»/2.0 NODE ~3 

KOUNT =KOUNT + 1 NODE ~~ 
IF (KOUNT .EQ.2) GO TO 10 NODE ~5 

20 CONTINUE NODE ~6 
GO TO 30 NODE ~7 

50 LNODE=LNODS(IELEM,~NODE) NODE ~8 
TOTAL=ABS(CooRD(LNODE,1»+ABS(COORD(LNODE,2» "NODE ~9 
IF(TOTAL.GT.O.O) GO TO 30 NODE 50 
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LNOD1:LNODS(IELEM,1) NODE 51 
LNOD3=LNODS(IELEM,3) NODE 52 
LNOD5=LNODS(IELEM,5) NODE 53 
LNOD7=LNODS(IELEM,7) NODE 54 
KOU NT = 1 NODE 55 

40 COORD(LNODE,KOUNT)=(COORD(LNOD1,KOUNT)+COORD(LNOD3,KOUNT) NODE 56 
• +COORD(LNOD5,KOUNT)+COORD(LNOD7 , KOUNT) )/4.0 NODE 57 
KOUNT=KOUNT+ 1 NODE 58 
IF(KOUNT .EQ.2) GO TO 40 NODE 59 

30 CONTINUE NODE 60 
RETURN NODE 61 
END NODE 62 

6.4.2 Subroutine GAUSSQ for generating Gaussian quadrature data 
The function of this subroutine is to set up the sampling point positions 

and weighting factors for numerical integration. The Gauss quadrature 
processes utilised in this text are restricted to either two or three point 
integration rules." The role of numerical integration in the isoparametric 
formulation was discussed in detail in Section 6.3. The order of integration 
rule to be employed is defined by NGAUS and the sampling point positions 
and weighting factors are stored respectively III arrays POSGP ( ) and 
WEIGP ( ). 

SUBROUTINE GAUSSQ(NGAUS,POSGP WEIGP) 
c*·******··************************-********************************** 
C 
c •••• THIS SUBROUTINE SETS UP THE GAUSS-LEGENDRE INTEGRATION CONSTANTS 
C 

GAUS 1 
GAUS 2 
GAUS 3 
GAUS 4 
GAUS 5 

C ••••••• * ••••• *.* ••• ************************************************** GAUS 6 
DIMENSION POSGP(4),WEIGP(4) GAUS 7 
IF(NGAUS.GT .2) GO TO 4 GAUS 8 

f. 2 POSGP( 1 );-0.577350269189626 GAUS 9 
WEIGP(1);1.0 GAUS 10 
GO TO 6 GAUS 11 

4 POSGP(1)=-0.774596669241483 GAUS 12 
'. POSGP(2);0.0 GAUS 13 

WEIGP(1)=0.555555555555556 GAUS 14 
WEIGP(2) =0. 888888888888889 GAUS 15 

6 KGAUS=NGAUS/2 GAUS 16 
DO 8 IGASH= 1 , KGAUS GAUS 17 
JGASH=NGAUS+1-IGASH GAUS 18 
POSGP(JGASH)=-POSGP(IGASH) GAUS 1Q 

"WEIGP(JGASH);WEIGP(IGASH) GAUS 20 
8 CONTINUE GAUS 21 

RETURN GAUS 22 
END GAUS 23 

6.4.3 Subroutine SFR2 for evaluating the element shape functions 
The role of this subroutine is to evaluate the shape functions Ni(eleg, 1]) 

and their derivatives 8N1(el/iJg, iJNi(el/cl] at any sampling point gp, 1]/' within 
the element for each of the 4-, 8- or 9-noded elements described in Sec
tion 6.1. The shape functions for these elements are listed in Figs. 6.I(a), (b) 
and (c). The sampling point coordinates gp, "II' are specified as EXISP and 
ETASP respectively. The evaluated shape functions for each node of an 
element are stored in array SHAPE (lNODE) and their derivatives iu 

• Except for selectively integrated 4-node Mindlin plates in which we modify 
GAUSSQ so that if NGAUS = I then POSGP(I) ~ 0·0 and WEIGP(l) = 2·0. 
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array DERIY lINODE, IDIME) where INODE ranges over the element 
nodes and IDIME over the coordinate dimensions. 

SUBROUTINE SFR2(DERIV ETASP EXISP NNODE SHAPE) 
c·····················,····~·····,·····,·····,········ ............... . C • ' 
c .... THIS SUBROUTINE EVALUATES SHAPS FUNCTIONS AND THEIR DERIVATIVES 
C FOR LINEAR,QUADRATIC LAGRANGIAN AND SERENDIPITY 
C ISOPARAMETRIC 2-D ELEMENTS 
C 

c· .. •••••••• .... •••••••• .. •••••••• .. •••• .. ••••••••••••• .. •••• ••••••••• DIMENSION DERIV(2,9) ,SHAPE(9) 

C 

S=EXISP ----
T=ETASP 
IF(NNODE.GT.4) GO TO 10 
ST=S*T 

C... SHAPE FUNCTIONS FOR 4 NODED ELEMENT 
C 

C 

SHAPE(1)=(1-T-S+5T)*0.25 
SHAPE(2)=(1-T+5-5T)*O.25 
SHAPE(3)=(1~T+5+5T)·O.25 
SHAPE(4)=(1+T-S-ST)·O.25 

C ••• SHAPE FUNCTION DERIVATIVES 
C 

C 

DERIV(l,l)=(-1+T)·0.25 
DERIV(l,2)=(+1-T)·0.25 
DERIV(l,3)=(+1+T)·O.25 
DERIV(',4)=(-1-T)·O.25 
DERIV(2,')=(-1+5)·0.25 
DERIV(2,2)=(-1-S)*O.25 
DERIV(2,3)=(+1+5)*O.25 
DERIV(2,4)=(+1-S)·0.25 
RETURN 

10 IF(NNODE.GT.8)GO TO 30 
52=S·2.0 
T2=T·2.0 
SS=S'S 
TT=T*T 
ST=S'T 
SST=S'S*T 
STT=S*T*T 
ST2=S*T·2.0 

c*" SHAPE FUNCTIONS FOR 8 NODED ELEMENT 
C 

SHAPE(1)=(-1.0+ST+SS+TT-SST-STT)/4.0 
SHAPE(2)=(1.0-T-SS+5ST)/2.0 
SHAPE(3)=(-1.0-ST+S5~TT-SST+STT)/4.0 
SHAPE(4)=(1.0+5-TT-STT)/2.0 
SHAPE(5)=(-1.0+ST+5S+TT+S5T+5TT)/4.0 
SHAPE(6)=(1.0~T-SS-SST)/2.0 
SHAPE(7)=(-1.0-ST+5S+TT+S5T-STT)/4.0 
SHAPE(8)=(1.0-5-TT+5TT)/2.0 

C··· SHAPE FUNCTION DERIVATIVES 
C 

DERIV(l,l)=(T+52-ST2_TT)/4.0 
DERIV(l,2)=_S+5T 
DERIV(1,3)=(-T+S2-SI2+TT)/4.0 
DERIV(1,4)=(1.0-TT)/2.0 
DERIV(l,5)=(T+32+ST2+TT)/4.0 
DERIV(1,6)=_S-ST 
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DERIV(l,7):(-T+S2+ST2-TT)/4.0 
DERIV(l,8):(-1.0+TT)/2.0 
DERIV(2,l):(5+T2-SS-ST2)/4.0 
DERIV(2,2)=(-1.0+SS)/2.0 
DERIV(2,3):(-5+T2-SS+ST2)/4.0 
DERIV(2,4)=-T-ST 
DERIV(2,5):(5+T2+SS+ST2)/4.0 
DERIV(2,6)=(1.0-SS)/2.0 
DERIV(2,7)=(-S+T2+SS-ST2)/4.0 
DERIV(2,8)=-T+ST 
RETURN 

30 CONTINUE 
SS:S"S 
ST:S*T 
TT:T*T 
Sl:5+1.0 
Tl =T+ 1.0 
S2:S*2.0 
T2=T*2.0 
S9=S-1.0 
T9=T-1.0 

C."· SHAPE FUNCTIONS FOR 9 NODED ELEMENT 
C 

C 

SHAPE(1):0.25*S9*ST*T9 
SHAPE(2):0.5*(1.0-SS)*T*T9 
SHAPE(3):0.25*Sl"ST*T9 
SHAPE(4):0.5"S*Sl*(1.0-TT) 
SHAPE(5):0.25*Sl*ST*Tl 
SHAPE(6)=0.5*(1.0-SS)*T*Tl 
SHAPE(7):O.25IS9Isr"Tl 
SHAPE(8):O.5*S*S9"(1.0-TT) 
SHAPE(9)=(1.0-SS)*(1.0-TT) 

C"". SHAPE FUNCTION DERIVATIVES 
C 

DERIV(l,l)=O.25"T*T9"(-1.0+S2) 
DERIV(l,2):-ST*T9 
DERIV(l,3)=O.25*(1.0+S2)*T*T9 
DERIV(l,4):O.5*(1.0+S2)"(1.0-TT) 
DERIV(l,5):O.25"(1.0+S2)*T"Tl 
DERIV(l,6)=-sr"Tl 
DERIV(l,7):O.25*(-1.0+s2)IIT*Tl 
DERIV(l,8):O.5"(-1.0+S2)*(1.0-TT) 
DERIV(l,9):-S2*(1.0-TT) 
DERIV(2,l)=O.25*(-1.0+T2)*S*S9 
DERIV(2,2):O.5"(1.0-SS)I(_1.0+T2) 
DERIV(2,3):O.25*S*Sl*(_1.0+T2) 
DERIV(2,4):-ST*Sl 
DERIV(2,5):O.25*S*Sl*(1.0+T2) 
DERIV(2,6):O.5*(1.0-SS)*(1.0+T2) 
DERIV(2,7):O.25*S*S9*(1.0+T2) 
DERIV(2,8)=-sr*S9 
DERIV(2,9):-T2*(1.0-SS) 

20 CONTINUE 
RETURN 
END 

6.4.4 Subroutine JACOB2 for evaluating the Jacobian matrix 
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This subroutine calculates, for any sampling position, gp, ']P (usually the 
Gauss point), the folIowing quantities: 
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• The Cartesian coordinates of the Gauss point which are stored in the 
array GPCOD ( ). 

• The Jacobian matrix which is stored in XJACM ( ). For two-
dimensional applications the Jacobian matrix is defined by (6.44). 

• The determinant of the Jacobian matrix, DJACB. 
• The inverse of the Jacobian matrix which is stored as XJACI ( ). 
• The Cartesian derivatives iJNt(el/ox, ONt(el/iJy (or iJN/(el/iJr, iJNI(el/~;} 

of the element shape functions. These quantities are defined in (6·40)· 

SUBROUTINE JACOB2(CARTD,~IV\DJACB,ELCOD,GPCOD,IELEM,KGASP, JACB 1 
• NNODE, HAPE -- JACB 2 

C·······················Iii ... ifi ••••••••••••••••••••••••••••••••••••• JACB 3 
C JACB 4 
C··.· THIS SUBROUTINE EVALUATES THE JACOBIAN MATRIX AND THE CARTESIAN JACB 5 
C SHAPE FUNCTION DERIVATIVES JACB 6 
C JACB 7 
C··········································~·········· •••••••••••••••• JACB 8 

DIMENSION CARTD(2.9) ,DERIV(2,9) ,ELCOD(2,9) ,GPCOD(2,9) ,SHAPE(9), JACB 9 
XJACI(2.2),XJACM(2,2) JACB 10 

C JACB 11 
C·" CALCULATE COORDINATES OF SAMPLING POINT JACB 12 
C JACB 13 

00 2 IDIME=1,2 JACB 14 
GPCOD(IDIME,KGASP)=O.O JACB 15 
00 2 INODE=1,NNODE JACB 16 
GPCOD(IDIME.KGASP) =GPCOD(IDIME ,KGASP)+ELCOD(IDIME,INODE) JACB 17 

.*SHAPE(INODE) JACB 18 
2 CONTINUE JACB 19 

C JACB 20 
C··· CREATE JACOBIAN MATRIX XJACM JACB 21 
C JACB 22 

00 4 IDIME=1,2 JACB 23 
00 4 JDIME=1,2 JACB 24 
XJACM(IDIME,JDIME) =0.0 JACB 25 
00 4 INODE=1,NNODE JACB 26 
XJACM(IDIME,JDIME) =XJACM(IDIME ,JDIME)+DERIV(IDIME,INODE). JACB 27 

.ELCOD(JDIME,INODE) JACB 28 
4 CONTINUE JACB 29 

C JACS 30 
C"· CALCULATE DETERMINANT AND INVERSE OF JACOBIAN MATRIX JACB 31 
C JACB 32 

DJACB=XJACM(1,1)*XJACM(2,2)-XJACM(1,2)·XJACM(2,1) JACB 33 
IF(DJACB) 6\6,8 JACB 34 

6 WRITE(6,600 IELEM JACB 35 
STOP JACB 36 

8 CONTINUE JACB 37 
XJACI(1,1)=XJACM(2.2)/DJACB JACB 38 
XJACI(2,2)=XJACM(1.1)/DJACB JACB 39 
XJACI(1,2)=-XJACM(1.2)/DJACB JACS 40 
XJACI(2.1)=-XJACM(2.1)/DJACB JACS 41 

C JACB 42 
C·" CALCULATE CARTESIAN DERIVATIVES JnCB 43 
C JACS 44 

00 10 IDIME=1,2 JACS 45 
00 )0 INODE=1.NNODE JACS 46 
CARTD(IDIME.INODE)=O.O JACB 47 
00 10 JDIME=1,2 JACS 48 
CARTD( IDIME. It/ODE) =CARTD( IDIME, INODE) +XJACI (IDIME. JDIME). JACS 49 

.DERIV(JDIME,INODE) JACS 50 
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10 CONTINUE 
600 FORMAT(//,36H PROGRAM HALTED IN SUBROUTINE JACOB2,/,11X, 

.22H ZERO OR NEGATIVE AREA,/,10X,16H ELEMENT NUMBER ,15) 
RETURN 
END 
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6.4.5 Subroutine LOADPS for evaluating the element nodal forces for 
plane and axisymmetric situations 

The role of this subroutine is to evaluate the consistent nodal forces for 
each element due to discrete point loads, gravity loading and distributed 
edge loading/unit length of element. This subroutine is described in detail in 
Chapter 7, Ref. 4. The types of loading to be considered are controlled by 
input parameters IPLOD, IGRAV, lEDGE. Nonzero values of these 
respective items indicate that point loads, gravity loading or distributed 
edge loading is to be considered. 

The consistent nodal loads are evaluated for each element separately and 
stored in the array RLOAD (IELEM, IEVAB) where IELEM indicates the 
element and lEV AB ranges over the degrees of freedom of the element. For 
equation solution by the frontal process it is not necessary to evaluate the 
total applied load acting at each node, with instead each element contribution 
being assembled directly into the global load vector during equation assembly 
and solution. 

Point loads 
If parameter IPLOD is nonzero the applied nodal loads are read as input. 

For each particular node the applied forces are associated with anyone of 
the elements attached to it; since each element contribution will be assembled 
before equation solution. Thus a search is performed over all elements until 
the node number is found in an element and the nodal loads are then associ
ated with the appropriate degrees of freedom of that element. 

Gravity loading 
For plane stress or plane strain problems the direction in which gravity 

acts need not coincide with either of the coordinate axes. Therefore the 
direction in which gravity acts must be defined as shown in Fig. 6.7 by 
specifying the angle 0 which the gravity axis makes with the positive y axis. 
The intensity of the loading is defined by specifying the gravitational acceler
ation, g, which acts. For axisymmetric problems, of course, the gravity axis 
must coincide with the z axis. 

The consistent nodal forces for node i of an element are then given by 

[ 
p . ] (pl, [ si no] 

x: = J pI Nl(el pg . dO, 
P!ll £!( -cos 8 

(6.61 ) 

in which p is the material mass density. Integrated numerically this becomes 
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S2GA 

1]S [Sin 0 J 
pgl N!(tn, 11m) W ll W", det J, 

-cosO 
(6.62) 

m~l 

where t is the element thickness for plane problems. For axisymmetric appli
cations t is replaced by 27Trp, where rp is the radial distance to the Gauss 
point under consideration. '1 = + 1 5 

~=+I 
7 

4 

E= -I 
8 

..---\ 
2 '1=-1 

3 y, z 

- - - - ~ e = 0 for axisymmetric problems 
x, r 

, Direction in which gravity acts 
Fig. 6.7 Specification of the gravity axis for two-dimensional problems. 

Distributed edge loading 
Any element edge can have a distributed loading per unit length in a 

normal and tangential direction prescribed to it as shown in Fig. 6.8. These 
distributed forces can vary (independently) along the edges. For the quad
ratic elements considered in this text, a quadratic loading distribution can, 
at best, be accommodated. The variation is defined by prescribing the normal 
and tangential values at the three nodal points forming the element edge to 
which the loads are applied. For linear quadrilateral elements, only a linear 
distributed load variation can be accommodated. In order to be consistent 
with the order oflisting of nodal connection numbers in the element topology 
definition, the three (or two) nodes forming the loaded edge must also be 
listed in an anticJockwise sequence with respect to the loaded element. The 
positive directions of normal and tangential loading are indicated in Fig: 6.8. 

The consistent nodal forces for node i can be shown to be(~J 

J 
'CX C- V) 

P xl(eJ => N/(eJ (PI - - p" -' ,dt 
(eJ 'c 'C I' (\. ( s/ 

pyi(eJ => J' N/(eJ (pn (::. -! PI C!)dt, 
r(eJ z.g c-g 

(6.63) 

where Pn and PI are the normal and tangential distributed loads respectively. 
Integration is taken along the loaded element edge r (eJ, which is arbitrarily 
chosen to be defined by 11 = - I, as shown in Fig. 6.8. ' 
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~dY ~J 
dx 

sequence I)'>... 
Y,z I'-tp ___ 

P, 1---
p, f--, 

x, r 

Fig. 6.8 Normal and tangential distributed loading on an element edge. 

For axisymmetric problems the edge loading is in fact a distributed 
loading/unit area, since integration is additionally made over the circum
ferential direction. 

If more than one type of loading acts on an element, the total nodal forces 
are accumulated and stored in array RLOAD. This total loading is then 
applied incrementally during elasto-plastic solution. 

SUBROUTINE LOADPS(COORD,LNODS,MATNO,MELEM,MMATS,MPOIN,NELEM, 
NEVAB,NGAUS,NNODE,NPOIN,NSTRE,NTYPE,POSGP, 
PROPS,RLOAD,WEIGP,NDOFN) 

c····** •• ·.** •• * •••••••••••••• ** ••• *****.**************,.* •••• _, ••• _-
C 
C···· THIS SUBROUTINE EVALUATES THE CONSISTENT NODAL FORCES FOR EACH 
C ELEMENT 
C 
c •• * ••••• _ ••••••••••• , •••••••••••• _ •••••••••••••••• ___ *._*_'_*_f ••• _.* 

DIMENSION CARTD(2,9) ,COORD(MPOIN,2),DERIV(2,9) ,DGASH(2), 
DMATX(4,4) ,ELCOD(2,9) ,LNODS(MELEM,9) ,MATNO(MELEM) , 
NOPRS(4),PGASH(2) ,POINT(2) ,POSGP(4),PRESS(4,2), 
PROPS(MMATS,7) ,RLOAD(MELEM,18) ,SHAPE(9),STRAN(4) , 
STRES(4), TITLE ( 12), 

• WEIGP(4),GPCOD(2,9) 
TWOPI:6.283185308 
DO 10 IELEM:l,NELEM 
DO 10'IEVAB:l,NEVAB 

10 RLOAD(lELEM,IEVAB):O.O 
READ(5,901) TITLE 

901 FORMAT( 12A6) 
WRITE (6 ,903) TITLE 

903 FORMAT(lHO,12A6) 

LOPS 1 
LOPS 2 
LOPS 3 
LDPS 4 
LDPS 5 
LDPS 6 
LDPS 78 
LOPS 
LDPS 9 
LDPS 10 
LOPS 11 
LOPS 12 
LOPS 13 
LOPS 14 
LOPS 15 
LDPS 16 
LDPS 17 
LDPS 18 
LOPS 19 
LDPS 20 
LOPS 21 
LDPS 22 
LOPS 23 
LOPS 24 
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C LOPS 25 
C... READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED LOPS 26 
C LOPS 27 

READ(5 919) IPLOD IGRAV lEDGE LOPS 28 
WRITE(6,9iJ) IPLOD,IGRAV,IEDGE LOPS 29 

919 FORMAT(315) LOPS 30 
C LOPS 31 C." READ NODAL POINT LOADS LOPS 32 
C LOPS 33 

IF(IPLOD.EQ.O) GO TO 500 LOPS 3~ 
20 READ(5,~) LODPT,(POINT(IDOFN),IDOFN:1,2) LOPS 35 

WRITE(6,931) LODPT,(POINT(IDOFN),IDOFN:1,2) LOPS 36 
931 FORHAT(I5,2F10.3) LOPS 37 

C LOPS 38 
c." ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT LOPS 39 
C LOPS ~O 

DO 30 IELEM:1,NELEM LOPS ~1 

DO 30 INODE:1,NNODE LOPS 42 
NLOCA:IABS(LNODS(IELEM,INODE» LOPS 43 

30 IF(LODPT.EQ.NLOCA) GO TO 40 LOPS 44 
40 DO 50 IDOFN:1,2 LOPS 45 

NGASH:(INODE-1)*2+IDOFN LOPS 46 
50 RLOAD(IELEM,NGASH):POINT(IDOFN) LOPS 47 

IF(LODPT.LT.NPOIN) GO TO 20 LOPS 48 
500 CONTINUE LOPS 49 

IF(IGRAV.EQ.O) GO TO 600 LOPS 50 
C LOPS 51 
C." GRAVITY LOADING SECTION LOPS 52 
C LOPS 53 
C LOPS 54 C'" READ GRAVITY ANGLE AND GRAVITATIONAL CONSTANT LOPS 55 
C LOPS 56 

READ(5/906) THETA,GRAVY LOPS 57 
906 FORHAT 2F10.3) LOPS 58 

WRITE(6,911) THETA,GRAVY LOPS 59 
911 FORMAT(1HO,16H GRAVITY ANGLE :,F10.3,19H GRAVITY CONSTANT :,F10.3)LOPS 60 

THETA:THETAl57.295779514 LOPS 61 
C LOPS 62 
C',· LOOP OVER EACH ELEMENT LOPS 63 
C LOPS 64 

DO 90 IELEM:1,NELEM LOPS 65 
C LOPS 66 C··· SET UP PRELIMINARY CONSTANTS LOPS 67 
C LOPS 68 

LPROP:HATNO(IELEM) LOPS 69 
THICK:PROPS(LPROP,3) LOPS 70 
DENSE:PROPS(LPROP,4) LOPS 71 
IF(DENSE.EQ.O.O) GO TO 90 LOPS 72 
GXCOM:DENSE*GRAVY·SIN(THETA) LOPS 73 
GYCOM:-DENSE*GRAVY·COS(THETA) LOPS 7~ 

C LOPS 75 C·" COMPUTE COORDINATES OF THE ELEMENT NODAL POINTS LOPS 76 
C LOPS 77 

DO 60 INODE:1,NNODE LOPS 78 
LNODE:IABS(LNODS(IELEM,INODE» LOPS 79 
DO 60 IDlME:1,2 LOPS 80 

60 ELCOD(IDlME,INODE):COORD(LNODE,IDlME) LOPS 81 
C LOPS 82 
C'·· ENTER LOOPS FOR AREA NUMERICAL INTEGRATION LOPS 83 
C LOPS 8~ 

KGASP:O LOPS 85 
DO 80 IGAUS:1,NGAUS LOPS 86 
DO 80 JGAUS:1,NGAOS LOPS 87 
EXISP:POSGP(IGAUS) LOPS 88 
ETASP:POSGP(JGAUS) LOPS 89 
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C 
C ••• COMPUTE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS AND ELEMENTAL 
C VOLUME 
C 

C 

CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) 
KGASP=KGASP+ 1 
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP, 

NNODE, SHAPE) 
DVOLU=DJACB*WEIGP(IGAUS)-wEIGP(JGAUS) 
IF(THICK.NE.O.O) DVOLU=DVOLU*THICK 
IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(l,KGASP) 

C·.· CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODAL POINTS 
C 

DO 70 INODE=l,NNODE 
NGASH=(INODE-l)*2+1 
HGASH=(INODE-l)*2+2 

. RLOAD(IELEM,NGASH)=RLOAD(IELEM,NGASH)+GXCOM*SHAPE(INODE)*DVOLU 
70 RLOAD(IELEM,MGASH)=RLOAD(IELEM,HGASH)+GYCOM*SHAPE(INODE)*DVOLU 
80 CONTINUE 
90 CONTINUE 

600 CONTINUE 
IF(IEDGE.EQ.O) GO TO 700 

C C... DISTRIBUTED EDGE LOADS SECTION 
C 

C 

READ(5,932) NEDGE 
-932 FORMAT<I5) 

WRITE(6,912) NEDGE 
912 FORMAT(lHO,5X,21HNO. OF LOADED EDGES =,15) 

WRITE(6,915) 
915 FORMAT(lHO,5X,38HLIST OF LOADED EDGES AND APPLIED LOADS) 

NODEG=3 
NCODE=NNODE 
IF(NNODE.EQ.4) NODEG=2 
IF(NNODE.EQ.9) NCODE=8 

C". LOOP OVER EACH LOADED EDGE 
C 

DO 160 IEDGE=l,NEDGE 
C 
C··· READ DATA LOCATING THE LOADED EDGE AND APPLIED LOAD 
C 

C 

READ(5,902) NEASS,(NOPRS(IODEG),IODEG=l,NODEG) 
902 FORMAT(4I5) 

WRITE(6,913) NEASS,(NOPRS(IODEG),IODEG=l,NODEG) 
913 FORMAT(Il0,5X,3I5) 

READ(5914) «PRESS(IODEG,IDOFN),IDOFN=l,2),IODEG=l,NODEG) 
WRITE(t,914) «PRESS(IODEG,IDOFN),IDOFN=1,2),IODEG=l,NODEG) 

914 FORMAT(6Fl0.3) 
ETASP=-1.0 

C··· CALCULATE THE COORDINATES OF THE NODES OF THE ELEMENT EDGE 
C 

DO 100 IODEG=l,NODEG 
LNODE=NOPRS(IODEG) 
DO 100 IDIME=l,2 

100 ELCOD(IDIME,IODEG)=CooRD(LNODE,IDlME) 
C 

C··· ENTER LOOP FOR LINEAR NUMERICAL INTEGRATION 
DO 150 IGAUS=l,NGAUS 
EXISP=POSGP(IGAUS) 

C 
C·*· EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS 
C 
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CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) 
C 
C*** CALCULATE COMPONENTS OF THE EQUIVALENT NODAL LOADS 
C 

DO 110 IDOFN:l,2 
PGASH(IDOFN):O.O 
DGASH(IDOFN):O.O 
DO 110 IODEG:l,NODEG 
PGASH(IDOFNi:PGASH(IDOFN)+PRESS(IODEG,IDOFN)*SHAPE(IODEG) 

110 DGASH(IDOFN):DGASH(IDOFN)+ELCOD(IDOFN,IODEG)*DERIV(l,IODEG) 
DVOLU:WEIGP(IGAUS) 
PXCOM:DGASH(1)*PCASH(2)-DGASH(2)*PGASH(1) 
PYCOM:DGASH(1)*PCASH(1)+DGASH(2)*PGASH(2) 
IF(NTYPE.NE.3) GO TO 115 
RADUS:O.O 
DO 125 IODEG:l,NODEG 

125 RADUS:RADUS+SHAPE(IODEG)*ELCOD(l,IODEG) 
DVOLU:DVOLU*TWOPI*RADUS 

115 CONTINUE 
C 
CII* ASSOCIATE THE EQUIVALENT NODAL EDGE LOADS WITH AN ELEMENT 
C 

DO 120 INODE:l,NNODE 
NLOCA=IABS(LNODS(NEASS,INODE» 

120 IF(NLOCA.EQ.NOPRS(l» GO TO 130 
130 JNODE=INODE+NODEG-l 

KOUNT=O 
DO 1~0 KNODE:INODE,JNODE 
KOUNT=KOUNT+ 1 
NGASH=(KNODE-l)*NDOFN+l 
MGASH=(KNODE-l)*NDOFN+2 
IF(KNODE.GT.NCODE) NGASH=l 
IF(KNODE. GT. NCODE) MGASH=2 _ 
RLOAD(NEASS,NGASH)=RLOAD(NEASS,NGASH)+SHAPE(KOUNT)'PXCOM*DVOLU 

140 RLOAD(NEASS,MGASH)=RLOAD(NEASS,MGASH)+SHAPE(KOUNT)*PYCOM*DVOLU 
150 CONTINUE 
160 CONTINUE 
700 CONTINUE 

WRITE(6 907) 
907 FORMAT(IHO,5X,36H TOTAL NODAL FORCES FOR EACH ELEMENT) 

DO 290 IELEM=l,HELEM 
290 WRITE(6,905) IELEM,(RLOAD(IELEM,IEVAB),IEVAB:1,NEVAB) 
905 FORMAT(lX,I4,5X,8E12.4/(10X,8E12.4» 

RETURN 
END 

LOPS 155 
LOPS 156 
LOPS 157 
LOPS 158 
LOPS 159 
LOPS 160 
LOPS 161 
LOPS 162 
LOPS 163 
LOPS 164 
LOPS 165 
LOPS 166 
LOPS 167 
LOPS 168 
LOPS 169 
LOPS 170 
LOPS 171 
LOPS 172 
LOPS 173 
LOPS 174 
LOPS 175 
LOPS 176 
LOPS 177 
LOPS 178 
LOPS 179 
LOPS 180 
LOPS 181 
LOPS 182 
LOPS 183 
LOPS 184 
LOPS 185 
LOPS 186 
LOPS 187 
LOPS 188 
LOPS 189 
LOPS 190 
LOPS 191 
LOPS 192 
LOPS 193 
LOPS 194 
LOPS 195 
LOPS 196 
LOPS 197 
LOPS 198 
LOPS 199 

6.4.6 Subroutine LOADPB for evaluating the element nodal forces for 
plate bending applications 

For plate bending applications two forms of loading will be considered. 
Firstly load components corresponding to the permissible generalised forces 
may be prescribed at the nodal points. Thus with respect to Fig. 6.9, a load 
in the z direction and couples acting in both the xz and yz planes may be 
input at each nodal point. Secondly a uniformly distributed load acting 
normal to the plate (i.e. in the z direction) may be applied. As in Section 6.4.5 
such a loading must be converted into equivalent nodal forces before 
equation solution takes place. The equivalent nodal forces for node i take 
the form(4) 
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q 

o dA, 

o 
(6.64) 

where q is the distributed load intensity and integration is taken over the 
element area. The structure of the subroutine is similar to that of subroutine 
LOADPS described in Section 6.4.5. 

z 

y 

x 

Fig. 6.9 Applied nodal and distributed forces for plate applications 

SUBROUTINE LOADPB (COORD,LNODS,MATNO,MELEM,MMATS,MPOIN, LOAD 1 
2 
3 
4 
5 
6 
7 
8 
9 

NELEM,NEVAB,NGAUS,NNODE,NPOIN,PROPS, LOAD 
• RLOAD) LOAD 

C •••••••••••••••••••••••••••••••••••••••••••••••••••••• ••• •••••• ········LOAD 
C LOAD 
C... COMPUTE NODAL FORCES AFTER READING RELEVANT DATA LOAD 
C." FOR MINDLIN PLATE ELEMENTS LOAD 
C LOAD 
C ....................................................... ***** ••••••••••• LOAD 

DIMENSION CARTD(2,9),COORD(MPOIN,2),DERIV(2,9),ELCOD(2,9), 
GPCOD(2,9),LNODS(MELEM,9),MATNO(MELEM), 
POINT(3),POSGP(4),PROPS(MMATS,8),RLOAD(MELEM,27), 
SHAPE(9),TITLE(12),WEIGP(4) 

DO 10 IELEM=l,NELEH 
DO 10 IEVAB=l, NEVAB 

10 RLOAD(IELEM,IEVAB)=O.O 
READ(5,90l) TITLE 

901 FORMAT( 12A6) 
WRITE (6 , 903) TITLE 

903 FORMAT(1HO,12A6) 
C 
C"· READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED 
C 

READ(5,919)IPLOD 
WRITE(6,919)IPLOD 

919 FORHAT(4I5) 
C 
C·.. READ NODAL POINT LOADS 
C 

C 

IF(IPLOD.EQ.O) GO TO 500 
20 READ(5,931) LOOPT , (POINT(IDOFN) ,IDOFN=l ,3) 

WRITE(6,931) LODPT,(POINT(IDOFN),IDOFN=1,3) 
931 FORMAT(I5,2F10.3) 

LOAD 10 
LOAD 11 
LOAD 12 
LOAD 13 
LOAD 14 
LOAD 15 
LOAD 16 
LOAD 17 
LOAD 18 
LOAD 19 
LOAD 20 
LOAD 21 
LOAD 22 
LOAD 23 
LOAD 24 
LOAD 25 
LOAD 26 
LOAD 27 
LOAD 28 
LOAD 29 
LOAD 30 
LOAD 31 
LOAD 32 
LOAD 33 
LOAD 34 
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c... ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT 
C 

DO 30 IELEM= 1 , NELEM 
DO 30 INODE=l,NNODE 
NLOCA=IABS(LNODS(IELEM,INODE» 

30 !F( LODPT • EQ. NLOCA) GO TO 40 
40 DO 50 IDOFN=1,3 

NGASH=(INODE-l)·3+IDOFN 
50 RLOAD(IELEM,NGASH)=POINT(IDOFN) 

IF(LODPT.LT.NPOIN) GO TO 20 
500 CONTINUE 

C 
Cu. LOOP OVER EACH ELEMENT 
C 

C 

DO 220 IELEM= 1 ,NELEM 
LPROP=MATNO(IELEM) 
UDLOD=PROPS(LPRO~14) 
IF(UOLOD.EQ.O.Olvu TO 220 

C*·· EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

C 

DO 140 INODE:l NNODE 
LNODE:LNODS(IELEM,INODE) 
LNODE=IABS(LNODE) 
DO 140 IDIME=l,2 
ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) 

140 CONTINUE 
KGASP=O 
CALL GAUSSQ ( NGAUS, POSGP, WEIGP) 

C·" ENTER LOOPS FOR NUMERICAL INTEGRATION 
C 

C 

DO 200 IGAUS:l,NGAUS 
EXISP=POSGP(IGAUS) 
DO 200 JGAUS:l,NGAUS 
ETASP=POSGP(JGAUS) 
KGASP:KGASP+ 1 

C··· EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING 
C POINTS AND ELEMENTAL AREA 
C 

C 

CALL 
CALL 

(DERIV,ETASP,EXISP,NNODE,SHAPE) 
(CARTD,DERIV,DJACBIELCOD,GPCOD,IELEM, 

KGASP, NNODE, SHAPE 
DAREA:DJACB*WEIGP(IGAUS)·WEIGP(JGAUS) 

SFR2 
JACOB2 

C·" CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODALPOINTS 
C 

DO 180 INODE: 1 NNODE 
NPOSN:(INODE-ll·3+1 
RLOAD(IELEM,NPOSN)=RLOAD(IELEM,NPOSN)+ 

• SHAPE(INODE)·UDLOD*DAREA 
180 CONTINUE 
200 CONTINUE 
220 CONTINUE 

WRITE(6,907) 
907 FORMAT(1HO,5X,36H TOTAL NODAL FORCES FOR EACH ELEMENT) 

DO 290 IELEM:l,NELEM 
290 WRITE(6,905) IELEM,(RLOAD(IELEM,IEVAB),IEVAB:1,NEVAB) 
905 FORMAT(1X,I4,5X,8E12.4/(10X,8E12.4» 

RETURN 
END 

LOAD 35 
LOAD 36 
LOAD 37 
LOAD 38 
LOAD '39 
LOAD 40 
LOAD 41 
LOAD 42 
LOAD 43 
LOAD 44 
LOAD 45 
LOAD 46 
LOAD 47 
LOAD 48 
LOAD 49 
LOAD 50 
LOAD 51 
LOAD 52 
LOAD 53 
LOAD 54 
LOAD 55 
LOAD 56 
LOAD 57 
LOAD 58 
LOAD 59 
LOAD 60 
LOAD 61 
LOAD 62 
LOAD 63 
LOAD 64 
LOAD 65 
LOAD 66 
LOAD 67 
LOAD 68 
LOAD 69 
LOAD 70 
LOAD 71 
LOAD 72 
LOAD 73 
LOAD 74 
LOAD 75 
LOAD 76 
LOAD 77 
LOAD 78 
LOAD 79 
LOAD 80 
LOAD 81 
LOAD 82 
LOAD 83 
LOAD 84 
LOAD B5 
LOAD 86 
LOAD 87 
LOAD 88 
LOAD 89 
LOAD 90 
LOAD 91 
LOAD 92 
LOAD 93 
LOAD 94 
LOAD 95 
LOAD 96 
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6.4.7 Subroutine BMA TPS for evaluating the strain matrix B for plane 
and axisymmetric situations 

The function of this subroutine is to evaluate the strain matrix B at any 
position within an element. The relevant expressions are given in Table 6.1. 
The B matrix is stored in array BMA TX ( ). 

SUBROUTINE BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NTYPE,KGASP) 
c·····································_···············.** ....... **.*** 
C 
c ••• • THIS SUBROUTINE EVALUATES THE STRAIN-DISPLACEMENT MATRIX 
C 

c····················································· ............... . 
DIMENSION BMATX(4,18),CARTD(2,9),SHAPE(9),GPCOD(2,9) 
NGASH=O 
DO 10 INODE=1,NNODE 
MGASH=NGASH+ 1 
NGASH=MGASH+ 1 
BMATX(1,MGASH)=CARTD(1,INODE) 
BMATX(1,NGASH)=0.0 
BMATX(2,MGASH) =0.0 
BMATX(2,NGASH)=CARTD(2,INODE) 
BMATX(3,MGASH)=CARTD(2,INODE) 
BMATX(3,NGASH)=CARTD(1,INODE) 
IF(NTYPE.NE.3) GO TO 10 
BMATX(4,MGASH)=SHAPE(INODE)/GPCOD(1,KGASP) 
BMATX(4,NGASH)=0.O 

10 CONTINUE 
RETURN 
END 

BMPS 1 
BMPS 2 
BMPS 3 
BMPS 4 
BMPS 5 
BMPS 6 
BMPS 1 
BMPS 8 
BMPS 9 
BMPS 10 
BMPS 11 
BMPS 12 
BMPS 13 
BMPS 14 
BMPS 15 
BMPS 16 
BMPS 11 
BMPS 18 
BMPS 19 
BMPS 20 
BMPS 21 
BMPS 22 
BMPS 23 

6.4.8 Subroutine BMATPB for evaluating the strain matrix B for plate 
bending problems 

This subroutine evaluates the strain matrix B within any point of an 
element for plate bending applications according to Table 6.1. The B matrix 
is partitioned into plane, BPLAN, flexural, BFLEX, and shear, BSHER, 
contributions. 

SUBROUTINE BMATPB (BFLEX,BPLAN,BSHER, CARTD,KNODE, SHAPE, BMAT 1 
2 
3 
4 

• IFPLA,IFFLE,IFSHE) BMAT 
c •••••••••••••••• __ ••••••••••••••••••••••• *--*--_ •..... *****************BMAT 
C BMAT 
C··· EVALUATES STRAIN-DISPLACEMENT MATRIX FOR BMAT 5 

6 
1 
8 

cn. MINDLIN PLATE BMAT 
C BMAT 
c •••••••••••••••••••••••••••••••••••••••••••••••••••• -** •••• ************BMAT 

DIMENSION BFLEX(3,3),BPLAN(3j2),BSHER(2,3), 
• CARTD(2,9),SHAPE(9 
DNKDX=CARTD(1,KNODE) 
DNKDY=CARTD(2,KNODE) 

C·" FORM BPLAN 
IF(IFPLA.EQ.O) GO TO 10 
DO 1 IROWS=1,3 
DO 1 JCOLS=1,2 

1 BPLAN(IROWS,JCOLS):O.O 
BPLAN(1,1)=DNKDX 
BPLAN(2,2):DNKDY 
BPLAN(3,1)=DNKDY 
BPLAN(3 ,2) =DNKDX 

BMAT 9 
BMAT 10 
BMAT 11 
BMAT 12 
BMAT 13 
BMAT 14 
BMAT 15 
BMAT 16 
BMAT 17 
BMAT 18 
BMAT 19 
SMAT 20 
BMAT 21 
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C*** FORM SFLEX 
10 IF(IFFLE.EQ.O) GO TO 20 

DO 2 IROWS=1,3 
DO 2 JCOLS=1,3 

2 BFLEX(IROWS,JCOLS)=O.O 
BFLEX(1,2)=-DNKDX 
BFLEX(2,3)=-DNKDY 
BFLEX(3,2)=-DNKDY 
BfLEX(3,3)=-DNKDX 

CU- FORM BSHER 
20 IF(IFSHE.EQ.O) RETURN 

DO 3 IROWS=1,2 
DO 3 JCOLS=l,3 

3 SSHER(IROWS,JCOLS)=O.O 
BSHER( l,1)=DNKDX . 
BSHER(1,2)=-SHAPE(KNODE) 
BSHER(2,1)=DNKDY 
BSHER(2,3)=-SHAPE(KNODE) 
RETURN 
END 

6.4.9 Subroutine MODPS for evaluating the D matrix for plane and 
axisymmetric situations 

BMAT 22 
BMAT 23 
BMAT 24 
SMAT 25 
SMAT 26 
BMAT 27 
SMAT 28 
SMAT 29 
SMAT 30 
SMAT 31 
BMAT 32 
SMAT 33 
SMAT 34 
BMAT 35 
BMAT 36 
SMAT 37 
SMAT 38 
BMAT 39 
BMAT 40 
BMAT 41 

This subroutine simply evaluates the elasticity matrix D for either plane 
stress, plane strain or axisymmetric situations according to (6.7), (6.16) or 
(6.24) respectively. The D matrix is stored in the array DMATX ( ). 

SUBROUTINE MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS) 
c··*******···*·*···*****···****************************'**'*'*",.,'" 
C 
C**** THIS SUBROUTINE EVALUATES THE D-MATRIX 
C 

c··*_····-····,···,····,-· __ .-------*--*--*-*-*-*_·_··*"*'*""** .. *' 
DIMENSION DMATX(4,4),PROPS(MMATS,7) 
YOUNG=PROPS(LPROP,1) 

C 

POISS=PROPS(LPROP,2) 
DO 10 ISTR1=1,4 
DO 10 JSTR1=1,4 

10 DMATX(ISTR1,JSTR1)=0.0 
IF(NTYPE.NE.1) GO TO 4 

C*** D MATRIX FOR PLANE STRESS CASE 
C 

C 

CONST=YOUNG/(1.0-POISS*POISS) 
DMATX(l,l):CONST 
DMATX(2,2):CONST 
DMATX(l,2)=CONST*POISS 
DMATX(2,1)=CONST*POISS 
DMATX(3,3)=(1.0-POISS)*CONST/2.0 
RETURN 

4 IF(NTYPE.NE.2) GO TO 6 

c*** D MATRIX FOR PLANE STRAIN CASE 
C 

CONST=YOUNG*(1.0-POISS)/«1.0+POISS)*(1.0-2.0*POISS)) 
DMATX(1,1)=CONST 
DMATX(2 ,2) =CONST 
DMATX(1.2):CONST*FOISS/(1.0-POISS) 
DMATX(2,1):CONST*POISS/(1.0-POISS) 

MOPS 1 
MOPS 2 
MOPS 3 
MOPS 4 
MOPS 5 
MOPS 6 
MOPS 7 
MOPS 8 
MOPS 9 
MOPS 10 
MOPS 11 
MOPS 12 
MOPS 13 
MOPS 14 
MOPS 15 
MOPS 16 
MOPS 17 
MOPS 18 
MOPS 19 
MOPS 20 
MOPS 21 
MOPS 22 
MOPS 23 
MOPS 24 
MOPS 25 
MOPS 26 
MOPS 27 
MOPS 28 
MOPS 29 
MOPS 30 
MOPS 31 
MOPS 32 
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C 

DMATX(3,3)=(1.0-2.0·POISS)·CONST/(2.0·(1.0-POISS)) 
RETURN 

6 IF(NTYPE.NE.3) GO TO 8 

c... D MATRIX FOR AXISYMMETRIC CASE 
C 

CONST=YOUNG*(1.0-POISS)/«1.0+POISS)*(1.0-2.0·POISS)) 
CONSS=POISS/(1.0-POISS) 
DMATX(I,I)=CONST 
DMATX(2,2)=CONST 
DMATX(3,3)=CONST*(1.0-2.0·POISS)/(2.0*(1.0-POISS)) 
DMATX(I,2)=CONST·CONSS 
DMATX(I,~)=CONST·CONSS 
DMATX(2,1)=CONST*CONSS 
DMATX(2,~)=CONST*CONSS 
DMATX(~,I)=CONST·CONSS 
DMATX(~,2)=CONST*CONSS 
DMATX(~,~)=CONST 

8 CONTINUE 
RETURN 
END 

HOPS 33 
HOPS 3~ 
HOPS 35 
HOPS 36 
HOPS 37 
HOPS 38 
HOPS 39 
HOPS ~O 
HOPS ~1 
HOPS ~2 
HOPS ~3 
HOPS ~~ 
HOPS ~5 
HOPS ~6 
HOPS ~7 
HOPS 48 
HOPS 49 
HOPS 50 
HOPS 51 
HOPS 52 
HOPS 53 

6.4.10 Subroutine MODPB for evaluating the D matrix for plate bending 
applications 

This subroutine evaluates the elasticity matrix D for plate bending situ
ations according to (6.35). Again the result is partitioned into plane, OPLAN, 
flexural, OFLEX, and shear, OSHER, contributions. 

SUBROUTINE MODPB (DFLEX,DPLAN ,DSHER ,LPROP, MMATS, PROPS, MODP 1 
2 
3 
~ 

• IFPLA,IFFLE,IFSHE) MODP 
C ••••• * •• **** ••• *****.***********************************·***********·*·MODP 
C MODP 
C... CALCULATES MATRIX OF ELASTIC RIGIDITIES MODP 5 

6 
7 

C... FOR MINDLIN PLATE MODP 
C MODP 
C ••••••••••• * ••• *.********* •• *******.** •••••• ** ••••••••••••••••••• •• •• ·.MODP 8 

DIMENSION DFLEX(3,3)lDPLAN(3,3),DSHER(2,2), 
• PROPS(MMAT~,8) 
YOUNG=PROPS(LPROP,1) 
POISS=PROPS(LPROP,2) 
THICK=PROPS(LPROP,3) 

C ... FORM DPLAN 
IF(IFPLA.EQ.O) GO TO 10 
DO 1 IROWS=I,3 
DO 1 JCOLS=I,3 

1 DPLAN(IROWS,JCOLS)=O.O 
CONST=(YOUNG*THICK)/(1.0-POISS*POISS) 
DPLAN(I,I)=CONST 
DPLAN(2,2)=CONST 
DPLAN(I,2)=CONST*POISS 
DPLAN(2,1)=CONST·POISS 
DPLAN(3,3)=CONST·(1.O-POISS)/2.0 

Cu. FORM DFLEX 
10 IF( IFFLE. EQ. 0) GOTO 20 

DO 2 IROWS=I,3 
DO 2 JCOLS=I,3 

2 DFLEX(IROWS,JCOLS)=O.O 
CONST=(YOUNG*THICK··3)!(12.*(1.-POISS·POISS» 
DFLEX(I,I)=CONST 
DFLEX(2,2)=CONST 
DFLEX(I,2)=CONST·POISS 

MODP 9 
MODP 10 
MODP 11 
MODP 12 
MODP 13 
MODP 14 
MODP 15 
MODP 16 
MODP 17 
MODP 18 
MODP 19 
MODP 20 
MODP 21 
MODP 22 
MODP 23 
MODP 2~ 
MODP 25 
MODP 26 
MODP 27 
MODP 28 
MODP 29 
MODP 30 
MODP 31 
MODP 32 
MODP 33 
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DFLEX(2,1):CONST*POISS 
DFLEX(3,3):CONST*(1.-POISS)/2. 

C* •• FORM OSHER 
20 IF(IFSHE.EQ.O) RETURN 

00 3 IROWS:1,2 
00 3 JCOLS:1,2 

3 DSHER(IROWS,JCOLS):O.O 
DSHER(1,1):(YOUNG*THICK)/(2.4+2.4·POISS) 
DSHER(2,2):(YOUNG*THICK)/(2.4+2.4*POISS) 
RETURN 
END 

6.4.11 Subroutiue DBE for formulating the matrix product DB 

MODP 34 
MODP 35 
MODP 36 
MODP 31 
MODP 38 
MODP 39 
MODP 40 
MODP 41 
MODP 42 
MODP 43 
MODP 44 

This subroutine simply multiplies the elasticity matrix D by the strain 
matrix B. 

SUBROUTINE DBE(BMATX DBMAT DMATX MEVAB NEVAB NSTRE NSTR1) 
C* •••••• *.****************~*****~·****~**·*·~***·*·*****.************* 
C 
C ••• * THIS SUBROUTINE MULTIPLIES THE D-MATRIX BY THE B-MATRIX 
C 

c····**··········****··***···············*******·****·--_ •..• _._--_ ••• 
DIMENSION BMATX(NSTR1.MEVAB),DBMAT(NSTR1,MEVAB), 

• DMATX(NSTR1,NSTR1) 
00 2 ISTRE:1,NSTRE 
00 2 IEVAB:1,NEVAB 
DBMAT(ISTRE,IEVAB):O.O 
00 2 JSTRE=1,NSTRE 
DBMAT(ISTRE,IEVAB)=DBMAT(ISTRE,IEVAB)+ 

.DMATX(ISTRE,JSTRE)*BMATX(JSTRE,IEVAB) 
2 CONTINUE 

RETURN 
END 

DBYB 1 
DBYB 2 
DBYB 3 
OBYB 4 
OBYB 5 
DBYB 6 
DBYB 7 
OBYB 8 
OBYB 9 
OBYB 10 
OBYB 11 
OBYB 12 
DBYB 13 
OBYB 14 
OBYB 15 
DBYB 16 
OBYB 11 

6.4.12 Subroutine FRONT for equation solution by the frontal method 
The function of this subroutine is to assemble the contributions from each 

element to form the global stiffness matrix and global load vector and to 
solve the resulting set of simultaneous equations by Gaussian direct elimin
ation. The main feature of the frontal solution technique is that it assembles 
the equations and eliminates the variables at the same time. Complete details 
of the frontal process can be found in Chapter 8, Ref. 4. The subroutine 
presented in Ref. 4 differs from the one listed in this section in three 
important ways: 

• As described in Sections 3.3 and 3.4 for one-dimensional problems, a 
full equation solution need only be undertaken for iterations during which 
the element stiffnesses are being modified. Such a situation is recognised by 
the resolution counter KRESL = 1. On the other hand if the element stiff
nesses have not been changed during the iteration, signified by KRESL = 2, 
only the R.H.S. or load terms need be reduced during the elimination phase. 
This situation is identical to the case of solution for second and subsequent 
loading cases in elastic problems. 
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• The reduced equations corresponding to eliminated variables are 
stored in core in a temporary array termed a buffer area. As soon as this 
array is full, the information is then transferred to disc. The number of 
reduced equations that can be accommodated in the buffer area is governed 
by the specified parameter, MBUF A. Thus on elimination of a variable a 
counter over the number of eliminated variables is incremented by one and 
the reduced equations stored in core. The counter is checked against the 
permissible buffer length, MBUF A. If this has been reached, the buffer 
array is transferred to disc file and the counter reset to zero. On back
substitution the contents of a complete buffer length are read from discfile 
by backspacing . 

• The displacement and reaction values evaluated by subroutine FRONT 
during each iteration are incremental values and must be accumulated to 
give the total displacements, TDISP ( ) and total reactions, TREAC ( ). 
Also the incremental reactions must be added into the vector of total applied 
loads, TLOAD ( ), in order to check for convergence of the iteration pro
cess; since equilibrium is satisfied when the applied loads and reactions at 
restrained nodes balance with the nodal forces equivalent to the internal 
stress field. 

The displacements and reactions evaluated in Subroutine FRONT are 
stored for output by Subroutine OUTPUT described in Section 7.8.8. 

SUBROUTINE FRONT(ASDIS,ELOAD,EQRHS,EQUAT,ESTIF,FIXED,IFFIX,IINCS, 
IITER,GLOAD ,GSTIF,LOCEL,LNODS, KRESL ,MBUFA,MELEM , 
MEVAB,MFRON ,MSTIF,MTOTV, MVFIX, NACVA,NAMEV, NDEST, 
NDOFN,NELEM,NEVAB,NNODE,NOFIXtNPIVO, NPOIN, 

• NTOTV,TDISP,TLOAD,TREAC,VECRV} 
c** •••• ** ••• ** •••••• ********* •• ** ••• ******* ••••• **.** •••• 1. __ * ___ •• ,-' 
C 
C**** THIS SUBROUTINE UNDERTAKES EQUATION SOLUTION BY THE FRONTAL 
C METHOD 
C c···············.· ..... _ ................................. *_._-_._ .... . 

DIMENSION ASDIS(~rrOTV) ,ELOAD(MELEM,MEVAB) ,EQRHS(MBUFA), 
EQUATCMFRON MBUFA) , ESTIF(MEVAB,MEVAB) FIXED(MTOTV), 
IFFIX(MTOTvl,NPIVO(MBUFA),VECRV(MFRONI,GLOAD(MFRON), 
GSTIF(MSTIF),LNODS(MELEM,9) ,LOCEL(MEVAB),NACVA(MFRON), 
NAMEV(MBUFA),NDEST(MEVAB),NOFIX(MVFIX),NOUTP(2), 
TDISP(MTOTV),TLOAD(MELEM,MEVAB),TREAC(MVFIX,NDOFN) 

NFUNC(I,J)=(J*J-J)/2+I 
C 
C*** CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE 
C 

IF(IINCS.GT.1.0R.IITER.GT.1) GO TO 455 
DO 140 lPOIN=l,NPOIN 
KLAST=O 
DO 130 IELEM=1,NELEM 
DO 120 INODE=1,NNODE 
IF(LNODS(IELEM,INODE).NE.lPOIN) GO TO 120 
KLAST=IELEM 
NLAST=INODE 

120 CONTINUE 

FRNT 1 
FRNT 2 
FRNT 3 
FRNT 4 
FRNT 5 
FRNT 6 
FRNT 1 
FRNT 8 
fRNT 9 
FRNT 10 
FRNT 11 
FRNT 12 
FRNT 13 
FRNT 14 
FRNT 15 
FRNT 16 
fRNT 17 
fRNT 18 
FRNT 19 
FRNT 20 
FRNT 21 
FRNT 22 
FRNT 23 
FRNT 24 
FRNT 25 
FRNT 26 
FRNT 27 
FRNT 28 
FRNT 29 
FRNT 30 
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130 CONTINUE FRNT 31 
IF(KLAST .NE.O) LNODS(KLAST, NLAST)=-IPOIN FRNT 32 

140 CONTINUE FRNT 33 
455 CONTINUE FRNT 34 

C FRNT 35 
C'" START BY INITIALIZING EVERYTHING THAT MATTERS TO ZERO FRNT 36 
C FRNT 37 

DO 450 IBUFA=l,HBUFA FRNT 38 
450 EQRHS(IBUFA)=O.O FRNT 39 

DO 150 ISTIF=l,HSTIF FRNT 40 
150 GSTIF(ISTIF)=O.O FRNT 41 

DO 160 IFRON=l,MFRON FRNT 42 
GLOAD(IFRON)=O.O FRNT 43 
VECRV(IFRON)=O.O FRNT 44 
NACVA(IFRON)=0 FRNT 45 
DO 160 IBUFA=l,HBUFA FRNT 46 

160 EQUAT(IFRON,IBUFA)=O.O FRNT 47 
C FRNT 48 
C'" AND PREPARE FOR DISC READING AND WRITING OPERATIONS FRNT 49 
C FRNT 50 

NBUFA=O FRNT 51 
IF(KRESL.GT.1) NBUFA=HBUFA FRNT 52 
REWIND 1 FRNT 53 
REWIND 2 FRNT 54 
REWIND 3 FRNT 55 
REWIND 4 FRNT 56 
REWIND 8 FRNT 57 

C FRNT 58 
C'" ENTER MAIN ELEMENT ASSEMBLY-REDUCTION LOOP FRNT 59 
C FRNT 60 

NFRON=O FRNT 61 
KELVA=O FRNT 62 
DO 320 IELEM= 1 ,NELEM FRNT 63 
IF(KRESL.GT.l) GO TO 400 FRNT 64 
KEVAB=O FRNT 65 
READ( 1) ESTIF FRNT 66 
DO 170 INODE=l,NNODE FRNT 67 
DO 170 IDOFN=l,NDOFN FRNT 68 
NPOSI=(INODE-l)'NDOFN+IDOFN FRNT 69 
LOCNO=LNODS(IELEM,INODE) FRNT 70 
IF(LOCNO.GT.O) LOCEL(NPOSI)=(LOCNO-l)'NDOFN+IDOFN FRNT 71 
IF(LOCNO.LT.O) LOCEL(NPOSI)=(LOCNO+l)'NDOFN-IDOFN FRNT 72 

170 CONTINUE FRNT 73 
C FRNT 74 
C'" START BY LOOKING FOR EXISTING DESTINATIONS FRNT 75 
C FRNT 76 

DO 210 IEVAB=l,NEVAB FRNT 77 
NIKNO=IABS(LOCEL(IEVAB» FRNT 78 
KEXIS=O FRNT 79 
DO 180 IFRON=l,NFRON FRNT 80 
IF(NIKNO.NE.NACVA(IFRON» GO TO 180 FRNT 81 
KEVAB=KEVAB+l FRNT 82 
KEXIS=l FRNT 83 
NDEST(KEVAB)=IFRON FRNT 84 

180 CONTINUE FRNT 85 
IF(KEXIS.NE.O) GO TO 210 FRNT 86 

C FRNT 87 
C"i! WE NCM SEEK NEW EMPTY PLACES FOR DESTINATION VECTOR FRNT 88 
C FRNT 89 

DO 190 IFRON=l,MFRON FRNT 90 
IF(NACVA(IFRON).NE.O) GO TO 190 FRNT 91 
NACVA(IFRON)=NIKNO FRNT 92 
KEVAB=KEVAB+ 1 FRNT 93 
NDEST(KEVAB):IFRON FRNT 94 
GO TO 200 FRNT 95 
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190 CONTINUE 
C 
C ••• THE NEW PLACES MAY DEMAND AN INCREASE IN CURRENT FRONTWIDTH 
C 

200 IF(NDEST(KEVAB).GT.NFRON) NFRON:NDEST(KEVAB) 
210 CONTINUE 

WRITE(8) LOCEL,NDEST NACVA,NFRON 
qoO IF(KRESL.GT.1) READ(~) LOCEL,NDEST,NACVA,NFRON 

C 
C." ASSEMBLE ELEMENT LOADS 
C 

C 

DO 220 IEVAB:l.r.NEVAB 
IDEST:NDEST(It;vAB) 
GLQAD(IDEST):GLOAD(IDEST)+ELOAD(IELEM,IEVAB) 

C ••• ASSEMBLE THE ELEMENT Sl'IFFNESSES-BUT NOT IN RESOLUTION 
C 

C 

IF(KRESL.GT.1> GO TO 402 
DO 222 JEV AB: 1 ,lEV AB 
JDEST=NDEST(JEVAB) 
NGASH=NFUNC(IDEST,JDEST) 
NGISH=NFUNC(JDEST,IDEST) 
IF(JDEST .GE. IDEST) GSl'IF(NGASH) =GSl'IF( NGASH) +ESTIF( IEVAB, JEVAB) 
IF(JDEST .LT. IDEST) GSl'IF( NGISH) =GSl'IF( NGISH) +ESTIF( IEVAB, JEVAB) 

222 CONTINUE 
qo2 CONTINUE 
220 CONTINUE 

C-" RE-EXAMINE EACH ELEMENT NODE, TO ENQUIRE WHICH CAN BE ELIMINATED 
C 

C 

DO 310 IEVAB=l,NEVAB 
NIKNO=-LOCEL(IEVAB) 
IF(NIKNO.LE.O) GO TO 310 

c··· FIND POSITIONS OF VARIABLES READY FOR ELIMINATION 
C 

C 

DO 300 IFRON=l,NFRON 
IF(NACVA(IFRON).NE.NIKNO) GO TO 300 
NBUFA=NBUFA+ 1 

C"· WRITE EQUATIONS TO DISC OR TO TAPE 
C 

IF(NBUFA.LE.MBUFA) GO TO qo6 
NBUFA=l 
IF(KRESL.GT.1> GO TO 408 
WRlTE(2) EQUAT,EQRHS,NPIVO,NAMEV 
GO TO 406 

408 WRITE(4) EQRHS 
READ(2) EQUAT,EQRHS,NPIVO,NAMEV 

406 CONTINUE 
C 
C·" EXTRACT THE COEFFICIENTS OF THE NEW EQUATION FOR ELIMINATION 
C 

C 

IF(KRESL.GT. 1) GO TO 404 
DO 230 JFRON=l,MFRON 
IF(IFRON.LT .JFRON) NLOCA=NFUNC(IFRON ,JFRON) 
IF(IFRON .GE.JFRON) NLOCA=NFUNC(JFRON, IFRON) 
EQUAT(JFRON,NBUFA):eSl'IF(NLOCA) 

230 GSTIF(NLOCA)=O.O 
qoq CONTINUE 

C·" AND EXTRACT THE CORRESPONDING RIGHT HAND SIDES 
C ! 

EQRHS(NBUFA):GLOAD(IFRON) 
GLQAD(IFRON)=O.O 
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C 

FINITE ELEMENTS IN PLASTICITY 

KELVA=KELVA+l 
NAMEV{NBUFA)=NIKNO 
NPIVO{NBUFA)=IFRON 

C'" DEAL WITH PIVOT 
C 

FRNT 161 
FRNT 162 
FRNT 163 
FRNT 164 
FRNT 165 
FRNT 166 

PIVOT=EQUAT(IFRON,NBUFA) FRNT 167 
IF(PIVOT .GT .0.0) GO TO 235 FRNT 168 
WRITE(6,900) NIKNO,PIVOT FRNT 169 

900 FORMAT( lHO,3X,52HNEGATIVE OR ZERO PIVOT ENCOUNTERED FOR VARIABLE NFRNT 170 
.0. ,I4,10H OF VALUE ,E17.6) FRNT 171 

STOP FRNT 172 
235 CONTINUE FRNT 173 

EQUAT(IFRON,NBUFA)=O.O FRNT 174 
C 
C'" ENQUIRE WHETHER PRESENT VARIABLE IS FREE OR PRESCRIBED 
C 

IF(IFFIX{NIKNO).EQ.O) GO TO 250 
C 
C'" DEAL WITH A PRESCRIBED DEFLECTION 
C 

C 

DO 240 JFRON=l,NFRON 
240 GLOAD(JFRON)=GLOAD(JFRON)-FIXED(NIKNO)'EQUAT(JFRON,NBUFA) 

GO TO 280 

C'" ELIMINATE A FREE VARIABLE - DEAL WITH THE RIGHT HAND SIDE FIRST 
C 

C 

250 DO 270 JFRON= 1 ,NFRON 
GLOAD{JFRON)=GLOAD(JFRON)-EQUAT{JFRON,NBUFA)'EQRHS(NBUFA)/PIVOT 

C'" NOW DEAL WITH THE COEFFICIENTS IN CORE 
C 

C 

IF{KRESL.GT.l) GO TO 418 
IF{EQUAT{JFRON,NBUFA).EQ.O.O) GO TO 270 
NLOCA=NFUNC(O,JFRON) 
CUREQ=EQlJAT (JFRON ,NBUFA) 
DO 260 LFRON=l,JFRON 
NGASH=LFRON+NLOCA 

260 GSTIF{NGASH)=GSTIF(NGASH)-CUREQlEQUAT(LFRON,NBUFA) 
• IPIVOl' 

418 CONTINUE 
270 CONTINUE 
280 EQUAT(IFRON,NBUFA)=PIVOT . 

C'" RECORD THE NEW VACANT SPACE, AND REDUCE FRONTWIDTH IF POSSIBLE 
C 

C 

NACVA(IFRON)=0 
GO TO 290 

C'" COMPLETE THE ELEMENT LOOP IN THE FORWARD ELIMINATION 
C 

C 

300 CONTINUE 
290 IF(NACVA(NFRON) .NE.O) GO TO 310 

NFRON=NFRON-l 
IF(NFRON.GT.O) GO TO 290 

310 CONTINUE 
320 CONTINUE 

. IF(KRESL.EQ.l) WRITE(2) EQUAT,EQRHS,NPIVO,NAMEV 
BACKSPACE 2 

C'" ENTER BACK-SUBSTITUTION PHASE. 
C 

LOOP BACKWARDS THROUGH VARIABLES 

DO 340 IELVA=l,KELVA 
C 
C"'READ A NEW BLOCK OF EQUATIONS - IF NEEDED 
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IF(NBUFA.NE.O) GO TO 412 
BACKSPACE 2 
READ(2) EQUAT,EQRHS,NPIVO,NAMEV 
BACKSPACE 2 
NBUFA=MBUFA 
IF(KRESL.EQ.1) GO TO 412 
BACKSPACE 4 
READ ( 4) EQRHS 
BACKSPACE 4 

1112 CONTINUE 
C C... PREPARE TO BACK-SUBSTITUTE FROM THE CURRENT EQUATION 
C 

C 

IFRON=NPIVO(NBUFA) 
NlKNO=NAMEV(NBUFA) 
PIVOT=EQUAT(IFRON,NBUFA) 
IF(IFFLX(NlKNO).NE.O) VECRV(IFRON)=FIXED(NIKNO) 
IF(IFFLX(NlKNO).EQ.O) EQUAT(IFRON,NBUFA)=O.O 

C ••• BACK-SUBSTITUTE IN THE CURRENT EQUATION 
C 

DO 330 JFRON=1,MFRON 
330 EQRHS(NBUFA)=EQRHS(NBUFA)-VECRV(JFRON)*EQUAT(JFRON,NBUFA) 

C 
C •• * PUT THE FINAL VALUES WHERE THEY BELONG 
C 

IF(IFFLX(NlKNO).EQ.O) VECRV(IFRON)=EQRHS(NBUFA)/PIVOT 
IF(IFFIX(NlKNO).NE.O) FIXED(NlKNO)=-EQRHS(NBUFA) 
NBUFA=NBUFA-1 
ASDIS(NlKNO)=VECRV(IFRON) 

340 CONTINUE 
C 
Cu. ADD DISPLACEMENTS TO PREVIOUS TOTAL VALUES 
C 

DO 3115 ITOTV=1, NTOTV 
3115 TDISP(ITOTV)=TDISP(ITOTV)+ASDIS(ITOTV) 

C 
C**· STORE REACTIONS FOR PRINTING LATER 
C 

KBOUN=1 
DO 310 IPOIN=1,NPOIN 
NLOCA=(IPOIN-1)*NDOFN 
DO 350 IDOFN=l,NDOFN 
NGUSH=NLOCA+IDOFN 
IF(IFFIX(NGUSH).GT.O) GO TO 360 

350 CONTINUE 
GO TO 310 

360 DO 510 IDOFN=1,NDOFN 
NGASH=NLOCA+IDOFN 

510 !REAC(KBOUN,IDOFN)=TREAC(KBOUN,IDOFN)+FIXED(NGASH) 
KBOUN=KBOUN+ 1 

310 CONTINUE 
C 
C*H ADD REACTIONS INTO TIlE TOTAL LOAD ARRAY 
C 

DO 100 IPOIN=l,NPOIN 
DO 110 IELEM= 1 , NELEM 
DO 710 INODE=1,NNODE 
NLOCA=IABS(LNODS(IELEM,INODE» 

110 IF(IPOIN.EQ.NLOCA) GO TO 120 
720 DO 730 IDOFN=l NDOFN 

NGASH=(INODE-ll*NDOFN+IDOFN 
I«UtSH=(TPOIN-l)*NDOFN+IDOFN 

730 TLOAD( IELEM, NGASH) =TLOAD( IELEM, NGASH) +FLXED(MGASH) 
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700 CONTINUE 
RETURN 
END 

FINITE ELEMENTS IN PLASTICITY 

6.4.13 Data error diagnostic subroutine CHECKI 

FRNT 291 
FRNT 292 
FRNT 293 

The function of this subroutine is to scrutinise the problem control 
parameters, which are accepted by the data input subroutine, INPUT, 
which will be described in Section 6.5.1. Since subroutine INPUT is common 
to plane stress/strain, axisymmetric and plate bending applications, sub
routine CHECKl will only check that the control parameters are within 
the bounds defined by the correct values for the four cases. 

A counter, KEROR, is employed to indicate whether or not any errors 
have been detected. If errors have been found (indicated by KEROR = I), 
subroutine ECHO, described in the next section, is called to list the remainder 
of the input data. 

Any errors detected are signalled by means of printed error numbers. The 
interpretation of each error message is given in Table 6.2. 

SUBROUTINE CHECK1(NDOFN,NELEH,NGAUS,NMATS,NNODE,NPOIN! 
• NSTRE,NTYPE,NVFIX,NCRIT,NALGO,NINCS) 

C··············· ... ·····.· .... **.**·········********·· •••••••••••••••• 
C 
c·.·· THIS SUBROUTINE CHECKS THE MAIN CONTROL DATA 
C 

C···················· ...... ········ .... ··········· ................... . DIMENSION NEROR(24) 
DO 10 IEROR=l,12 

10 NEROR(IEROR)=O 
C 
C··· CREATE THE DIAGNOSTIC MESSAGES 
C 

C 

IF(NPOIN.LE.O) NEROR(l)=l 
IF(NELEM*NNODE.LT.NPOIN) NEROR(2)=1 
IF(NVFIX.LT.2.0R.NVFIX.GT.NPOIN) NEROR(3)=1 
IFCNINCS.LT.1) NEROR(4)=1 
IFCNTYPE.LT.1.0R.NTYPE.GT.3) NEROR(5)=1 
IFCNNODE.LT.4.0R.NNODE.GT.9) NEROR(6)=1 
IFCNDOFN.LT.2.0R.NDOFN.GT.5) NEROR(7)=1 
IFCNHATS.LT.1.0R.NMATS.GT.NELEH) NEROR(8)=1 
IFCNCRIT.LT.1.0R.NCRIT.GT.4) NEROR(9)=1 
IF(NGAUS.LT.2.0R.NGAUS.GT.3) NEROR(10)=1 
IF(NALGO.LT.1.0R.NALGO.GT.4) NEROR(ll)=l 
IFCNSTRE.LT.3.0R.NSTRE.GT.5) NEROR(12)=1 

C*** EITHER RETURN,OR ELSE PRINT THE ERRORS DIAGNOSED 
C 

KEROR=O 
De 20 IEROR=l,12 
lFCNEROR(IEROR).EQ.O) GO TO 20 
KEROR=l 
WRITE (6 ,900) IEROR 

900 FORMATC//31H ••• DIAGNOSIS BY CHECK1, ERROR,I3) 
20 CONTINUE 

IF(KEROR.EQ.O) RETURN 

CEK1 1 
CEK1 2 
CEK1 3 
CEK1 4 
CEK1 5 
CEK1 6 
CEK1 7 
CEK1 8 
CEK1 9 
CEK1 10 
CEK1 11 
CEK1 12 
CEK1 13 
CEK1 14 
CEK1 15 
CEK1 16 
CEK1 17 
CEK1 18 
CEK1 19 
CEK1 20 
CEK1 21 
CEK1 22 
CEK1 23 
CEK1 24 
CEK1 25 
CEK1 26 
CEK1 27 
CEK1 28 
CEK1 29 
CEK1 30 
CEK1 31 
CEK1 32 
CEK1 33 
CEK1 34 
CEK1 35 
CEK1 36 
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C 
c ••• OTHERWISE ECHO ALL THE REMAINING DATA WITHOUT FURTHER COMMENT 
C 

CALL ECHO 
END 

CEK1 37 
CEK1 38 
CEK1 39 
CEK1 40 
CEK1 41 

Error 
Label 

1 

2 

3 

4 
5 

6 

7 

8 

9 

10 

11 

12 

Table 6.2 Errors diagnosed by Subroutine CHECKI. 

Interpretation 

The specified total number of node points, NPOIN, in the structure 
is less than or equal to zero. 
The possible maximum total number of node points in the 
structure is less than the specified total, NPOIN. 
The number of restrained nodal points is less than 2 or greater 
than NPOTN (for plane problems at least 2 points must be 
restrained to eliminate rigid body motions). 
The total number of load increments is less than I. 
The problem type parameter, NTYPE, is not specified as either 
I, 2 or 3. 
The number of nodes/element is less than 4 (linear quadrilateral) 
or greater than 9 (quadratic Lagrangian elements). 
The number of degrees of freedom per node is not equal to 2 
(plane) or 3 (plate problems). 
The total number of different materials is less than or equal to 
zero or greater than the total number of elements in the structure. 
The parameter specifying the yield criterion to be employed is 
outside the permissible range. 
The number of Gaussian integration points in each direction is 
not equal to either 2 or 3. 
The parameter specifying the nonlinear solution algorithm to be 
employed is outside the permissible range. 
The size of the stress matrix is less than 3 (plane) or greater 
than 5 (plate problems). 

6.4.14 Data echo subroutine, ECHO 
The function of this subroutine is to list all the remaining data cards after 

at least one error has been detected by either of the diagnostic subroutines 
CHECKl or CHECK2. This is accomplished by means of a simple read 
and write operation in alphanumeric format. 

SUBROUTINE ECHO 
C •••• ** •••••••• ***************************************f •• * ••• _ •• * ___ " 
C 
C··** IF DATA ERRORS HAVE BEEN DETECTED BY SUBROUTINES CHECK1 OR 
C CHECK2,THIS SUBROUTINE READS AND WRITES THE REMAINING DATA CARDS 
C C-.4 .** ••••••••••••• _ •••••••• _ ••••••••••••• , _____ ••• ,_*._.** ___ t •• , __ _ 

DIMENSION NTITL(80) 
WRITE(6,900) 

ECHO 
ECHO 
ECHO 
ECHO 
ECHO 
ECHO 
ECHO 
ECHO 
ECHO 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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900 FORMAT(//50H NOW fOLLOWS A LISTING OF POST-DISASTER DATA CARDS/) 
10 READ(5,905) NTITL 

905 FORMAT(80Al) 
WRITE(6,910) NTITL 

910 FORMAT(20X,80Al) 
GO TO 10 
END 

6.4.15 Data error diagnostic subroutine, CHECK2 

ECHO 10 
ECHO 11 
ECHO 12 
ECHO 13 
ECHO 14 
ECHO 15 
ECHO 16 

If the problem control parameters have passed the scrutiny of subroutine 
CHECKl, the geometric data, boundary conditions and material properties 
are then assimilate/ by subroutine INPUT. This data is then scrutinised 
for possible errors in subroutine CHECK2 where error types 13 to 24, 
listed in Table 6.3, are checked for. 

Probably the most useful check in this subroutine is the one which ensures 
that the maximum frontwidth does not exceed the dimensions specified in 
subroutine FRONT. Subroutine CHECK2 is described in detail in Chapter 9, 
Ref. 4. 

SUBROUTINE CHECK2(COORD,IFFIX,LNODS,MATNO,MELEM,MFRON,MPOIN,MTOTV,CEK2 1 
• MVFIX,NDFRO,NDOFN,NELEM,NMATS,NNODE,NOFIX,NPOIN,CEK2 2 

NVFIX) CEK2 3 
c..................................................................... CEK2 4 
C CEK2 5 
c •••• THIS SUBROUTINE CHECKS THE REMAINDER OF THE INPUT DATA CEK2 6 
C CEK2 7 
c····.············· ..................... ·············· .............. *. CEK2 8 

DIMENSION COORD(MPOIN,2),IFFIX(MTOTV),LNODS(MELEM,g), CEK2 9 
MATNO(MELEM) ,NDFRO(MEhEM) ,NEROR(24),NOFIX(MVFIX) CEK2 10 

C 1,(-1: ~ • N'r"'" \/70-;,) CEK2 11 
c.n CHECK AGAINSrtWd IDENTIC' Ai. NONZERO NODAL COORDINATES CEK2 12 
C CEK2 13 

DO 5 IEROR=13,24 CEK2 14 
5 NEROR<IEROR)=O CEK2 15 

DO 10 IELEM= 1 , NELEM CEK2 16 
10 NDFRO(IELEM)=O CEK2 17 

DO 50 IPOIN=2,NPOIN CEK2 18 
KPOIN=lPOIN-1 CEK2 19 
DO 30 JPOIN= 1 ,KPOIN CEK2 20 
DO 20 IDlME=1,2 CEK2 21 
IF(COORD(IPOIN,IDlME) .NE.COORD(JPOIN,IDlME)) GO TO 30 CEK2 22 

20 CONTINUE CEK2 23 
NEROR ( 13l:NEROR ( 13) + 1 CEK2 24 

30 CONTINUE CEK2 25 
40 CONTINUE CEK2 26 

C 
c··· CHECK THE LIST OF ELEMENT PROPERTY NUMBERS 
C 

CEK2 27 
CEK2 28 
CEK2 29 
CEK2 30 

C 

DO 50 IELEM=1,NELEM 
50 IF(MATNO(IELEM).LE.O.OR.MATNO(IELEM).GT.NMATS) 

• +1 

c··· CHECK FOR IMPOSSIBLE NODE NUMBERS 
C 

DO 70 IELEM= 1 , NELEM 

NEROR(14)=NEROR(14)CEK2 31 

DO 60 INODE=1,NNODE 
IF(LNODS(IELEM,INODE).EQ.O) NEROR(15):NEROR(15)+1 

CEK2 32 
CEK2 33 
CEK2 34 
CEK2 35 
CEK2 36 
CEK2 37 
CEK2 38 
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C 

60 IF(LNODS(IELEM,INODE).LT.O.OR.LNODS(IELEM,INODE).GT.NPOIN) 
• 16)=NEROR(16)+1 

70 CONTINUE 

e*.. CHECK FOR ANY REPETITION OF A NODE NUMBER WITHIN AN ELEMENT 
C 

C 

DO 140 IPOIN=l,NPOIN 
KSTAR=O 
DO 100 IELEM=l,NELEM 
KZERO=O 
DO go INODE=l,NNODE 
IF(LNODS(IELEM,INODE).NE.IPOIN) GO TO 90 
KZERO=KZERO+l 
IF(KZERO.GT.l) NEROR(17)=NEROR(17)+1 

C ••• SEEK FIRST,LAST AND INTERMEDIATE APPEARANCES OF NODE IPOIN 
C 

NEROR( CEK2 39 
COO 40 
COO 41 
COO 42 
COO 43 
CEK2 44 
COO 45 
COO 46 
COO 47 
COO 48 
CEK2 49 
COO 50 
COO 51 
COO 52 
COO 53 
COO 54 
COO 55 

IF(KSTAR.NE.O) GO TO 80 COO 56 
KSTAR=IELEM coo 57 

C COO 58 
C ••• CALCULATE INCREASE OR DECREASE IN FRONTWIDTH AT EACH ELEMENT STAGE coo 59 
C coo 60 

NDFRO(IELEM)=NDFRO(IELEM)+NDOFN COO 61 
80 CONTINUE COO 62 

C C... AND CHANGE THE SIGN OF THE LAST APPEARANCE OF EACH NODE 
C 

C 

KLAST=IELEM 
NLAST=INODE 

go CONTINUE 
100 CONTINUE 

IF(KSTAR.EQ.O) GO TO 110 
IF(KLAST.LT.NELEM) NDFRO(KLAST+l)=NDFRO(KLAST+l)-NDOFN 
LNODS(KLAST, NLAST) =-IPOIN 
GO TO 140 

C··· CHECK THAT COORDINATES FOR AN UNUSED NODE HAVE NOT BEEN SPECIFIED 
C 

C 

110 WRITE(6,goo) IPOIN 
goO FORHAT(/15H CHECK WHY NODE,I4,14H NEVER APPEARS) 

NEROR(18)=NEROR(18)+1 
SIGHA=O.O 
DO 120 IDIME=l 2 

120 SIGHA=SIGHA+ABS(CooRD(IPOIN,IDIME» 
IF(SIGHA.NE.O.O) NEROR(19)=NEROR(19)+1 

Cu. CHECK THAT AN UNUSED NODE NUMBER IS NOT A RESTRAINED NODE 
C 

C 

DO 130 IVFIX= 1 NVFIX 
130 IF(NOFIX(IVFIXI.EQ.IPOIN) NEROR(20)=NEROR(20)+1 
140 CONTINUE 

Cu. CALCULATE THE LARGEST FRONTWIDTH 
C 

NF'RON=O 
KF'RON=O 
DO ISO IELEM=1,NELEM 
NFRON=NFRON+NDFRO(IELEM) 

150 IF(NFRON.GT .KFRON) KFRON=NFRON 
WRITE(6,goS) KFRON 

905 FORHAT(I/33H MAXIMUM FRONTWIDTH ENCOUNTERED =,15) 
IF(KFRON.GT.HFRON) NEROR(21)=1 

C 
C··· CONTINUE CHECKING THE DATA FOR THE FIXED VALUES 
C 

COO 63 
COO 64 
COO 65 
COO 66 
COO 67 
COO 68 
COO 69 
COO 70 
COO 71 
COO 72 
COO 73 
COO 74 
COO 75 
COO 76 
COO 77 
COO 78 
coo 79 
coo 80 
COO 81 
COO 82 
coo 83 
COO 84 
COO 85 
COO 86 
coo 87 
coo 88 
COO 89 
COO go 
COO 91 
COO 92 
COO 93 
COO 94 
COO 95 
coo 96 
coo 97 
COO 98 
COO 99 
coo 100 
COO 101 
COO 102 
COO 103 
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C 

DO 170 IVFIX=l,NVFIX 
IF(NOFIX(IVFIX).LE.O.OR.NOFIX(IVFIX).GT.NPOIN) 

• +1 

COO 104 
NEROR(22)=NEROR(22)COO 105 

COO 106 
COO 107 
COO 108 
COO 109 
COO 110 
COO 111 
COO 112 
COO 113 

KOUNT=' 
NbOC hlJloF-IX{ :J:VFIX) ~ l).*II00FH 
DO 160 IDOFN=l,NDOFN 

-NhOC.~=NlOC ~ ,1 -
160 IF(IFFIlI( NU)€1..),~l«JUN'f:.l. 

IF(KOUNT.EQ.O) NEROR(23)=NEROR(23)+1 
KVFIX=IVFIX-l 
DO 170 JVFIX=l,KVFIX COO 114 

170 IF(IVFIX.NE.l.AND.NOFIX(IVFIX).EQ.NOFIX(JVFIX» 
• )+1 

NEROR(24)=NEROR(24COO 115 
COO 116 
COO 117 
COO 118 
COO 119 
COO 120 
COO 121 

KEROR=O 
DO 180 IEROR=13,24 
IF(NEROR(IEROR).EQ.O) GO TO 180 
KEROR=l 
WRITE(6,910) IEROR,NEROR(IEROR) 

910 FORHAT(1131H *** DIAGNOSIS BY CHECK2, 
• UIoISER, 15) 

180 CONTINUE 
IF(KEROR.NE.O) GO TO 200 

ERROR,I3,6X,18H ASSOCIATED NCOO 122 
COO 123 
CEK2 124 
COO 125 
COO 126 

C*** RETURN ALL NODAL CONNECTION 
C 

NUMBERS TO POSITIVE VALUES CEK2 127 
COO 128 

DO 190 IELEM= 1 , NELEM 
DO 190 INODE=l,NNODE 

190 LNODS(IELEM,INODE)=IABS(LNODS(IELEM,INODE» 
RETURN 

200 CALL ECHO 
END 

Table 6.3 Errors diagnosed by Subroutine CHECI<2 

Error 
Label Interpretation 

13 A total of x identical nodal coordinates have been detected, 

COO 129 
CEK2 130 
COO 131 
COO 132 
CEK2 133 
COO 134 

i.e. x nodal points have coordinates which are identical to those 
of one or more of the remaining nodes. 

14 A total of x elem~nt material identification numbers are less than 
or equal to zero or greater than the total number of elements in 
the structure. 

15 A total of x nodal connection numbers have a zero value. 
16 A total of x nodal connection numbers are negative or greater 

than the specified maximum value, NPOIN. 
17 A total of x repetitions of node numbers within individual 

elements have been detected. 
18 A total of x nodes exist in the list of nodal points which do not 

appear anywhere in the list of element nodal connection numbers. 
19 Non-zero coordinates have been specified for a total of x nodes 

which do not appear in the list of element nodal connection 
numbers. 

20 A total of x node numbers which do not appear in the element 
nodal connections list have been specified as restrained nodal 
points. 

21 The largest frontwidth encountered in the problem has exceeded 
the maximum value specified in subroutine FRONT of the program. 
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22 A total of x restrained nodal points have numbers less than 
or equal to zero or greater than the specified maximum value, 
NPOIN. 

23 A total of x restrained nodal points at which the fixity code is 
less than or equal to zero have been detected. 

24 A total of x repetitions in the list of restrained nodal points 
have been detected. 

6.5 Standard subroutines for elasto-plastic finite elel\lent analysis 
In this section we describe four additional subroutines which are common 

to all the elasto-plastic and elasto-viscoplastic applications presented in 
Chapters 7, 8 and 9. For each subroutine presented, the form of the argu
ment list and common block structure will be that required for two
dimensional elasto-plastic applications. 

6.5.1 Data input subroutine, INPUT 
The role of this subroutine is to accept most of the input data required for 

analysis of elasto-plastic problems. The structure of this subroutine follows 
closely that of subroutine DATA described in Section 3.2. Subroutine 
INPUT also closely resembles the data input subroutine presented in 
Chapter 3, Ref. 4 for linear elastic problems. 

The control parameters necessary for two-dimensional applications extend 
beyond those required for one-dimensional analysis and are presented below. 

NPOIN 
NELEM 
NVFIX 

NTYPE 

NNODE 

NMATS 
NGAUS 

Total number of nodal points in the structure. 
Total number of elements in the structure. 
Total number of boundary points, i.e. nodal points at which 
one or more degrees of freedom are restrained. 
Problem type parameter: 

I-Plane stress, 
2-Plain strain, 
3-Axial symmetry. 

Number of nodes per element: 
4-Linear isoparametric quadrilateral element, 
&-Quadratic isoparametric Serendipity element, 
9-Quadratic isoparametric Langrangian element. 

Total number of different materials in the structure. 
The order of Gaussian quadrature rule to be employed for 
numerical integration of the element stiffness matrices, etc., as 
described in Section 6.3.2. If NGAUS is prescribed as 2 a two
point Gauss rule is to be employed; if NGAUS is input as 3 a 
three-point rule will be used. 
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NALGO Parameter controlling nonlinear solution algorithm: 
I-Initial stiffness method. The element stiffnesses are com

puted at the beginning of the analysis and remain un
changed thereafter. 

2-Tangential stiffness method. The element stiffnesses are 
recomputed during each iteration of each load increment. 

3-Combined algorithm. The element stiffnesses are recom
puted for the first iteration of each load increment only. 

4-Combined algorithm. The element stiffnesses are recom
puted for the second iteration of each load increment only. 
(Of course for the first load increment, the element stiff
nesses must be calculated for the first iteration also.) 

NCRIT The yield criterion to be employed: 
l-Tresca, 
2-Von Mises, 
3-Mohr-Coulomb, 
4-Drucker-Prager. 

NINCS The total number of increments in which the final loading is to 
be applied. 

NSTRE The number of independent stress components for the appli
cation: 

3-Plane stress/strain, 
4-Axial symmetry. 

For the present two-dimensional applications two coordinate components 
are required to locate each nodal point. With reference to Figs. 6.2-6.4 the 
x, y components must be specified for plane stress or plane strain problems 
and the r, z components for axisymmetric situations. This information is 
stored in the array 

COORD (IPOIN, IDIME) 
where IPOIN corresponds to the number of the nodal point and IDIME 
refers to the coordinate component. As mentioned in Section 6.4.1 nodal 
coordinates need not be supplied for mid-side nodes of 8- and 9-noded 
elements if they lie on a straight line between corner nodes. The coordinates 
of such intermediate nodes are evaluated by subroutine NODEXY by linear 
interpolation. 

For each nodal point at which the displacement value corresponding to 
one or more degrees of freedom are prescribed, input data must be supplied 
specifying these fixity conditions. The nodes at which one or more degrees 
of freedom are restrained are stored in array 

NOFIX (IV FIX) 
which signifies that the IVFIXtb boundary node has a nodal point number 
NOFIX (IVFIX). Input parameter IFPRE controls which degrees of free
dom of a particular node are to have a specified displacement value. For 
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example, for plane or axisymmetric problems, integer code IFPRE may have 
the following values: 

to Displacement in the x(r) direction specified, 
01 Displacement in the y(z) direction specified, 
11 Displacements in both x(r) and y(z) directions specified. 

This information is then transferred, for permanent storage, into array 
IFFIX (ITOTY) 

where ITOTY ranges over the total number of degrees of freedom of the 
structure. The prescribed displacement value associated with a restrained 
degree of freedom is stored in array 

PRESC (lYFIX, IDOFN) 
where IYFIX indicates that the prescribed displacements pertain to the 
IYFIXtb boundary node and IDOFN ranges over the degrees of freedom of 
that node. 

The list of material properties for two-dimensional applications differs 
from the corresponding one-dimensional case considered in Section 3.2. In 
particular for plane and axisymmetric elasto-plastic problems the following 
material parameters must be input. 

PROPS (NUMAT, 1) Elastic modulus, E. 
PROPS (NUMAT, 2) Poisson's ratio, v. 

PROPS (NUMA T, 3) Material thickness, t (applicable to plane problems 
only). 

PROPS (NUMAT, 4) Material mass density, p. 

PROPS (NUMAT, 5) Uniaxial yield stress, ay (Tresca and Yon Mises 
solids); Cohesion c (Mohr-Coulomb and Drucker
Prager materials). 

PROPS (NUMAT, 6) Hardening parameter H' for linear strain hardening. 
PROPS (NUMAT, 7) Angle of internal friction for Mohr-Coulomb and 

Drucker-Prager materials only. 

Consequently NPROP = 7 for two-dimensional elasto-plastic applications. 
The corresponding material data for plate bending problems is listed in 
Chapter 9. 

Subroutine INPUT also calls subroutine GAUSSQ, described in Sec
tion 6.4.2, whose function is to generate the sampling point position and 
weighting factors for numerical integration of the element stiffness matrices, 
etc., by Gaussian quadrature. The order of integration rule to be employed 
has been specified, through NGAUS, in the control data. 

Subroutine INPUT is now presented and is self-explanatory, 
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SUBROUTINE INPUT(COORD,IFFIX,LNODS,MATNO,MELEM,MEVAB,MFRON,MMATS, 
MPOIN,MTOTV,MVFIX,NALGO, 

NCRIT,NDFRO,NDOFN,NELEM, 
NEVAB,NGAUS,NGAU2, 
NINCS,NMATS,NNODE,NOFIX,NPOIN,NPROP,NSTRE,NSTR1, 
NTOTG,NTOTV,NTYPE,NVFIX,POSGP,PRESC,PROPS,WEIGP) 

c**********************.******************************11***.-._-*--_ •• 
C 
C**** THIS SUBROUTINE ACCEPI'S MOST OF THE INPUT DATA 
C 
C·*-*----_·_···_-*--_·*··_-*------·*-_·_*-_··_·······-*._.*----_.--_.-

DIMENSION COORD( MPOIN .2) ,IFFIX( MTOTV) JLNOR~U1ELE~I/ 9) , 
• MATNO(MELEM),NDFRO(MELEM),Jr('~" 'J ,.!e' ; 

NOFIX(MVFIX),POSGP(4),PRESC(MVFIX,NDOFN), 
PROPS(MMATS,NPROP),TITLE(12),WEIGP(4) 

REWIND 1 
REWIND 2 
REWIND 3 
REWIND 4 
REWIND 8 
READ(5,920) TITLE 
WRITE(6,920) TITLE 

920 FORMAT(12A6) 
C 
C*** READ THE FIRST DATA CARD, 
C 

AND ECHO IT IMMEDIATELY. 

C 

READ(5,900) NPOIN,NELEM,NVFIX,NTYPE,NNODE,NMATS,NGAUS, 
• NALGO,NCRIT1NINCS,NSTRE 

900 FORMAT ( 11151 
NEVAB:NDOFN*NNODE 
NSTR1=NSTRE+1 
IF(NTYPE.EQ.3) NSTR1=NSTRE 
NTOTV=NPOIN*NDOFN 
NGAU2=NGAUS*NGAUS 
NTOTG=NELEM*NGAU2 
WRlTE(6, 901 )NPOIN ,NELEM, NVFIX, NTYPE, NNODE, NMATS, NGAUS ,NEVAB, 

.NALGO,NCRIT,NINCS,NSTRE 
901 FORMAT(/ISH NPOIN =,I4,4X,8H NELEM =,I4,4X,8H NVFIX =,I4,4X, 

.8H NTYPE =,I4,4X,BH NNODE =,14,// 
• 8H NMATS =,I4,4X,8H NGAUS =,14, 
• 4X,8H NEVAB =,I4,4X,8H NALGO =,14// 
• 8H NCR!T =,14,4X,BH NINCS =,I4,4X,8H NSTRE =,14) 

CALL CHECK 1 (NDOFN,NELEM,NGAUS,NMATS,NNODE,NPOIN, 
NSTRE,NTYPE,NVFIX,NCRIT,NALGO,NINCS) 

C*** READ THE ELEMENT NODAL CONNECTIONS, AND THE PROPERTY NUMBERS. 
C 

INPI' 1 
INPI' 2 
INPI' 3 
INPI' 4 
INPI' 5 
INPI' 6 
INPI' 7 
INPI' 8 
INPI' 9 
INPI' 10 
INPI' 11 
INPI' 12 
INPI' 13 
INPI' 14 
INPI' 15 
INPI' 16 
INPI' 17 
INPI' 18 
INPI' 19 
INPI' 20 
INPI' 21 
INPI' 22 
INPI' 23 
INPI' 24 
INPI' 25 
INPI' 26 
INPI' 27 
INPI' 28 
INPI' 29 
INPI' 30 
INPI' 31 
INPI' 32 
INPI' 33 
INPI' 34 
INPI' 35 
INPI' 36 
INPI' 37 
INPI' 38 
INPI' 39 
INPI' 40 
INPI' 41 
INPI' 42 
INPI' 43 
INPI' 44 
INPI' 45 
INPI' 46 
INPI' 47 

WRITE(6,902) INPI' 48 
902 FORMAT(//SH ELEMENT, 3X, 8HPROPERTY,6X, 12HNODE NUMBERS) INPI' 49 

00 2 IELEM= 1 , NELEM INPI' 50 
READ(5,goO) NUMEL,MATNO(NUMEL),(LNODS(NUMEL,INODE),INODE=l,NNODE) INPI' 51 

2 WRITE(6,903) NUMEL,MATNO(NUMEL),(LNODS(NUMEL,INODE),INODE=l,NNODE)INPI' 52 
903 FORMAT(1X,I5,I9,6X,8I5) INPI' 53 

C INPI' 54 
c*** ZERO ALL THE NODAL COORDINATES, PRIOR"TO READING SOME OF THEM. INPI' 55 
C INPI' 56 

00 4 IPOIN=l,NPOIN INPI' 57 
00 4 IDlME=1,2 INPI' 58 

4 COORD(IPOIN,IDIME):O.O INPI' 59 
C INPI' 60 
Cu. READ SOME NODAL COORDINATES, 
C 

FINISHING WITH THE LAST NODE OF ALL. INPI' 61 
INPI' 62 

WRITE(6,904) 
904 FORMAT(//5H NODE,10X,lHX,10X,lHY) 

INPI' 63 
INPI' 64 
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6 READ(5,905) IPOIN,(CooRD(IPOIN.IDIME),IDIME:l,2) 
905 FORMAT(IS,6Fl0.5) 

IF(IPOIN.NE.NPOIN) GO TO 6 
C 
C*** INTERPOLATE COORDINATES OF MID-SIDE NODES 
C 

INPT 65 
INPT 66 
INPT 67 
INPT 68 
INPT 69 
INPT 70 

CALL NODEXY(COORD,LNODS,MELEM,MPOIN,NELEM,NNODE) INPT 71 
DO 10 IPOIN:1,NPOIN INPT 72 

10 WRITE(6,906) IPOIN,(CooRD(IPOIN,IDIME),IDIME:1,2) INPT 73 
906 FORMAT(lX,I5,3Fl0.3) INPT 74 

C INPT 75 
C*-* READ THE FIXED VALUES. INPT 76 
C INPT 77 

WRITE(6,907) INPT 78 
907 FORMAT(//5H NODE,6X,4HCODE,6X,12HFIXED VALUES) INPT 79 

00 8 IVFIX: 1 , NVFIX INPT 80 
READ(5 908) NOFIX(IVFIX) IFPRE,(PRESC(IVFIX,IDOFN) IDOFN:l,NDOFN) INPT 81 
WRITE(6,908) NOFIX(IVFIXl,IFPRE,(PRESC(IVFIX,IDOFNl,IDOFN:l,NDOFN)INPT 82 
NLOCA:(NOFIX(IVFIX)-l)*NDOFN INPT 83 
IFDOF:l0**(NDOFN-l) INPT 84 
00 8 IDOFN: 1, NDOFN INPT 85 
NGASH:NLOCA+IDOFN INPT 86 
IF(IFPRE. LT. IFDOF) GO TO 8 INPT 87 
IFFIXOJGASH):1 INPT 88 
IFPRE:IFPRE-IFDOF INPT 89 

8 IFDOF:IFDOF/10 INPT 90 
908 FORMAT(lX,I4,5X,I5,5X,5Fl0.6) INPT 91 

C INPT 92 
C*** READ THE AVAILABLE SELECTION OF ELEMENT PROPERTIES. INPT 93 
C INPT 94 

16 WRITE(6,910) INPT 95 
910 FORMAT(117H NUMBER,6X,18HELEMENT PROPERTIES) INPT 96 

DO 18 IMATS:l,NMATS INPT 97 
READ(S.900) NUMAT INPT 98 
READ(5, 930) (PROPS(NUMAT,IPROP),IPROP:l,NPROP) INPT 99 

930 FORMAT(8Fl0.5) INPT 100 
18 WRITE(6,911) NUMAT, (PROPS(NUMAT, IPROP), IPROP:l, NPROP) INPT 101 

911 FORMAT(lX,I4,3X,8E14.6) . INPT 102 
C INPT 103 
C*** SET UP GAUSSIAN INTEGRATION CONSTANTS INPT 104 
C INPT 105 

CALL GAUSSQ(NGAUS,POSGP,WEIGP) INPT 106 
CALL CHECK2(COORD,IFFIX,LNODS,MATNO,MELEM,MFRON,MPOIN,MTOTV,INPT 107 

MVFIX,NDFRO,NDOFN,NELEM,NMATS,NNODE,NOFIX,NPOIN,INPT 108 

RETURN 
END 

NVFIX) INPT 109 
INPT 110 
INPT 111 

6.5.2 Subroutine ALGOR 
The function of this subroutine is to control the solution process according 

to the value of the solution algorithm parameter, NALGO, input in sub
routine INPUT. This subroutine is similar in form to subroutine NONAL 
presented in Section 3.3 for one-dimensional applications. The subroutine 
sets the value of indicator KRESL to either 1 or 2 according to NALGO and 
the current values of the iteration number lITER and increment number 
lINes. A value of KRESL = 1 indicates reformulation of the element 
stiffnesses accompanied by a full equation solution and KRESL = 2 indi
cates that the element stiffnesses are not to be modified and consequently 
only equation resolution takes place. 
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With the definitions of the permissible values of NALGO given in Section 
6.5.1, subroutine ALGOR is self-explanatory and is listed below. * 

SUBROUTINE ALGOR(FIXED,IINCS,IITER,KRESL, 
• HTOTV,NALGO,NTOTV} 

c··***··················***··························· ............... . 
c 
c •••• THIS SUBROUTINE SETS EQUATION RESOLUTION INDEX,KRESL 
C 

c····················································· ............... . DIMENSION FIXED(HTOTV) 
KRESL=2 
IF(NALGO.EQ.1.AND.IINCS.EQ.1.AND.IITER.EQ.1) KRESL=1 
IF(NALGO.EQ.2) KRESL=1 
IF(NALGO.EQ.3.AND.IITER.EQ.1) KRESL=1 
IF(NALGO.EQ.4.AND.IINCS.EQ.1.AND.IITER.EQ.1) KRESL=1 
IF(NALGO.EQ.4.AND.IITER.EQ.2) KRESL=1 
IF(IITER.EQ.1) RETURN 
00 100 ITOTV = 1, NTOTV 
FIXED(ITOTV)=O.O 

100 CONTINUE 
RETURN 
END 

6.5.3 Subroutine INCREM 

ALGR 1 
ALGR 2 
ALGR 3 
ALGR 4 
ALGR 5 
ALGR 6 
ALGR 78 
ALGR 
ALGR 9 
ALGR 10 
ALGR 11 
ALGR 12 
ALGR 13 
ALGR 14 
ALGR 15 
ALGR 16 
ALGR 17 
ALGR 18 
ALGR 19 
ALGR 20 

The role of subroutine INCREM is to increment the applied loading or any 
prescribed displacements according to the load factors specified as input. 
This subroutine is accessed on the first iteration of each load increment. For 
each increment of load the following items of information are input as data 
and are similar to those described in Section 3.7. 
FACTO This controls the magnitude of the load increment. The applied 

loading for each element is evaluated in Subroutine LOADPS 
for plane and axisymmetric situations, or Subroutine LOADPB 
for plate problems, and is stored in the array RLOAD (IELEM, 
lEV AB) as described in Section 6.4.5. The additional element 
load applied during the increment is RLOAD (IELEM, 
IEVAB)*FACTO. The applied loading is accumulative so 
that if FACTO is input as 0·8, 0·2 and 0·1 for the first three 
increments, the total load acting on the structure during the 
third load increment is 1·1 times the loads calculated in Sub
routine LOADPS. This method of load factoring permits 
unequal load increments to be taken. If loading is by pre-

TOLER 

MITER 

scribed displacements the same factoring process holds. 
This controls the tolerance permitted on the convergence pro
cess and its use has been described in Section 3.9.3. 
Maximum permissible number of iterations. This is a safety 
measure to cover situations where the solution process does 

• For elasto-viscoplastic applications described in Chapler 8, iteration number 
lITER is replaced by timestep number, JSTEP. 
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not converge. After performing MITER iteration cycles the 
program will then stop. 

NOUTP (1) This parameter controls the output of the unconverged results 
after the first iteration. In order to examine the convergence 
process the user can vary the frequency of output for each load 
increment: 

I-Print the displacements only after the first iteration. 
2-Print the displacements and nodal reactions after the 

first iteration. 
3-Print the displacements, reactions and stresses after the 

first iteration. 

NOUTP (2) This parameter controls the output of the converged results: 
I-Print the final displacements only. 
2-Print the final displacements and nodal reactions. 
3-Print the final displacements, reactions and stresses. 

The loading to which the structure is subjected is monitored by the arrays 
ELOAD (IELEM, IEV AB) and TLOAD (IELEM, lEV AB). The total load
ing applied to the structure at any stage of the analysis is accumulated in the 
TLOAD array. On the other hand ELOAD contains the loading to be applied 
to the structure for each iteration of the solution process. Initially (the first 
iteration of the first load increment) ELOAD contains the first increment of 
applied load. For the second and subsequent iterations ELOAD contains 
the residual nodal forces which must be redistributed as described in Sec
tion 3.7. After convergence has occurred, the next increment of load is 
assimilated" into ELOAD, so that at this stage ELOAD contains the new 
IlPplied load increment together with any residual forces still remaining after 
convergence of the solution for the previous load increment. These residual 
forces should be negligibly small if the convergence tolerance factor, TOLER, 
is correctly chosen. However, since any residual forces are retained in 

. ELOAD and applied as nodal forces during the next load increment, it is 
noted that equilibrium is maintained at every stage of the computation 
process. 

The final role of this subroutine is to insert appropriate values in the fixity 
array to control any prescribed displacements. As described in Section 3.3, 
in order to arrive at the correct value of a displacement whose value is pre
scribed for a load increment, it is necessary to prescribe the given value for 
equation solution during the first iteration and then prescribe a zero value 
for all subsequent iterations. Since the displacements occurring during each 
iteration accumulate to give the total displacement then clearly the pre
scribed value will be obtained by this prQcess. 

Subroutine INCREM will now be presented and explanatory notes 
provided. 
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SUBROUTINE INCREM(ELOAD,FIXED,IINCS,HELEM,HEVAB,MITER, INCH 
MTOTV,MVFIX,NDOFN,NELEM,NEVAB,NOUTP, INCR 
NOFIX,NTOTV,NVFIX,PRESC,RLOAD,TFACT, INCH 

· TLOAD,TOLER) INCH 
C..................................................................... INCH 

1 
2 
3 
4 
5 
6 C INCR 

C.... THIS SUBHOUTINE INCREMENTS THE APPLIED LOADING INCR 1 C INCR 
C •• •• •••••• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• INCR 9 

DlHENSION ELOAD(HELEMtHEVAB) ,FIXED(MTOTV), INCR 10 
• IFF X( MTOTV) , INCR 11 

NOUTP(2),NOFIX(MVFIX), INCR 12 
PRESC(MVFIX,NDOFN),RLOAD(HELEM,HEVAB),TLOAD(HELEM,HEVAB)INCR 13 

WRITE(6,900) IINCS INCR 14 
900 FORMAT(lHO,5X,11HINCREMENT NUMBER ,15) INCR 15 

READ(5.950) FACTO!TOLER,MITER,NOUTP(I),NOUTP(2) INCR 16 
950 FOHMAT(2Fl0.5,3151 INCR 11 

TFACT=TFACT+FACTO INCR 18 
WRITE(6,960)TFACT,TOLER,MITER,NOUTP(1),NOUTP(2) INCR 19 

960 FORMAT(lHO,5X,13HLOAD FACTOR =,Fl0.5,5X, INCH 20 
.24H CONVERGENCE TOLERANCE =,Fl0.5.5X,24HMAX. NO. OF ITERATIONS =, INCH 21 
• I5,II27H INITIAL OUTPUT PARAMETER =,I5,5X,24HFINAL OUTPUT PARAMETINCR 22 
.ER =,15) INCR 23 
00 80 IELEM= 1 , NELEM INCR 24 
00 80 IEVAB=l,NEVAB INCR 25 
ELOAD(IELEM,IEVAB)=ELOAD(IELEM,IEVAB)+RLOAD(IELEM,IEVAB).FACTO INCR 26 

80 TLOAD(IELEM,IEVAB)=TLOAD(IELEM,IEVAB)+RLOAD(IELEM,IEVAB).FACTO INCR 21 
C c··. INTERPRET FIXITY DATA IN VECTOR FORM 
C 

00 100 ITOTV = 1 , NTOTV 
100 FIXED(ITOTV)=O.O 

00 110 IVFIX=l,NVFIX 
NLOCA=(NOFIX(IVFIX)-l)'NDOFN 
0.0 110 IOOFN= 1 , NDOFN 
NGASH=NLOCA+IOOFN 
FIXED(NGASH)=PRESC(IVFIX,IDOFN)'FACTO 

110 CONTINUE 
RETURN 
END 

INCR 28 
INCR 29 
INCR 30 
INCR 31 
INCR 32 
INCR 33 
INCR 34 
INCR 35 
INCR 36 
INCR 31 
INCR 38 
INCR 39 
INCR 40 

INCR 14-15 Write the number of the load increment which is being cur
rently solved. 

INCR 16-23 Read and write the load increment control parameters. Note 
that the incremental load factor, FACTO, is input whereas 
the tota/load factor, TFACT, is output. 

INCR 24-27 Accumulate the incremental loading into array ELOAD for 
equation solution and also into TLOAD to record the total 
load applied to the structure. 

INCR 31-32 Zero the global vector of prescribed displacements. 
INCR 33-38 Insert any prescribed displacement values, factored by the load 

increment factor, into the appropriate position in the global 
vector. 

6.5.4 Solution convergence monitoring subroutine CONVER 
This subroutine monitors convergence of the nonlinear solution iteration 

process. It is almost identical to subroutine CONUND for one-dimensional 
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applications described in Section 3.10.3. Since for two-dimensional and plate 
bending problems we have more than one degree of freedom per nodal point, 
summation in (3.27) must now be made over the total number of degrees of 
freedom in the structure. As an additional check on the nonlinear solution 
process we also arrange to evaluate the maximum individual residual force 
.p{ existing in the structure. 

Subroutine CONYER is now presented and can be understood with the 
aid of Section 3.10.3. 

SUBROUTINE CONVER(ELOAD,IITER,LNODS,MELEM,MEVAB,MTOTV,NCHEK, CONV 1 
• NDOFN,NELEM,NEVAB,NNODE,NTOTV,PVALU,STFOR, CONV 2 

TLOAD, TOFOR ,TOLER) CONY 3 
C ••••••••••••••••••• _ ••• _----_ •••• ---. __ •••••••••••••••••••••••••••••• CONY 4 
C CONY 5 
c •••• THIS SUBROUTINE CHECKS FOR CONVERGENCE OF THE ITERATION PROCESS CONY 6 
C CONY 1 
C •• ····_···· •• ···············_···········_············................ CONY 8 

DIMENSION ELOAD(MELEM, MEVAB) ,LNODS(MELEM, 9) ,STFOR(MTOTV), CONY 9 
TOFOR(MTOTV), TLOAD(MELEM,MEVAB) CONY 10 

NCHEK=O CONY 1 1 
RESID=O.O CONV 12 
RETOT=O.O CONV 13 
REHAX=O.O CONY 14 
DO 5 ITOTV=1,NTOTV CONY 15 
STFOR(ITOTV)=O.O CONY 16 
TOFOR( ITOTV) =0 . 0 CONY 17 

5 CONTINUE CONY 18 
DO 40 IELEM=1,NELEM CONY 19 
KEVAB=O CONY 20 
DO 40 INODE= 1 , NNODE CONY 21 
LOCNO=!ABS(LNODS(IELEM,INODE» CONY 22 
DO 40 IDOFN = 1 , NDOFN CONY 23 
KEVAB=KEVAB+1 CONY 24 
NPOSI= (LOCNO-1) .NDOFN+IDOFN CONY 25 
STFOR(NPOSI)=STFOR(NPOSI)+ELOAD(IELEM,KEVAB) CONV 26 

40 TOFOR(NPOSI)=TOFOR(NPOSI)+TLOAD(IELEM,KEVAB) CONV 27 
DO 50 ITOTV = 1 , NTOTV CONY 28 
REFOR=TOFOR(ITOTV)-STFOR(ITOTV) CONY 29 
RESID=RESID+REFOR·REFOR CONY 30 
RETOT=RETOT+TOFOR(ITOTV)·TOFOR(ITOTV) CONY 31 
AGASH=ABS( REFOR) CONV 32 

50 IF(AGASH.GT.REHAX) REMAX=AGASH CONV 33 
DO 10 IELEM=~NELEM CONY 34 
DO 10 IEVAB=1,NEVAB CONV 35 

10 ELOAD(IELEM,IEVAB)=TLOAD(IELEM,IEVAB)-ELOAD(IELEM,IEVAB) CONV 36 
RESID=SQRT(RESID) CONV 37 
RETOT=SQRT( RETOT) CONV 38 
RATIO=100.0*RESID/RETOT CONY 39 
IF(RATIO.GT. TOLER) NCHEK=1 CONV 40 
IF(IITER.EQ.1) GO TO 20 CONV 41 
IF(RATIO.GT.PVALU) NCHEK=999 CONV 42 

20 PVALU=RATIO CONY 43 
WRITE(6,30) NCHEK,RATIO,REHAX CONV 44 

30 FORMAT(1HO,3X,18HCONVERGENCE CODE =,I4,3X,28HNORM OF RESIDUAL SUM CONY 45 
.RATIO =,E14.6,3X,18HHAXlMUM RESIDUAL =,E14.6) CONV 46 

RETURN CONV 47 
END CONV 48 
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6.6 Problems 
6.1 Using the subroutines described in this chapter devise programs to 

evaluate the stiffness matrices and load vectors for 4-, 8- and 9-node 
quadrilateral isoparametric elements for plane stress, plane strain, 
axisymmetric and Mindlin plate applications. 

6.2 Use the shape functions Lj(e)(g, 7J) from the 9-node Lagrangian quadri
lateral isoparametric element to devise a new family of 8-node Seren
dipity quadrilateral element shape functions Ni(e)a, 7J) of the form 

Ni(e) = Li(e) +aL9(e) i = I, 3, 5 and 7 (corner nodes), 
Ni(e) = Li(e) +bL9(e) i = 2,4,6 and 8 (midside nodes), 

where L9(e) is the shape function of the central node of the Lagrangian 
element. What limits are there on a and b? 

6.3 Determine some further diagnostic checks on the input, other than 
those described in Sections 6.4.13 and 6.4.15. Apart from the check on 
the Jacobian determinant given in Subroutine JACOB2 in Section 6.4.4, 
are there any other checks which could be incorporated into the pro
gram after the input has been successfully read and checked? 

6.4 Determine the consistent nodal forces for the case when a point load 
with components P", Py acts at an arbitrary point along an element 
edge defined by Cartesian coordinates (xp, yp), which correspond to 
local coordinates (g, 7J) = (gp, -I). 
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Chapter 7 
Elasto-plastic problems 

two dimensions 

7.1 Introduction 

• In 

In this chapter we consider the elasto-plastic stress analysis of solids which 
~nform to plane stress, plane strain or axisymmetric conditions. Most of 
the problems encountered in engineering can be approximated to satisfy one 
of these classifications. 

The basic laws governing elasto-plastic material behaviour in a two
dimensional solid must be presented before the numerical aspects of the 
problem can be considered and to this end new concepts, such as the plastic 
potential and the normality condition will be introduced. Only the essential 
expressions will be provided in this text and the reader will be directed to 
other sources for a more complete theoretical treatment. 

The situation is complicated by the fact that different classes of materials 
exhibit different elasto-plastic characteristics. In this chapter four different 
yield criteria are employed. The Tresca and Von Mises laws, which closely 
approximate metal plasticity behaviour, are considered and the Mohr
Coulomb and Drucker-Prager criteria, which are applicable to concrete, 
rocks and soils, are presented. 

In the latter sections of this chapter a computer code is developed to allow 
the solution of practical problems. Many of the subroutines required for 
elasto-plastic solution have been reviewed in Chapter 6. In this chapter the 
additional subroutines are developed and assembled to provide a working 
program. 

7.2 The mathematical theory of plasticity 
The object of the mathematical theory of plasticity is to provide a theor

etical description of the relationship between stress and strain for a material 
which exhibits an elasto-plastic response. In essence, plastic behaviour is 
characterised by an irreversible straining which is not time dependent and 
which can only be sustained once a certain level of stress has been reached. 
In tliis section we outline the basic assumptions and associated theoretical 
expressions for a general continuum. For a more complete treatment the 
reader is directed to Refs. 1-3. In order to formulate a theory which models 
elasto-plastic material deformation three requirements have to be met: 

215 
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• An explicit relationship between stress and strain must be formulated 
to describe material behaviour under elastic conditions, i.e. before the 
onset of plastic deformation. 

• A yield criterion indicating the stress level at which plastic flow com
mences must be postulated. 

• A relationship between stress and strain must be developed for post
yield behaviour, i.e. when the deformation is made up of both elastic 
and plastic components. 

Before the onset of plastic yielding the relationship between stress and 
strain is given by the standard linear elastic expression. * 

(7.1) 

where all and Ekl are the stress and strain components respectively and Cl/kl 

is the tensor of elastic constants which for an isotropic material has the 
explicit form 

(7.2) 

where A and J1. are the Lame constants and 81i is the Kronecker delta defined 
by 

7.2.1 The yield criterion 

{
I if i = j 

80 = 
o i¥-j. (7.3) 

The yield criterion determines the stress level at which plastic deformation 
begins and can be written in the general form 

(7.4) 

where f is some function and k a material parameter to be determined 
experimentally. The term k may be a function of a hardening parameter K 

discussed later in Section 7.2.2. On physical grounds, any yield criterion 
should be independent of the orientation of the coordinate system employed 
and therefore it should be a function of the three stress invariants only 

h = ajj 

h = talial} 

(7.5) 

Experimental observations, notably by Bridgeman, (4) indicate that plastic 
deformation of metals is essentially independent of hydrostatic pressure. 
Consequently the yield function can only be of the form 

f(N,1a') = k(K), (7.6) 

• In the indicial notation employed, Einstein's summation convention is invoked, 
whereby it IsTriij)licitly assumed that a summation from 1 to 3 is performed over any 
index which is repeated in any term of an expression. Also indices I, 2, 3 refer to 
Cartesian components x, y, z respectively. Note that "ll = "xx = "z, "12 = "xy, etc. 
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where 12' and Ja' are the second and third invariants of the deviatoric stresses, 

(7.7) 

Most of the various yield criteria that have been suggested for metals are now 
only of historic interest, since they conflict with experimental predictions. 
The two simplest which do not have this fault are the Tresca criterion and the 
Von Mises criterion. 

The Tresca yield criterion (/864) 
This states that yielding begins when the maximum shear stress reaches a 

certain value. If the principal stresses are "1, "2, U3 where Ul;' uz;' "3 then 
yielding begins when 

(7.8) 

where Y is a material parameter to be experimentally determined and which 
may be a function of the hardening parameter /(. By considering all other 
possible maximum shearing stress values (e.g. U2 - Ul if U2 ;. U3;' Ul) it can be 
shown that this yield criterion may be represented in the "1 Uz "3 stress space 
by the surface of an infinitely long regular hexagonal cylinder as shown in 
Fig. 7.1. The axis of the cylinder coincides with the space diagonal, defined 
by points "1 = uz = "3, and since each normal section of the cylinder is 
identical, (a consequence of the assumption that a hydrostatic stress does not 
influence yielding), it is convenient to represent the yield surface geometrically 
by projecting it onto the so-called 7T plane, "1 + U2 + U3 = 0 as shown in 
Fig. 7.2(a). When the yield function f depends on N and fa' alone it can be 

/' 

/ 

,.. plane 

"\ +"2+"3=0 
Space diagonal 
01 =U2=U3 

\~-- Von Mises 

Vo--- Tresca 

Fig. 7.1 Geometrical representation of the Tresca and Von Mises yield surfaces 
in principal stress space. 
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/ Line of pure 
shear (8 =0) 

[al 

Von Mises (J2 = const.) 

Tresca (max. shear stress 
=const.) 

[bl 

Von Mises 

Tresca 

Fig. 7.2 Two-dimensional representations of the Tresca and Von Mises yield 
criteria. (a) IT plane representation. (b) Conventional engineering representation. 

written in the form I( Ul - U3, U2 - U3) and a two-dimensional plot of the 
surface 1= k is then possible as shown in Fig. 7.2(b). It can be shown 
generally (1,2) that yield surfaces must be convex (except for local flat areas, 
possibly) and that they must contain the stress origin. 

The Von Mises yield criterion (1913) 
Von Mises suggested that yielding occurs when J2' reaches a critical value, 

or 
(7.9) 

in which k is a material parameter to be determined. The second deviatoric 
stress invariant,]z', can be explicitly written as 

(7.10) 

Yield criterion (7.9) may be further written as 

c; = -yl3(N)i = y'3k, (7.11) 

where 
(7.12) 

and c; is termed the effective stress, generalised stress or equivalent stress. 
Some physical insight into the definition of c; will be apparent later from 
Section 7.2.4 where the case of uniaxial yielding is considered. There are two 
physical interpretations of the Von Mises yield condition. Nadai (1937) 
introduced the so-called octahedral shear stress Toet, which is the shear stress 
on the planes of a regular octahedron. the apices of which coincide with the 
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principal axes of stress. The value of 1'oct is related to h' by 

'Toct = y'(2N/3). (7.13) 

Thus yielding can be interpreted to begin when 'Toct reaches a critical value. 
Hencky (1924) pointed out that the Von Mises law implies that yielding 
begins when the (recoverable) elastic energy of distortion reaches a critical 
value. 

Fig. 7.1 shows the geometrical interpretation of the Von Mises yield 
surface to be a circular cylinder whose projection onto the 7T plane is a circle 
of radius y'(2)k as shown in Fig. 7.2(a). The two dimensional plot of the 
Von Mises yield surface is the ellipse shown in Fig. 7.2(b). A physical meaning 
of the constant k can be obtained by considering the yielding of materials 
under simple stress states. The case of pure shear (al = -a2, aa = 0) 
require~ on use of (7.9) and (7.10) that k must equal the yield shear stress. 
Alternatively the case of uniaxial tension (a2 = aa = 0) requires that y'(3)k 
is the uniaxial yield stress. 

The Tresca yield locus is a hexagon with distances of y'(2/3) Y from 
origin to apex on the 7T plane whereas the Von Mises yield surface is a circle 
of radius y'(2)k. By suitably choosing the constant Y, the criteria can be 
made to agree with each other, and with experiment, for a single state of 
stress. This may be selected arbitrarily; it is conventional to make the circle 
pass through the apices of the hexagon by taking the constant Y = y'(3)k, 
the yield stress in simple tension. The criteria then differ most for a state of 
pure shear, where the Von Mises criterion gives a yield stress 2/ y'(3) (~ I ·15) 
times that given by the Tresca criterion. For most metals Von Mises' law fits 
the experimental data more closely than Tresca's, but it frequently happens 
that the Tresca criterion is simpler to use in theoretical applications. 

The Mohr-Coulomb yield criterion 
This is a generalisation of the Coulomb (I773) friction failure law defined 

by 
l' = c - a" tanc;b, (7.14) 

where l' is the magnitude of the shearing stress, a" is the normal stress 
(tensile stress i5 positive), c is the cohesion and c;b the angle of internal friction. 
Graphically (7.14) represents a straight line tangent to the largest principal 
stress circle as shown in Fig. 7.3 and was first demonstrated by Mohr (1882). 
From Fig. 7.3, and for al ~ a2 ~ aa (7.14) can be rewritten as 

(

al +aa 
-!(al-aa)cosc;b = c- 2 

(al-aa) ) 
2 sin c;b tan c;b, (7.15) 

or rearranging 

(7.16) 
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T 

Fig. 7.3 Mohr circle representation of the Mohr-Coulomb yield criterion. 

: .' 
Again, as for the Tresca criterion, the complete yield surface is obtained by 
considering all other stress combinations which can cause yielding (e.g. 
aa;;: a1 ;;: 0"2). In principal stress space this gives a £Q!!ical yield surface whose 
normal section at any point is an irregular hexagon as shown in Fig. 7.4. 
The conical, rather than cylindrical, nature of the yield surface is a conse
quence of the fact that a hydrostatic stress does influence yielding which is 
evident from the last term in (7.14). When 0"1 = 0"2 = 0"3 we have from (7.16) 
that the mean hydrostatic stress, am = c cote/> and therefore the apex of the 
hexagonal pyramid, 0, in Fig. 7.4, lies along the space diagonal at the point 
a1 = 0"2 = O"a = c cote/>. This criterion is applicable to concrete, rock and 
soil problems. 

The Drucker-Prager yield criterion 
An approximation to the Mohr-Coulomb law was presented by Drucker 

and Prager (1952) as a modification of the Von Mises yield criterion. The 
influence of a hydrostatic stress component on yielding was introduced by 
inclusion of an additional term in the Von Mises expression to give 

alI +(N)l = k'. (7.17) 

This yield surface has the form of a circular cone. In order to make the 
Drucker-Prager circle coincide with the outer apices of the Mohr-Coulomb 
hexagon at any section, it can be shown that 

2 sin e/> 
0. = -y--:-:(-3)-(3-s-in-e/>-)' 

6c cose/> 
k' =------

y(3)(3 -sine/» 
(7.18) 

Coincidence with the inner apices of the Mohr-Coulomb hexagon is pro
vided by 

2 sin e/> 
0.=------

y(3)(3 + sin e/» • 

6c cos e/> 
k' =-----. 

y(3)(3 + sin e/» 
(7.19) 
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r';::>""""----- U Z 

Drucker-Prager 

Mohr-Coulomb 

Fig. 7.4 (a) Geometrical representation of the Mohr-Coulomb and Drucker
Prager yield surfaces in principal stress space. 

line of pure 
shear (9=0) 

U, 

Mohr·Coulomb 

Uz 

Fig. 7.4 (b) TwlHlimensional, 7t plane, representation of the Mohr-Coulomb and 
Drucker-Prager yield criteria. 

However, the approximation given by either the inner or outer cone to the 
true failure surface can be poor for certain stress combinations. (5) 



222 FINITE ELEMENTS IN PLASTICITY 

7.2.2 Work or strain hardening 
After initial yielding, the stress level at which further plastic deformation 

occurs may be dependent on the current degree of plastic straining. Such a 
phenomenon is termed work hardening or strain hardening. Thus the yield 
surface will vary at each stage of the plastic deformation, with the sub
sequent yield surfaces being dependent on the plastic strains in some way. 
Some alternative models which describe strain hardening in a materiai are 
illustrated in Fig. 7.5. A perfectly plastic material is shown in Fig. 7.S(a) 
where the yield stress level does not depend in any way on the degree of 
plastification. If the subsequent yield surfaces are a uniform expansion of the 
original yield curve, without translation, as shown in Fig. 7 .S(b) the strain
hardening model is said to be isotropic. On the other hand if the subsequent 
yield surfaces preserve their shape and orientation but translate in the stress 
space as a rigid body as shown in Fig. 7.S(c), kinematic hardening is said to 
take place. Such a hardening model gives rise to the experimentally observed 
Bauschinger effect on cyclic loading. 

T 

~~-----o~------~~---.u 
/ , / 

Initial yield 
surface 

. '/?,:')~~'7/?/0' 
(a) Perfectly plastic 

T 
Loading 

---i~-----=i-------1H------. u 

(b) Isotropic strain hardening 

T 

Current yield 
surface 

Initial yield 
surface 

't __ ~>-C"Lo:;:ading 

'" ---1:-- --"0,,--,+-------+-7'---- u 

(c) Kinematic strain hardening 

I 

Current yield 
surface 

Fig. 7.5 Mathematical models for representation of strain hardening behaviour. 
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For some materials, notably soils, the yield surface may not strain harden 
but strain soften instead, so that the yield stress level at a point decreases with 
increasing plastic deformation. Therefore, for an isotropic model, the 
original yield curve contracts progressively without translation. Consequently 
yielding implies local failure and the yield surface becomes afai/ure criterion. 

The progressive development of the yield surface can be defined by relating 
the yield stress k to the plastic deformation by means of the hardening 
parameter K. This can be done in two ways. Firstly the degree of 1V0rk 

hardening can be postulated to be a function of the total plastic work, 
Wp , only. Then, 

(7.20) 
where 

Wp = f a;j(lhij)p. (7.21 ) 

in which (dE/j)p are the plastic components of strain occurring during a 
strain increment. Alternatively K can be related to a measure of the total 
plastic deformation termed the effective, generalised or equivalent plastic 
strain which is defined incrementally as 

(7.22) 

A physical insight of this definition is provided in Section 7.2.4 where uni
axial yielding is considered. For situations where the assumption that 
yielding is independent of any hydrostatic stress is valid, (dE/i)p = 0 and 
hence (dEI/)p = (dElJ)p. Consequently (7.22) can be rewritten as 

dip = vO> {(dEi/)P(dEi/)p }I. (7.23) 

Then the hardening parameter, K, is assumed to be defined as 

(7.24) 

where €p is the result of integrating d.p over the strain path. This behaviour 
is termed strain hardening. Only an isotropic hardening model will be con
sidered in this text. 

Stress states for whichf = k represent plastic states, while elastic behaviour 
is characterised by f<k. At a plastic state, f = k, the incremental change in 
the yield function due to an incremental stress change is 

of 
df= --daij. 

CUi) 
(7.25) 

Then if:-

d/<O elastic unloading occurs (elastic behaviour) and the stress point 
returns inside the yield surface 

d/-O neutral loading (plastic behaviour for a perfectly plastic material) 
and the stress point remains on the yield surface 
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d/>O plastic loading (plastic behaviour for a strain hardening material) 
and the stress point remains on the expanding yield surface. 

It can also be shown(1-31 that, for a stable material that the initial and all 
subsequent yield surfaces must be convex. 

7.2.3 Elasto-plastic stress/strain relation 
After initial yielding the material behaviour will be partly elastic and 

partly plastic. During any increment of stress, the changes of strain are 
assumed to be divisible into elastic and plastic components, so that 

(7.26) 

The elastic strain increment is related to the stress increment by (7.1). Or, 
decomposing the stress terms into their deviatoric and hydrostatic com
ponents 

(7.27) 

where E and v are respectively the elastic modulus and Poisson's ratio of the 
material. 

In order to derive the relationship between the plastic strain component 
and the stress increment a further assumption on the material behaviour must 
be made. In particular it will be assumed that, the plastic strain increment is 
proportional to the stress gradient of a quantity termed the plastic potential 
Q, so that 

(7.28) 

where dA is a proportionality constant termed the plastic multiplier. A 
theoretical basis for this assumption is developed in Ref. 1. Equation (7.28) 
is termed the flow rule since it governs the plastic flow after yielding. The 
potential Q must be a function of Jz' and la' but as yet it cannot be deter
mined in its most general form. However the relation / = Q has a special 
significance in the mathematical theory of plasticity, since for this case 
certain variational principles and uniqueness theorems can be formulated. 
The identity / = Q is a valid one since it has been postulated that both are 
functions of Jz' and la' and such an assumption gives rise to an associated 
theory of plasticity. In this case (7.28) becomes 

if 
(d€lj)p = dA-, (7.29) 

oalj 

and is termed the normality condition since o//oalj is a vector directed normal 
to the yield surface at the stress point under consideration as shown in 
Fig. 7.6. It is seen thltt the components of the plastic strain increment are 
required to combine vectorially in n-dimensional space to give a vector 



ELASTO-PLASTIC PROBLEMS IN TWO DIMENSIONS 225 

Surface.J = k 

L-____ a, 

Clf af 
(jail 1 _ 

_ .I Cia, 
af 

Fig. 7.6 Geometrical representation of the normality rule of associated plasticity. 

which is normal to the yield surface. For the particular case off = h' we 
have 

c/ c'J2 1 

I 

-- = -- = at} . 
oa;} o ail 

(7.30) 

Then (7.29) becomes 
(7.31) 

which are known as the Prandtl-Reuss equations(l) and have been extensively 
employed in theoretical work. Experimental observations indicate that the 
normality condition is an acceptable assumption for metals, but the question 
of normality in rocks and soils is still open to debate(6) and is discussed 
further in Chapter 12. Thus on use of (7.26), (7.27) and (7.29) the complete 
incremental relationship between stress and strain for elasto-plastic defor
mation is found to be 

(7.32) 

7.2.4 Uniaxial yield test on a strain-hardening material 
Consider the uniaxial testing of an elasto-plastic material which produces 

the stress-strain curve shown in Fig. 7.7. The behaviour is initially elastic 
characterised by an elastic modulus E until yielding commences at the uni
axial yield stress ay. Thereafter the material response is elasto-plastic with the 
local tangent to the curve continually varying and is termed the elasto-plastic 
tangent modulus, ET. The hardening law k = k(l<) could just as easily be 
expressed in terms of the effective stress, ii (since it is proportional to h') to 
give, for the strain hardening hypothesis (7.24) 

ii = H( ip), (7.33) 
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Slope E,-Elasto-plastic 

Stress, U 
tangent modulus 

ll-----+--I:--------Y~ 
du 

T 

/--- Slope E-E1astic modulus 

Strain, f 

Fig. 7.7 Elasto-plastic strain hardening behaviour for the uniaxial case. 

or differentiating, 
dii 

- = H'(ip). 
dip 

(7.34) 

For the uniaxial case under consideration al = a, a2 = a3 = 0 and thus 
from (7.12) 

ii = v(!){ ail' ail'p/2 = a. (7.35) 

If the plastic strain increment in the direction of loading is d€p, then (dEl)P = 
d€p and since plastic straining is assumed to be incom}}ressible, Poisson's 
ratio is effectively 0.5 and (d€2)P = -M€p and (d€3)P = -id€p. Then from 
(7.23) the effective plastic strain becomes 

(7.36) 

Expressions (7.35) and (7.36) explain the apparent arbitrary constants 
employed in the definition of ii and ip, since these terms are required to 
become the actual stress and strain for uniaxial yielding. Using (7.35) and 
(7.36) then (7.34) becomes 

or 

(7.37) 
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Thus the hardening function H' can be, determined experimentally from a 
simple uniaxial yield test. (For numerical computation it will be shown in 
the next section that it is H' and not H that is required). 

7.3 Matrix formulation 
The theoretical expressions developed in Section 7.2 will now be converted 

to matrix form.(7,81 The yield function, first defined in (7.4), can be rewritten 

as 
(7.38) 

where (J is the stress vector and K is the hardening parameter which governs 
the expansion of the yield surface. In particular, from (7.20) and (7.21), 
dK = (JTdf.p for the work hardening hypothesis and from (7.24) dK = df.p 
for the strain hardening hypothesis. Rearranging (7.38) we get 

F(O',K) = f(O') -k(K) = O. 

By differentiating (7.39) we have 

of of 
dF = -dO'+-dK = 0, 

or 

with the definitions 

JJF: 
aT =,- = 

au 
and 

00' CK 

aTd(J-AdA = 0, 

[
oF 
oax' 

of aF of 
-, 
oay 

-,,-, 
6Tyz 

1 of 
A = -- --dK. 

dA OK 

(7.39) 

(7.40) 

(7.41) 

of OF] 
iiTxy , 

(7.42) 
CTZX' 

(7.43) 

The vector a is termed thefiow vector. Expression (7.32) can be immediately 
rewritten as 

aF 
df. = [D]-l d(J+dA-, 

O(J 
(7.44) 

where D is the usual matrix of elastic constants. Premultiplying both sides of 
(7.44) by dDT = aTD and eliminating aTd(J by use of (7.41) we obtain the 
plastic multiplier dA to be 

1 
dA = aTdDdf.. 

[A+aTDa] 
(7.45) 

Or substituting (7.45) into (7.44) we obtain the complete elasto-plastic 
incremental stress-strain relation to be 

(7.46) 
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with 

dD = Da. (7.47) 

This expression for D.p is similar in form to that for one dimensional appli
cation given in Page 28, Chapter 2. It now remains to determine the explicit 
form of the scalar term, A. The work hardening hypothesis is more general 
from a thermodynamic viewpoint(9) than the strain hardening hypothesis and 
will be employed for numerical work in this text. Therefore 

dK = uTdEp. (7.48) 

Equation (7.39) can be rewritten in the form 

F(u, K) = feu) - ay(K) = 0, (7.49) 

since the uniaxial yield stress, ay = V(3)k. Thus from (7.43) 

1 of 1 day 
A = -- --dK = - --dK. 

dA OK dA dK 
(7.50) 

Note that the full differential may be employed in the last term since ay is a 
function of K only. Employing the normality condition in (7.48) to express 
dEp we have 

(7.51) 

Or, for the uniaxial case u = ij = ay and dEp = dip where ij and ip are 
respectively the effective stress and strain. Thus (7.51) becomes 

dK = uydip = dAaTu. (7.52) 

Also, from (7.34) we have 
dij duy 
-=-=H'. 
dip dip 

(7.53) 

Using Euler's theorem t applicable to all homogeneous functions of order 
one, we can write from (7.49) 

Or from (7.42) 

of 
-u = uy. 
au 

Substituting (7.53) and (7.55) into (7.52) and (7.50) we obtain 

dA = dip 
A = H'. 

(7.54) 

(7.55)-

(7.56) 

t Euler's theorem on homogeneous functions stales that if f(x) is homogeneous and 
of degree n then (afl a.). x = nf 
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Thus A is obtained to be the local slope of the uniaxial stress/plastic strain 
curve and can be determined experimentally from (7.37). 

7.4 Alternative form of the yield criteria for numerical computation 
For numerical computations it is convenient to rewrite the yield function 

in terms of alternative stress invariants. This formulation is due to Nayak(lO) 
and its main advantage is that it permits the computer coding of the yield 
function and the flow rule in a general form and necessitates only the specifi
cation of three constants for any individual criterion. 

The principal deviatoric stresses <71', <72', <73' are given as the roots of the 
cubic equation(lll 

Noting the trigonometric identity 

sin3 0-isinO+lsin30 = 0, 

and substituting t = , sinO into (7.57) we have 

l ' 1 ' . 2. 3 
sm3 0--smO-- = o. 

,2 ,3 

Comparing (7.58) and (7.59) gives 

2 
, = -(12')112, 

V3 

sin 30 = 
413 3V3 

--= 
,3 2 

(7.57) 

(7.58) 

(7.59) 

(7.60) 

(7.61) 

The first root of (7.61) with 0 determined for 30 in the range +7T/2 is a 
convenient alternative to the third invariant, 13. By noting the cyclic nature 
of sin(30+2n7T) we have immediately the three (and only three) possible 
values of sin 0 which define the three principal stresses. The deviatoric 
principal stresses are given by t = , sinO on substitution of the three values 
of sinO in tum. Substituting for, from (7.60) and adding the mean hydro
static stress component gives the total principal stresses to be 

sin(0+2;) 

sin 0 (7.62) 

sin(o+ 4;) 

with 0"1> 172> <73 and - 7T/6 0;;; 00;;; 7T/6. The term 0 is essentially similar to the 
Lode parameter(ll r defined by r = - V(3) tan 8. The four yield criteria 
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considered in Section 7.2.1 can now be rewritten in terms of h, J2' and f) as 
follows. 

The Tresca yield criterion 
Substitute for 0"1 and 0"3 from (7.62) into (7.8) gives 

~iN).[sin(f)+ 2;)_sin(8+ 4;)] _ Y(K), 

or expanding we have 

2(N)1 cos f) = Y(K) = yI(3)k(K) = o"Y(K). (7.63) 

The physical interpretation of f) is evident from Fig. 7.2. 

The Von Mises yield criterion 
There is no change in this case since this yield function depends on lz' only. 

From (7.9) 

or 

(N)' = k(K), 

\l'3(N)1 = o"Y(K). 

The Mohr-Coulomb yield criterion 
Substituting from (7.62) for 0"1 and 0"3 into (7.16) results in 

(7.64) 

~h sin 4> +(N)112(COS e __ 1_ sin e sin 4» = c cos 4>. (7.65) 
3 \1'3 

The Drucker-Prager yield criterion 
There is no change for this criterion and we can write directly from (7.17) 

that 
ah -I (N)l = k', (7.66) 

where a and k' are defined in (7.18) or (7.19). 
In order to calculate the Dep matrix in (7.47) we require to express the flow 

vector a in a form suitable for numerical computation. We can always write 

of of alI of 0(N)I/2 of of) 
aT =- =- -+___ +--, 

0(1 alI 0(1 0(h')1/2 0(1 of) 0(1 
where 

Differentiating (7.61) we obtain 

of) -\1'3 [ I oi3 3J3 
0(1 = 2 cos 3f) (h')3/2 0(1 - (N)2 

C(N)1/2] . 

0(1 

Substituting this in (7.67) and using (7.61), we can then write 

(7.67) 

(7.68) 
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where 

ah 
a{r = - = {I, I, I, 0, 0, O} 

au 

and 

J' 
( " 2 2) az ay -TZY +3 ' 2( TZZ Tzy- az' TyZ), 

2( Tzy Tyz - ay' TZZ), 2( Tyz TZZ - az' T"'Y)}, 

aF ( aF 
Cl = ah' C2 = a(h')1/2 

-y'3 1 aF 
C3 =------

2 cos30 (N)3/2 ae 

tan30 aF) 
(N)1/2 ao ' 

231 

(7.69) 

(7.70) 

(7.71) 

Only the constants Cl, C2 and C3 are then necessary to define the yield 
surface. Thus we can achieve a simplicity of programming as only these three 
constants have to be varied between one yield surface and another. The 
constants Cj are given in Table 7.1 for the four yield criteria considered in 
Section 7.2.1 and other yield functions can be expressed in the same form 
with equal ease. 

Table 7.1 Constants defining the yield surface in a form suitable for numerical 
analysis. 

Yield Criterion C1 C2 Ca 

Tresca 0 2 cosO(l +tan 0 tan30) 
\1'3 sin 0 

J2' cos 30 

Von Mises 0 ,/3 0 

Mohr-Coul!>mb isin </> cos 0[(1 +tan 0 tan 30) (\1'3 sin 0 +cosO sin </» 

+sin</>(~an 30-tan 0)/v'3] (2J2' cos 30) 

Drucker-Prager a 1.0 0 
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7.S Basic expressions for two dimensional problems 
For two dimensional problems, the general expressions derived so far in 

this chapter have to be modified. Primarily the main alteration required is 
the deletion of the stress (and strain) components which vanish under the 
conditions of plane stress, plane strain or axial symmetry. We have only four 
non-zero stress or strain components, namely 

aT = {az, ay, Tzy, az}, 
{ax, ay, Tzy, O'z}, 
{ar, Gz, Trz, O'o} 

Uz = 0 
€z = 0 

for Plane Stress 
Plane Strain 
Axial Symmetry. (7.72) 

From Fig. 7.8 it is seen that the z direction is taken as the coordinate inde
pendent direction for plane stress and plane strain. It is also found con
venient to order the stress components as indicated in (7.72) with the stress 
in the coordinate independent direction being last. 

z 

(a) Plane stress (b) Plane strain 
I 

Axis of 
symmetry 

(e) Axial symmetry 

Fig.7.8 Two-dimensional applications showing coordinate systems employed. 

The explicit form of the elasticity matrix D can be written 

E(1-v) 
D = -:-:--~--:-

(1 +v)(1-2v) 

I 
I-v 

v 
I 

I-v 

o 

o 

I v 

I I-v 
I 
I v 
I
I I-v 

I-2v I 
000 

2(1-v) I 
---------1 

v v 
o I 

I-v I-v 

for plane strain 

and axial symmetry, 
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I v 0 10 

E v I 0 10 
D= I for plane stress. (7.73) 

l-v2 I-v I 
o 0 -10 

2 ______ -.J 
0 0 0 1 

Note that the components corresponding to the coordinate independent 
direction have been included for the plane stress and strain cases. These 
terms will be excluded for element stiffness formulation and only the first 
3 X 3 portion indicated will be employed. By eliminating the appropriate 
stress terms the expressions developed to date can be readily modified. The 
flow vector a becomes 

{ 
2F 2F of aFl 

aT = __ -- --, , , , 
oaa; 2ay aTXY aaz 

(7.74) 

with x, y and z being replaced by r, z and 8 respectively for the case of axial 
symmetry. The specific form of the vector, a is still given by (7.69) but in this 
case we have from (7.70) 

alT = {I, I, 0, I} 

J' J?' 
T {(" 2) ( " -) a3 = ay az +3' ax Uz +3 ' 

and the deviatoric stress invariants become, from (7.5) 

J2' = t( a ",'2 + ay'2 + uz'2) + T xy2 

J3' = az'( az'2 -J2'). 

(7.75) 

(7.76) 

To complete the prescription of the elasto-plastic matrix Dep given in (7.47) 
we require dD. Employing the relevant form of D from (7.73) in (7.47) results 
in, for plane strain and axial symmetry 
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E 
--al+Ml 
l+v 

Ga3 

(7.77) 

where G = E/2(1 +v) is the shear modulus and al .... a4 are the components 
of s. For plane stress we have 

E 
dD = --a2+M2 , 

I+v 

Ga3 

7.6 Singular points on the yield surface 

(7.78) 

For many yield surfaces the flow vector s is not uniquely defined for certain 
stress combinations. For example this arises at the corners of the Tresca and 
Mohr-Coulomb criteria located by 8 = ±30° and the direction of plastic 
straining there is indeterminate. Koiter(l2) has provided limits within which 
the incremental plastic strain vector must lie. Numerical difficulties will be 
encountered as 8 approaclies ±30° for the Tresca and Mohr-Coulomb laws 
since it is seen from Table 7.1 that for these values of 8 both C2 and Ca 
become indeterminate. This difficulty can be overcome by returning to the 
original expressions (7.63) for the Tresca law and (7.65) for the Mohr
Coulomb criterion and rewriting these for the explicit values 8 = +30°. 
Thus we have for the Tresca law 

y(3) (N)I = y( .. ) = y(3)k(K), 

and thus from (7.71) we have 

Cl = 0, Cz = y(3), C3 = 0 for 8 = ±30°. 

(7.79) 

(7.80) 

Physically, since (7.79) is the Von Mises criterion, this is equivalent to 
stating that the direction of plastic straining at the corners of the Tresca 
criterion is that given by the Von Mises circle which also passes through the 
corner (see Fig. 7.2). Similarly for the Mohr-Coulomb criterion we have 



ELASTO·PLASTIC PROBLEMS IN TWO DIMENSIONS 235 

from (7.65), 

~hSin</>+(N)1/2~(Y3_sin</»_ccos</> = 0 
3 2 y3 

for 8 = +300 

~h sin</>+(N)1/2~(y3+ Sin</» -c cos</> = 0 
3 2 y3 

8 = -300 

or from (7.71) we have 

1 
Cl = - sin</>, 

3 

1 ( sin </» 
C2 ="2 y3 - y3 ' Cs = 0 for 8 = +30° 

1 
Cl = - sin</>, 

3 

1 ( sin 4» 
C2 = - y3 +-- , Ca = 0 

2 y3 
8 = -30°. 

, (7.81) 

(7.82) 

The practical approach adopted in this text is to use the general expressions 
for CI, C2, Ca given in Table 7.1 for all values of 181,;;; 29° and to then 
employ either (7.80) for Tresca or (7.82) for Mohr-Coulomb in the vicinity 
of the corners. This makes the direction of straining unique, and also satisfies 
the Koiter requirements. Physically this artifice corresponds to a 'rounding 
off' of the yield surface corners. 

7.7 Finite element expressions and program structure 
The basic expressions required for solution can be again obtained by use of 

the principle of virtual work. Consider the solid, in which the internal stresses 
(I, the distributed loads/unit volume b and external applied forces f form an 
equilibrating field, to undergo an arbitrary virtual displacement pattern 
3d* which result in compatible strains IlE * and internal displacements Ilu *. 
Then the principle of virtual work requires that 

f!J (IlE*T (J _IlU*T b)d0. -lld*T f = O. (7.83) 

Then the normal finite element discretising procedure leads to the following 
expressions for the displacements and strains within any element 

Ilu* = Nlld* , IlE* = Blld* , (7.84) 

where Nand B are respectively the usual matrix of shape functions and the 
elastic strain matrix. Then the element assembly process gives 

fa Ild*T(BT(J-NT b)d0.-lld*Tf = 0, (7.85) 

where the volume integration over the solid is the sum of the individual 
element contributions. Since this expression must hold true for any arbitrary 
Ild* value 
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(7.86) 

For the solution of nonlinear problems as described in Chapter 2, (7.86) 
will not generally be satisfied at any stage of the computation, and 

(7.87) 

where '" is the residual force vector. For an elasto-plastic situation the 
material stiffness is continually varying, and instantaneously the incremental 
stress/strain relationship is given by (7.46). For the purpose of evaluating the 
material tangential stiffness matrix KT at any stage, the incremental form of 
(7.87) must be employed. Thus within an increment of load we have 

(7.88) 

Substituting for b.u from (7.46) results in 

(7.89) 

where 

KT = LBTDepBdn. (7.90) 

Expression (7.89) is essentially identical to (2.4) and therefore the solution 
procedures developed in Chapter 2 can be again employed. 

The programming philosophy adopted for this application follows that 
employed in Chapter 3 for one-dimensional elasto-plastic problems. It is 
suggested that the reader reviews the appropriate sections of Chapter 3 
before proceeding to the remainder of this chapter. The solution techniques 
discussed in Chapters 2 and 3 are utilised and in particular an initial stiffness 
algorithm, a tangential stiffness algorithm and two options of the combined 
initial/tangential stiffness approach are included. An outline of the programJs--
provided in Fig. 7.9. Many of the subroutines required are common to the 
corresponding linear elastic solution program and their function and structure 
have already been described. In particular, subroutines BMATS, CHECKl, 
CHECK2, DBE, ECHO, FRONT, GAUSSQ, JACOB2, LOADPS, MODPS, 
NODEXY and SFR2 have been described in SectIon 6.4. Also the standard 
nonlinear subroutines ALGOR, CONYER, INCREM and INPUT have 
been presented in Section 6.5. We will now formulate the additional sub-

. routines required and assemble them to form a working program. 
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I START I 
I 

DIMEN , 
Presets the variables associated with 
tbe dynamic dimensioning process. 

I 
INPUT 

JDpulS data defining lleometry. boundary 
conditions and material properties. 

I 
LOADPS 

Evaluates the equivalent nodal forces 
for pressure loadinJ. gravity loading. etc. 

I 
ZERO 

Sets to zero arrays required for 
accumuJatiort of data. 

INCREM 
Increments the applied loads according to 
specified load ractors. 

ALGOR 
Sets indicator to identify the type of 
solution algorithm e.g. initial stiffness, 
tangential stiffness. etc . 

.. 
§ STIFFP .. Calculates the element stiffnesses for elastic 

!Z 8 and elasto-plastic material behaviour. 
III ... 
~ 

z 
Q 

fRONT 

~ S Solves the simultaneous equation system by 

~ 
'" the rrontal method. t: 

I 
RESIDU INVAR 

I- Evaluates the effective , Calculates the residual stress level. 
force vector, l/I. 

YIELD and FLOWPL - Determines the flow vector • 
• , and also do. 

I 
CONVER 

Checks to see if the solution process 
NO has converlled. 

l YES 

OUTPUT 

Prints the results for this load increment. 

-
END I 

Fig. 7.9 Program organisation for two-dimensional elasto-plastic applications. 

7.8 Additional program subroutines 
A total of eight additional subroutines are required some of which will be 

common to other nonlinear applications considered in later chapters of this 
text. 
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7.8.1 Subroutine DIMEN 
The function of this subroutine is to preset the values of variables employed 

. in the program. In particular the variables associated with the dynamic 
dimensioning process described in Chapter 6 are defined. Thus if it is required 
to upgrade the magnitude of the maximum problem size which can be solved 
it is only necessary to modify the dimension statements in the main or master 
subroutine together with the variables set in subroutine DIMEN. All the 
variables preset in this subroutine have been previously defined and their 
specified values are indicated in the following listing. 

SUBROUTINE DlMEN(MBUFA,MELEM,MEVAB,MfRON,MMATS1MPOIN,MSTIF,MTOTG, 
• MTOTV,MVFIX,NDOFN,NPROP,NSTRE) 

c·················****······****·**····****··*·····**·._.*_ ... *_._",. 
C 

DIMN 1 
DIMN 2 
DIMN 3 
DIMN 4 
DIMN 5 
DIMN 6 
DIMN 7 
DIMN 8 
DIMN 9 
DIMN 10 
DIMN 11 
DIMN 12 
DIMN 13 
DIMN 14 
DIMN 15 
DIMN 16 
DIMN 17 
DIMN 18 
DIMN 19 
DIMN 20 
DIMN 21 
DIMH 22 

c •••• THIS SUBROUTINE pRESETS VARIABLES ASSOCIATED WITH DYNAMIC 
C DIMENSIONING 
C C"""""'-'-"-"""""-'-"""'-""'-'-"""-._.1_ •••• ' ••• , •• 

MBUFA = 10 
MELEM=40 
MfRON=80 
MMATS = 5 
MPOIN=150 
MSTIF=(MfRON*MfRON-MfRON)/2.0+MFRON 
MTOTG = MELEM*9 
NDOFN = 2 
MTOTV = MPOIN*NDOFN 
MVFIX=30 
NPROP=7 
MEVAB = NDOFN*9 
RETURN 
END 

7.8.2 Subroutine ZERO 
This subroutine merely sets to zero the contents of several arrays employed 

in the program. These arrays will be employed to accumulate data as the 
incremental and iterative process continues and they therefore require to be 
initialised to zero. This subroutine is self-explanatory and is presented 
without further comment. 

SUBROUTINE ZERO(ELOAD, MELEM, MEVAB, MPOIN. MTOTG, MTOTV, NDOFN, NELEM, ZR01 1 
NEVAB,NGAUS , NSTR1 ,NTOTG,EPSTN,EFFST, ZR01 2 
NTOTV ,NVFIX , STRSG , TDISP, TFACT, ZR01 3 

• TLOAD, TREAC ,MVFIX) ZRO 1 4 
C ••• * ••••••••••••••• * •••••••• * •••••••••••••••••• * •••••••••••• *........ ZR01 5 
C ZR01 6 
c •••• THIS SUBROUTINE INITIALISES VARIOUS ARRAYS TO ZERO ZR01 7 
C ZR01 8 
c •••••• *.............................................................. ZR01 9 

DIMENSION ELOAD(MELEM,MEVAB),STRSG(4,MTOTG),TDISP(MTOTV), ZR01 10 
• TLOAD(MELEM,MEVAB), TREAC(MVFIX,2) ,EPSTN(MTOTG), ZR01 11 

EFFST(MTOTG) ZR01 12 
TFACT=O.O ZR01 13 
DO 30 IELEM=l,NELEM ZR01 14 
DO 30 IEVAB=l,NEVAB ZR01 15 
ELOAD<IELEM,IEVAB)=O.O ZR01 16 
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30 TLOAD(IELEM,IEVAB)=O.O 
00 110 ITOTV=l,NTOTV 

ljQ TDISP(ITOTV)=O.O 
00 50 IVFIX= 1 , NVFIX 
00 50 IDOFN=l,NDOFN 

50 TREAC(IVFIX,IOOFN)=O.O 
00 60 ITOTG= 1 ,NTOTG 
EPSTN(ITOTG)=O.O 
EFFST(ITOTG)=O.O 
00 60 ISTR1=1,NSTR1 

60 STRSG(ISTR1,ITOTG)=O.O 
RETURN 
END 

7.8.3 Subroutine INVAR 

ZR01 17 
ZR01 18 
ZR01 19 
ZR01 20 
ZR01 21 
ZR01 22 
ZR01 23 
ZR01 24 
ZR01 25 
ZR01 26 
ZR01 zr 
ZR01 28 
ZR01 29 

The role of this subroutine is to evaluate the various functions of stress 
used to indicate either initiation of or continuing plastic deformation for the 
four yield criteria considered in this text. More explicitly we need to calculate 
the items listed in Table 7.2. 

Table 7.2 Effective stress and uniaxial yield stress levels for the yield criteria 
induded in the elasto-plastic computer code. 

Uniaxial 
Stress level (or equivalent 

Equation No. Yield criterion (effective stress) yield stress) 

(7.63) Tresca 2( J2')1/2 cos 8 ay 

(7.64) Von Mises \1'3 (J2')1/2 ay 

(7.65) Mohr--Coulomb 1 J1 sin q, + { J2')1/2 C cos q, 
X (cos 8- sin 8 sinq,!v'3) 

(7.66) Drucker-Prager a J1 + (J2')1/2 k' 

Whether or not plastic deformation takes place at any point is governed by 
its stress level as monitored by the functions in the third column of Table 7.2. 
For plastic flow to occur this stress level must achieve the values given in the 
final column of Table 7.2. For the Tresca and Von Mises criteria this value is 
precisely the uniaxial yield stress but for the Mohr-Coulomb and Drucker
Prager criteria it is an equivalent value defined by the stress-independent 
terms in (7.65) and (7.66) respectively. Note that all the values given in the 
Dna1 column of Table 7.2 can be functions of the hardening parameter, K. 

Subroutine INV AR merely computes the effective or deviatoric stress 
components and then evaluates the appropriate function in the third column 
of Table 7.2 depending on the yield criterion being employed. The choice of 
yield criterion is governed by the parameter NCRIT, input in subroutine 
INPUT, and the available options are provided below 
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NCRIT = 1 Tresca yield criterion 
2 Von Mises 
3 Mohr-Coulomb 
4 Drucker-Prager 

Subroutine INV AR is now presented and descriptive notes provided. 

SUBROUTINE INVAR(DEVIA,LPROP,HHATS!NCRIT,PROPS,SINT3,STEFF,STEMP, 
• THETA, VARJ2,YIELD) 

C··········**···***·······························**·· ...... _ ........ . 
C 
c •••• THIS SUBROUTINE EVALUATES THE STRESS INVARIANTS AND THE CURRENT 
C VALUE Of THE YIELD FUNCTION 
C 
C··················································*·· •••••••• ******** 

DIMENSION DEVIA(4),PROPS(HHATS,7),STEMP(4) 
ROOT3=1.73205080757 
SMEAN=(STEMP(1)+5TEMP(2)+5TEMP(4»/3.0 
DEVIA(l)=STEMP(l)-SMEAN 
DEVIA(2)=STEMP(2)-SMEAN 
DEVIA(3)=STEMP(3) 
DEVIA(4)=STEHP(4)-SMEAN 
VARJ2:DEVIA(3)'DEVIA(3)+O.5'(DEVIA(1)*DEVIA(1)+DEVIA(2)*DEVIA(2) 

• +DEVIA(4)'DEVIA(4» 
VARJ3:DEVIA(4)*(DEVIA(4)*DEVIA(4)-VARJ2) 
STEFF=SQRT(VARJ2) 
IF{STEFF .EQ.O.O) GO TO 10 

-SINT3=-3.0*ROOT3*VARJ3/(2.0*VARJ2*STEFF) 
IF(SINT3.GT.1.0) SINT3=1.0 
GO TO 20 

10 SINT3=O.0 
20 CONTINUE 

IF(SINT3.LT.-1.0) SINT3=-1.0 
IF(SINT3.GT.1.0) SINT3=1.0 
THETA=ASIN(SINT3)/3.0 
GO TO (1,2,3,4) NCRIT 

C*** TRESCA 
1 YIELD=2.0*COS(THETA)*STEFF 

RETURN 
c*n VON IUSES 

2 YIELD:ROOT3*STEFF 
RETURN 

Cu* HOIIR-COULOMB 
3 PHlRA=PROPS(LPROP,7)*0.017453292 

SNPHI=SIN(PHlRA) 
YIELD:SMEAN*SNPHI+STEFF*(COS(THETA)-SIN(THETA)*SNPHIIROOT3) 
RETURN 

C*,* DRUCKER-PRAGER 
4 PHIRA:PROPS(LPROP,7)*0.017453292 

SNPHI:SIN(PHlRA) 
YIELD:6.0·SMEAN·SNPHI/(ROOT3'(3.0-SNPHI»+STEFF 
RETURN 
END 

INVR 1 
INVR 2 
INVR 3 
INVR 4 
INVR 5 
INVR 6 
INVR 7 
INVR 8 
INVR 9 
INVR 10 
INVR 11 
INVR 12 
INVR 13 
INVR 14 
INVR 15 
INVR 16 
INVR 17 
INVR 18 
INVR 19 
INVR 20 
INVR 21 
INVR 22 
INVR 23 
INVR 24 
INVR 25 
INVR 26 
INVR 27 
INVR 28 
INVR 29 
INVR 30 
INVR 31 
INVR 32 
INVR 33 
INVR 34 
INVR 35 
INVR 36 
INVR 37 
INVR 38 
INVR 39 
INVR 40 
INVR 41 
INVR 42 
INVR 43 
INVR 44 
INVR 45 
INVR 46 

INVR 11-15 

INVR 16-17 
INVR 18 

Compute the deviatoric stresses according to (7.7) with the 
order of the components being as indicated in (7.72). 
Calculate the second deviatoric stress invariant, 12'. 
Calculate the third deviatoric stress invariant, la'. 
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INVR 19 
INVR 20-26 
INVR27 

INVR28 
INVR 30 

INVR 33 

INVR 36-38 

INVR 41-43 

Compute, (N)*. 
Evaluate sin38 according to (7.61). 
Then compute, 6. Note that the principal value is obtained as 
required in Section 7.4. 
Branch according to the yield criterion being employed. 
Evaluate the yield function in Column 3, Table 7.2 for the 
Tresca criterion. 
Evaluate the yield function in Column 3, Table 7.2 for the Von 
Mises criterion. 
Evaluate the yield function in Column 3, Table 7.2 for the 
Mohr-Coulomb criterion. 
Evaluate the yield function in Column 3, Table 7.2 for the 
Drucker-Prager criterion. 

7.8:4.1 Subroutine YIELDF 
The function of this subroutine is to determine the flow vector a defined 

in (7.74). Vector a is given by (7.69) where Cl, C2 and Ca are given in Table 7.1 
for the various yield criteria considered and the vectors aI, a2 and aa are 
given by (7.75) for two dimensional applications. For the Tresca and Mohr
Coulomb yield surfaces which have singular points at 8 = ±30° the alterna
tive values of CI, C2 and Ca given respectively in (7.80) and (7.82) must be 
employed. 

Subroutine YIELDF is now presented and described. 

SUBROUTINE YIELDf(AVECT,DEVIA,LPROP, MMATS , NCRIT1 NSTR 1 , 
• PROPS,SINT3,STEff,THETA,VARJ21 

C· .. ·····.·***······················**··········******· ... *., •• _ •• , ••• 
C 

1 
2 
3 
4 
5 
6 

YLDf 
YLDf 
YLDf 
YLDf 
YLDf 
YLDf 
YLDf 
YLDf 
YLDf 9 
YLDf 10 
YLDf 11 
YLDf 12 
YLDf 13 
YLDf 14 
YLDF 15 
YLDf 16 
YLDf 17 
YLDf 18 
YLDf 19 
YLDf 20 
YLDf 21 
YLDf 22 
YLDf 23 
YLDf 24 
YLDf 25 
YLDf 26 
YLDf 27 
YLDf 28 
YLDf 29 
YLDf 30 

C .... THIS SUBROUTINE EVALUATES THE fLOW VECTOR 
C 
C······· .... ······· ............. · ................... ·· ............... . 

C 

DIMENSION AVECT(4),DEVIA(4),PROPS(MMATS,7), 
VECA1(4),VECA2(4),VECA3(4) 

IfCSTEff.EQ.O.O) RETURN 
FRICT=PROPS(LPROP,7) 
TANTH=TAN(THETA) 
TANT3=TAN(3.0·THETA) 
SlNTH=S!N(THETA) 
COSTH=COS(THETA) 
COST3=COS(3.0·THETA) 
ROOT3=1.73205080757 

C·" CALCULATE VECTOR A 1 
C 

C 

VECA1(1)=1.0 
VECA1(2):1.0 
VECA1(3)=0.0 
VECA1(4)=1.0 

C··· CALCULATE VECTOR A2 
C 

DO 10 ISTR1=1,NSTR1 
10 VECA2CISTR1)=DEVIA(ISTR1)/(2.0.STEff) 

VECA2(3)=DEVIA(3)/STEff 

~ 
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C YLDF 31 
C... CALCULATE VECTOR A3 YLDF 32 
C YLDF 33 

VECA3(1):DEVIA(2)·DEVIA(4}+VARJ2I3.0 YLDF 34 
VECA3(2}=DEVIA(1}·DEVIA(4}+VARJ2/3.0 YLDF 35 
VECA3(3)=-2.0·0EVIA(3)·OEVIA(4} YLDF 36 
VECA3(4):DEVIA(1)·OEVIA(2)-DEVIA(3)*OEVIA(3)+VARJ2I3.0 YLDF ~~ GO TO (1,2,3,4) NCRIT YLDF 

C YLDF 39 
C"* TRESCA YLDF 40 
C YLDF 41 

1 CONS1=0.0 YLDF 42 
ABTHE=ABS(THETA*57.29577951308} YLDF 43 
IF(ABTHE.LT.29.0) GO TO 20 YLDF 44 
CONS2=ROOT3 YLDF 45 
CONS3=0.0 YLDF 46 
GO TO 40 YLDF 47 

20 CONS2=2.0*(COSTH+SINTH*TANT3) YLDF 48 
CONS3=ROOT3*SINTH/(VARJ2*COST3) YLDF 49 
GO TO 40 YLDF 50 

C YLDF 51 
C". VON MISES YLDF 52 
C YLDF 53 

2 CONS1=0.0 YLDF 54 
CONS2=ROOT3 YLDF 55 
CONS3=0.0 YLDF 56 
GO TO 40 YLDF 57 

C YLDF 58 
C*** MOHR-COULOMB YLDF 59 
C YLDF 60 

3 CONS1=SIN(FRICT*0.017453292)/3.0 YLDF 61 
ABTHE=ABS(THETA·57.29571951308) YLDF 62 
IF(ABTHE.LT .29.0) GO TO 30 YLDF 63 
CONS3=0.0 YLDF 64 
PLUMI=1.0 YLDF 65 
IF(THETA.GT.O.O) PLUMI=-1.0 YLDF 66 
CONS2=0.5*(ROOT3+PLUMI*CONS1*ROOT3} YLDF 67 
GO TO 40 YLDF 68 

30 CONS2=COSTH.«1.0+TANTH*TANT3)+CONS1*(TANT3-TANTH)*ROOT3) YLDF 69 
CONS3=(ROOT3*SINTH+3.0*CONS1*COSTH)/(2.0*VARJ2*COST3) YLDF 70 
GO TO 40 YLDF 71 

C YLDF 72 
C··. DRUCKER-PRAGER YLDF 73 
C YLDF 74 

4 SNPHI=SIN(FRICT*0.017453292) YLDF 75 
CONS1=2.0*SNPHI/(ROOT3*(3.0-SNPHI» YLDF 76 
CONS2=1.0 YLDF 77 
CONS3=0.0 YLDF 78 

40 CONTINUE YLDF 79 
DO 50 ISTR1=1,NSTR1 YLDF 80 

50 AVECT(ISTR1)=CONS1*VECA1(ISTR1)+CONS2*VECA2(ISTR1}+CONS3* YLDF 81 
• VECA3( ISTR1) YLDF 82 

RETURN YLDF 83 
END YLDF 84 

YLDFIO For the (unlikely) case of a Gauss point with zero stress 
(identified by N = Js' = 0) avoid evaruation of the flow 
vector. 

YLDF II Identify FRICT as the friction angle'" for Mohr-Coulomb 
and Drucker-Prager materials. 
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YLDF 12-13 Evaluate tan 0 and tan 30. 
YLDF 14-16 Evaluate sinO, cosO and cos30. 
YLDF 17 Compute Y(3). 
YLDF 21-24 Evaluate al according to (7.75). 
YLDF 28-30 Evaluate a2 according to (7.75). Note that STEFF and DEVIA 

are transferred via the argument list from subroutine 
INVAR. 

YLDF 34-37 Evaluate a3 according to (7.75). 
YLDF 38 Branch according to the yield criterion being employed. 
YLDF 41-49 Compute the constants Cl, C2 and C3 for a Tresca material 

according to Table 7.1. In the vicinity of a singular point, 
identified by 101>29.00 evaluate Cl, C2 and C3 according to 
(7.80). 

YLDF 53-55 Compute CI, C2 and C3 for a Von Mises material according to 
Table 7.1. 

YLDF 61--67 Compute Cl, C2 and C3 for the Mohr-Coulomb criterion. 
In the vicinity of a singular point defined by 101> 29.0 0 
evaluate Cl, C2 and C3 according to (7.82). 

YLDF 75-78 Calculate Cl, C2 and C3 for the Drucker-Prager yield criterion. 
YLDF 80--82 Evaluate a according to (7.69). 

7.8.4.2 Subroutine FLOWPL 
The main purpose of this subroutine is to determine the vector dn according 

to either (7.77) or (7.78) depending on the type of analysis being undertaken. 
In the program presented in this chapter only a linear form of strain hardening 
is explicitly considered, with the coding of alternative models being left as an 
exercise for the reader. In this case the term H' in (7.37) becomes a constant 
and is specified as a material property. 

Subroutine FLOWPL is now listed and described. 

SUBROUTINE FLOWPL(AVECT,ABETA,DVECT,NTYPE,PROPS,LPROP,NSTR1,MMATS)FLPL 1 
C· .. • ••••••••••••• * •• ** •• ********.*.* ••••• *.**.*.*.* ••• * •• * •••• *** •• *. FLPL 2 
C FLPL 3 
e*". THIS SUBROUTINE EVALUATES THE PLASTIC D VECTOR FLPL 4 
C FLPL 5 
e* .......... * •••• * •••••••• ********************.**.*.*.********* ••• *... FLPL 6 

DIMENSION AVECT(4) ,DVECT(4) ,PROPS(MMATS,7) FLPL 7 
YOUNG:PROPS(LPROP,1) FLPL 8 
POISS:PROPS(LPROP,2) FLPL 9 
ilARDS:PROPS(LPROP,6) FLPL 10 
FMUL1:YOUNG/(1.0+POISS) FLPL 11 
IF(NTYPE.EQ.ll GO TO 60 FLPL 12 
FMUL2=YOUNG*POISS*(AVECT(1)+AVECT(2)+AVECT(4»/«1.0+POISS)* FLPL 13 

• (1.0-2.0*POISS» FLPL 14 
DVECT (1 ) =FMUL 1 • A VECT ( 1) +fMUL2 FLPL 15 
DVECT (2) =FMUL 1. AVECT (2) +fHUL2 FLPL 16 
DVECT(3)=0.5·AVECT(3)·YOUNG/(1.0+POISS) FLPL 17 
DVECT(4l:FMUL1*AVECT(4)+fMUL2 FLPL 18 
GO TO 70 FLPL 19 
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60 FMUL3=YOUNG·POISS·(AVECT(1)+AVECT(2»/(1.0-POISS·POISS) 
DVECT(1)=FMUL1·AVECT(1)+FMUL3 
DVECT(2) =FMUL1·AVECT(2) +FMUL3 
DVECT(3)=0.5·AVECT(3)·YOUNG/(1.0+POISS) 
DVECT(4)=FMUL1·AVECT(4)+FMUL3 

70 DENOM=HARDS 
DO 80 ISTR1=1,NSTR1 

80 DENOM=DENOM+AVECT(ISTR1)·DVECT(ISTR1) 
-ABETA=1.0/DENOM 
RETURN 
END 

Identify YOUNG as the elastic modulus, E. 
Identify POISS as the Poisson's ratio, v. 

Identify HARDS as H' for linear strain hardening. 

F1.PL 20 
F1.PL 21 
F1.PL 22 
F1.PL 23 
F1.PL 24 
F1.PL 25 
F1.PL 26 
F1.PL 27 
F1.PL 28 
FLPL 29 
F1.PL 30 

FLPL8 
FLPL9 
FLPLlO 
FLPL 13-18 Evaluate dD according to (7.77) for plane strain and axi

symmetric situations. 
FLPL20-24 
FLPL26-28 

Evaluate dD according to (7.78) for plane stress problems. 
Compute l/(H' + dDT a) for later evaluation of the elasto
plastic matrix Dep in (7.47). 

7.S.5 Subroutine STIFFP 
This subroutine evaluates the stiffness matrix for each element in turn and 

differs from the linear elastic version, described in Section 6.3.2, only in that 
the elasticity matrix D is replaced (for the tangential stiffness approach at 
least) by the elasto-plastic matrix Dep defined in (7.47). This subroutine is 
called only when the element stiffnesses are to be reformulated as controlled 
by variable KRESL defined in subroutine ALGOR. Obviously the element 
stiffnesses must be calculated for the first iteration of the first load increment 
and elastic behaviour must be assumed. Every other time this subroutine is 
accessed the stiffnesses are to be recalculated to account for any plastic 
deformation of the material and consequently the Dep matrix must be em
ployed. Apart from this c/;lange the element stiffness formulation process is 
identical to that for elastic materials as described in Section 6.3.2. 

Subroutine STIFFP will now be described and explanatory notes provided. 

SUBROUTINE STIFFP(COORD,EPSTN.IINCS,LNODS,MATNO,MEVAB,HHATS, 
. MPOIN,MTOTV,NELEM,NEVAB,NGAUS,NNODE,NSTRE, 

NSTR1,POSGP,PROPS,WEIGP,MELEM,MTOTG, 
• STRSG NTYPE NCRIT) c········· .. ·· ............... , ..... , ............ ··· .. · ............... . 

C 
C···· THIS SUBROUTINE EVALUATES THE STIFFNESS MATRIX FOR EACH ELEMENT 
C IN TURN 
C 
C· .. •••••••••••••• ••• • ••••••••••••••••••••• •••• •• •••••• ••••••••••••••• 

DIMENSION BHATX(4,18),CARTD(2,9),COORD(HPOIN,2),DBHAT(4,18), 
DERIV(2,9) ,DEVIA(4) ,DHATX(4,4) , 
ELCOD(2,9),EPSTN(MTOTG),ESTIF(18,18) ,LNODS(MELEM,9) , 
MATNO(MELEM) ,POSGP(4),PROPS(HHATS,7) ,SHAPE(9), 
WEIGP(4) ,STRES(4) ,STRSG(4,MTOTG), 
DVECT(4),AVECT(4),GPCOD(2,9) 

TWOPI=6.283185308 
REWIND 1 

STFP 1 
STFP 2 
STFP 3 
STFP 4 
STFP 5 
STFP 6 
STFP 7 
STFP 8 
STFP 9 
STFP 10 
STFP 11 
STFP 12 
STFP 13 
STFP 14 
STFP 15 
STFP 16 
STFP 17 
STFP 18 
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KGAUS=O STFP 19 
C STFP 20 
;C... LOOP OVER EACH ELEMENT STFP 21 
C STFP 22 

DO 70 IELEM=1,NELEM STFP 23 
LPROP=MATNO(IELEM) STFP 24 

C STFP 25 
CfI' EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS STFP 26 

.C STFP 27 
DO 10 INODE=1,NNODE STFP 28 
LNODE=IABS(LNODS(IELEM,INODE» STFP 29 
IPOSN=(LNODE-l)*2 STFP 30 
DO 10 IDIME=1,2 STFP 31 
IPOSN=IPOSN+l STFP 32 

10 ~C9P(IDIME,INODE)=CooRD(LNODE,IDIME) STFP 33 
THICK=PROPS(LPROP, 3) STFP 34 

C STFP 35 
:C". INITIALIZE THE ELEMENT STIFFNESS MATRIX STFP 36 
C STFP 37 

DO 20 IEVAB=1,NEVAB STFP 38 
DO 20 JEVAB=1,NEVAB STFP 39 

20 ESTIF(IEVAB,JEVAB)=O.o STFP 40 
KGASP=O STFP 41 

C STFP 42 
(; ... ENTER LOOPS FOR AREA NUMERICAL INTEGRATION STFP 43 
C STFP 44 

DO 50 IGAUS=1,NGAUS STFP 45 
EXISP=POSGP(IGAUS) STFP 46 
DO 50 JGAUS=1,NGAUS STFP 47 
ETASP=POSGP(JGAUS) STFP 48 
KGASP=KGASP+l STFP 49 
KGAUS=KGAUS+l STFP 50 

e STFP 51 
e'" EVALUATE THE D-MATRIX STFP 52 
(; STFP 53 

CALL MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS) STFP 54 
C STFP 55 
C· .. EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL VOLUME,ETC. STFP 56 
C STFP 57 

CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) STFP 58 
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP, STFP 59 

NNODE,SHAPE) STFP 60 
DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) STFP 61 
!F(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI'GPCOD(1,KGASP) STFP 62 
!F(THICK.NE.O.O) DVOLU=DVOLU*THICK STFP 63 :e STFP 64 

e'" EVALUATE THE B AND DB MATRICES STFP 65 
C STFP 66 

CALL BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NTYPE,KGASP) STFP 67 
!F(IINCS.EQ.l) GO TO 80 STFP 68 
~(§PSTN'!ffiA"SlsfR 0.0) GO TO 80. STFP 69 

o ISTR1=1,N , STFP 70 
·90 STRES(ISTR1)=STRSG(ISTR1,KGAUS) STFP 71 

CALL INVAR(DEVIA,LPROP,MMATS
I
NCRIT,PROPS.SINT3,STEFF,STRES, STFP 72 

• THETA,VARJ2,YIELD STFP 73 
CALL YIELDF(AVECT,DEVIA,LPROP, MMATS, NCRIT. NSTRl , STFP 74 

• PROPS.SINT3.STEFF,THETA,VARJ2) STFP 75 
CALL FLOWPL(AVECT,ABETA,DVECT,NTYPE.PROPS,LPROP,NSTR1,MMATS) STFP 76 
DO 100 ISTRE= 1 ,NSTRE STFP 77 
DO 100 JSTRE=1,NSTRE STFP 78 

100 DMATX(ISTRE,JSTRE)=DMATX(ISTRE,JSTRE)-ABETA*DVECT(ISTRE). STFP 79 
• DVECT(JSTRE) STFP 80 

80 CONTINUE STFP 81 CALL DBE(BMATX,DBMAT,DMATX,MEVAB,NEVAB,NSTRE,NSTR1) STFP 82 
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C 
C... CALCULATE THE ELEMENT STIFFNESSES 
C 

STFP 83 
STFP 84 
STFP B5 
STFP 86 
STFP B7 
STFP 88 
STFP 89 
STFP 90 
STFP 91 
STFP 92 
STFP 93 
STFP 94 
STFP 95 
STFP 96 
STFP 97 
STFP 98 
STFP 99 
STFP 100 
STFP 101 
STFP 102 
STFP 103 
STFP 104 
STFP 105 

DO 30 lEV AB= 1 , NEV AB 
DO 30 JEVAB=IEV@.,NEVAB I 
DO 30 ISTRE~STR'E-- - • 

30 ESTIF(IEVAB,JEVAB)=ESTIF(IEVAB,JEVAB)+BMATX(ISTRE,IEVAB)* 
• DBMAT(ISTRE,JEVAB)*DVOLU 

50 CONTINUE 
C 
C*·· CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX 
C 

DO 60 IEVAB=l,NEVAB 
DO 60 JEVAB=l,NEVAB 

60 ESTIF(JEVAB,IEVAB)=ESTIF(IEVAB,JEVAB) 
C 
C··· STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C COORDINATES FOR EACH ELEMENT ON DISC FILE 
C 

WRITE ( 1) ESTIF 
70 CONTINUE 

RETURN 
END 

STFP 17 
STFP 18 

STFP19 

STFP 23 
STFP 24 
STFP 28-33 

STFP 34 
STFP 38-40 
STFP 41 

STFP 45-48 

STFP 49-50 
STFP 54 
STFP 58 

STFP 59-60 

STFP 61-63 

Compute the value of 21T. 
Rewind the disc file on which the element stiffness matrices will 
be stored in turn. 
Set to zero the counter which indicates the overall Gauss 
point location. So KGAUS ranges from 1 to NGAUS* 
NGAUS*NELEM. 
Enter the loop over each element in the structure. 
Identify the material property type of the current element. 
Store the element nodal coordinates in the local array ELCOD 
for convenient use later. 
Identify the element thickness. 
Zero the element stiffness array. 
Set to zero the element Gauss point counter. So KGASP 
ranges from 1 to NGAUS*NGAUS. 
Enter the numerical integration loops and locate the position 
(g, T)) of the current point. 
Increment the local and global Gauss point counters. 
Call subroutine MODPS to evaluate the elasticity matrix, D. 
Evaluate the shape functions Nt and the derivatives aNt/ag, 
aNt/aT) for the current Gauss point. 
Evaluate the Gauss point coordinates, GPCOD(IDIME, 
KGASP), the determinant of the Jacobian matrix, I J I and the 
Cartesian derivatives of the shape functions aNt/ax, aNt/ay 
(or aNt/or, oNJ/az for axisymmetric problems). 
Calculate the elemental volume for numerical integration as 
I J I W; W

71 
taking care to multiply by the appropriate thickness 

or by 21Tr for axisymmetric problems. Note that if a zero 
thickness is specified it is automatically taken to be unity. 
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STFP 67 
STFP 68 

STFP 69 

STFP 70-71 
STFP 72-76 

STFP 77-80 
STFP 82 
STFP 86-90 

STFP 91 
STFP 95-97 

STFP 102 
STFP 103 

Evaluate the B matrix. 
For the first time avoid the replacement of D by D.p , as 
defined in (7.47). 
Also for Gauss points at which the behaviour is elastic avoid 
the replacement of D by D.p. 
Store the total current stresses in the array STRES. 
Call subroutines INVAR, YIELDF and FLOWPL to evaluate 
the vectors a, (AVECT) and dD, (DVECT) and ABETA = 
l/(H' +dDTa). 
Evaluate Dep according to (7.47). 
Evaluate DepB. 
Compute the upper triangle of the element stiffness matrix as 

End of loop for numerical integration. 
Complete the lower triangle of the element stiffness matrix by 
symmetry. 
Store the element stiffness matrix on disc file I. 
Return to process the next element. 

7.8.6 Subroutine LINEAR 
The purpose of this subroutine is merely to determine the stresses from 

given displacements assuming linear elastic behaviour. This subroutine is 
employed in the residual force calculation to be described in the next section. 
The element displacement components, ELDIS(IDOFN, INODE) are 
entered into the subroutine, the strain components at the Gauss point under 
consideration, STRAN(ISTRI) calculated and finally the stress components 
are evaluated and stored in STRES(ISTR1). 

The subroutine is now listed and described. 

SUBROUTINE LINEAR(CARTD ,DMATX, ELDIS, LPROP, MMATS , NDOFN ,NNODE\NSTRE ,LI NR 1 
• NTYPE,PROPS,STRAN,STRES,KGASP,GPCOD,SHAPE LINR 2 c···.................................................................. LINR 3 

C LINR 4 
CS··· THIS SUBROUTINE EVALUATES STRESSES AND STRAINS ASSUMING LINEAR LINR 5 
C ELASTIC BEHAVIOUR LINR 6 
C LINR 7 
C·· ................ ***** ••••• ******************** •• *********** •• ****.* LINR 8 

DIMENSION AGASH(2,2) ,CARTD(2,9) ,DMATX(4,4) ,ELDIS(2,9) , LINR 9 
PROPS(MMATS, 1) ,STRAN(4) ,STRES(4), LINR 10 
GPCOD(2,9) ,SHAPE(9) LINR 11 

POISS=PROPS( LPROP ,2) LINR 12 
00 20 IDOFN=1,NDOFN LINR 13 
00 20 JDOFN= 1 ,NDOFN LINR 14 
BGASH=O.O LINR 15 
00 10 INODE= 1 , NNODE LINR 16 
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C 

10 BGASH=BGASH+CARTD(JDOFN,INODE)'ELDIS(IDOFN,INODE) 
20 AGASH(IDOFN,JDOFN)=BGASH 

C'" CALCULATE THE STRAINS 
C 

C 

STRAN(1)=AGASH(1,1) 
STRAN(2) =AGASH(2 ,2) 
STRAN(3)=AGASH(1,2)+AGASH(2,1) 
STRAN(4)=0.0 
DO 30 INODE=1,NNODE 

30 STRAN(4)=STRAN(4)+ELDIS(1,INODE)'SHAPE(INODE)/GPCOD(1,KGASP) 

C'" AND THE CORRESPONDING STRESSES 
C 

DO 40 ISTRE=1 1 NSTRE 
STRES(ISTRE)=u.O 
DO 40 JSTRE=1,NSTRE 

40 STRES(ISTRE)=STRES(ISTRE)+DMATX(ISTRE,JSTRE)*STRAN(JSTRE) 
IF(NTYPE.EQ.1) STRES(4)=0.0 
IF(NTYPE.EQ.2) STRES(4)=POISS*(STRES(1)+5TRES(2» 
RETURN 
END 

LINR 17 
LINR 18 
LINR 19 
LINR 20 
LINR 21 
LINR 22 
LINR 23 
LINR 24 
LINR 25 
LINR 26 
LINR 27 
LINR 28 
LINR 29 
LINR 30 
LINR 31 
LINR 32 
LINR 33 
LINR 34 
LINR 35 
LINR 36 
LINR 37 
LINR 38 

LINR 12 
LINR 13-18 

Identify POISS as the Poisson's ratio of the element material. 
Calculate the Cartesian derivatives of the Gauss point dis
placement components aulax, aulay, avlax, avlay. 

LINR 22-27 Evaluate the strain components at the Gauss point according to 

LINR 31-34 Calculate the stress components, assuming elastic behaviour, 
according to tT = DE. 
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LINR 35-36 For a plane stress problem set cr. = 0 and set cr. = v(crx+crv) 

for plane strain situations. 

7.S.7 Subroutine RESIDU 
The function of this subroutine is to evaluate the nodal forces which are 

statically equivalent to the stress field satisfying elasto-plastic conditions. 
Comparison of these equivalent nodal forces with the applied loads gives the 
residual forces, according to (2.4), and this operation is carried out in sub
routine CONYER. Therefore RESIDU performs the same task for two
dimensional continua as subroutine REFOR3 undertook for uniaxial 
situations, and the reader is urged to review Section 3.12.2 before proceeding 
further. The logic applied in this subroutine is almost identical to that 
applied in Section 3.12.2. Below we reproduce the essential steps in an 
abbreviated form and expand only the steps which pertain to the case of two 
dimensional solids. 

During the application of an increment of load an element, or part of an 
element, may yield. All stress and strain quantities are monitored at each 
Gaussian integration point and therefore we can determine whether or not 
plastic deformation has occurred at such points. Consequently an element 
can behave partly elastically and partly elasto-plastically if some, but not all, 
Gauss points indicate plastic yielding. For any load increment it is necessary 
to determine what proportion is elastic and which part produces plastic defor
mation and then adjust the stress and strain terms until the yield criterion 
and the constitutive laws are satisfied. The procedure adopted is as follows. 

Step a. 

Step b. 

Step c. 

Step d. 

The applied loads for the rIll iteration are the residual forces 'liT-I, 
given by (2.4) which give rise to displacement increments ddT, 
,according to (2.12), and sgajn increments d!?T."." .",/" , r :". '0 

" It· 1'- - ___ L r' ~ r .' . "..J.- .... " ~ :' ~ - ,I / '+-' '-+-' , 
_-',~ - '-t", .... 

Compute the incremental stress changes; du! as due' = DdlE.r 

where the subscript e denotes that we are assuming elastic behaviour. 

Accumulate the total stress for each element Gauss point as ueT 

= ur-1 +duer where U T - 1 are the converged stresses for iteration 
r-1. 

The next step depends on whether or not yielding took place at the 
Gauss point during the (r- I)th iteration. Therefore we check if 
&r-1> cry = cry 0 + H' €pr-l, where (1r-1 is the effective stress given 
by Column 3, Table 7.2, cry is the uniaxial yield stress, (Column 4, 
Table 7.2), H' is the linear strain hardening parameter and €pr-l is 
the effective plastic strain existing at the end of the (I' - 1 )Ih iteration. 
This expression is identical to the uniaxial case, Section 3.12.2, with 
all quantities replaced by the effective or equivalent values. If the 
answer is: 
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Y~ NO 
The Gauss point had previously yielded. 
Now check to see if a.r>ar-1 where a.r 
is the effective stress, Col. 3, Table 7.2 
based on stressesO'.r • If the answer is: 

NO YES 

The Gauss point is 
unloading elasti
cally and therefore 
go directly to 
Step g. 

'" 

The Gauss point 
had yielded 
previously and the 
stress is still 
increasing. There
fore all the excess 
stress t7e r _(1r-l 

must be reduced to 
the yield surface as 
indicated in 
Fig. 7.IO(a). There
fore the factor R 
which defines the 
portion of stress 
which must be 
modified to satisfy 
the yield criterion is 
equal to 1. 

a r - I 

Which implies that the Gauss point had 
not previously yielded. Now check to see 
if a.r > "yo. If the answer is: 

NO 

The Gauss point is 
still elastic and 
therefore go 
directly to Step g. 

AB 
R-

AC 

DdAa= 
dMlD 

YES 

The Gauss point 
has yielded' during 
application of load 
corresponding to 
this iteration as 
shown in 
Fig. 7.IO(b). The 
portion of the stress 
greater than the 
yield value must be 
reduced to the 
yield surface. The 
reduction factor R 
is given from 
Fig. 7.10(b) to be 

GeT-ay 

Ger -ar - 1 

Fig.7.10(a) Incremental stress changes in an already yielded point in an elasto
plastic continuum. 
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(I -r)da,r 

ar-I C 

dar 

rdue r 

Dd>.a= 
d>'dD 

til Dd>.a=Dd,.r 

~~ \-0 + H-' ,,,--,) l~D' 1i\!:.1 , 
ar =(11 -r a 

a 

U
1 

Fig. 7.10(b) Incremental stress changes at a point In an elasto-plastic con
tinuum at initial yield. 

Step e. For yielded Gauss points only compute the portion of the total stress 
which satisfies the yield criterion as O"r-l ·1· (I - R)dO"/. 

Step f. The remaining portion of stress, RdO"/ must be effectively eliminated 
in some way. The point A must be brought onto the yield surface by 
allowing plastic deformation to occur. Physically this can be de
scribed as follows. On loading from point C, the stress point moves 
elastically until the yield surface is met at B. Elastic behaviour 
beyond this point would result in a final stress state defined by 
point A. However in order to satisfy the yield criterion, the stress 
point cannot move outside the yield surface and consequently the 
stress point can only traverse the surface until both equilibrium 
conditions and the constitutive relation are satisfied. From (7.45), 
(7.46) and (7.47) we have 

dO"r = Dde -d>"dD, (7.91) 
or 

O"r = O"r-l +dO"/-d>"dD, (7.92) 

which gives the total stresses O"r satisfying elasto-plastic conditions 
when the stresses are incremented from O"r-l. Expression (7.92) is 
illustrated vectorially in Fig. 7. IO and the reader should note the 
similarity to Fig. 3.7(a). It is seen that if a finite sized stress increment 
is taken, the final stress point D, corresponding to O"r, may depart 
from the yield surface. This discrepancy can be practically eliminated 
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by ensuring that the load increments considered in solution are 
sufficie,itly small. However the point D can be reduced to the yield 
surface by simply scaling the vector (fr. Denoting the effective stress, 
given by Col. 3, Table 7.2, due to stress (fr as ijT and noting that this 
value should coincide with cry = cry 0 + H' EpT if the point D lies on 
the yield surface, the appropriate scaling factor is readily seen to be 

(7.93) 

This represents a scaling of the vector (f' which implies that the 
individual stress components are proportionally reduced. The 
normality condition for the plastic strain increment is evident from 
Fig. 7.10 since DdAa = Ddep. 

A 

CT, 

Fig. 7.11 Refined process for reducing a stress point to the yield surface. 

If relatively large load increment sizes are to be permitted the 
process described above can lead to an inaccurate prediction of the 
final point D on the yield surface if the stress point is in the vicinity 
of a region of large curvature of the yield surface. This is illustrated 
in Fig. 7.11 where the process of reducing the elastic stress to the 
yield surface is shown to end in the stress point D which is then 
scaled down to the yield surface to give point D'. Greater accuracy 
can be achieved by relaxing the excess stress to the yield surface in 
several stages. * Fig. 7.11 shows the case where the excess stress is 
divided into three equal parts and each increment reduced to the 
yield surface in turn. After the three reduction cycles to the stress 
point E the drift away from the yield surface can be corrected by 
simple scaling to give the final stress point E'. It is seen that the final 

• Alternative procedures for this operation are presented in Refs. 18 and 19 whilst 
a completely different approach to stress projection is followed in Ref. 20. 
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points D' and £' can be significantly different. An additional refine
ment which can be introduced is to scale the stress point to the yield 
surface after the reduction process for each cycle and not only after 
the final cycle as shown in Fig. 7.11. Obviously the greater the 
number of steps into which the excess stress AB is divided, the 
greater the accuracy. However the computation for each step is 
relatively expensive since the vectors a and dD have to be calculated 
at each stage. Clearly a balance must be sought and in this text the 
following criterion is adopted. The excess stress Rdu/ is divided into 
m parts where 111 is given by the nearest integer which is less than 

(
_U,_t_-_fl_r ) 8 -;- I , 

aj'O 
(7.94) 

where ul- ay gives a measure of the excess stress AB and ay 0 is the 
initial uniaxial yield stress in Col. 4, Table 7.2 before the onset of 
work hardening. This criterion can be readily amended by the user. 

Step g. For elastic Gauss points 011/,1' calculate r;T as r;r = r;r-l +dr;e". 

Step h. Finally, calculate the equivalent nodal forces from the element 
stresses according to 

(((,'J), = I' BT r;r dn. 
. , (e) .. ._' 

(7.95) 

Subroutine RESIDU is now listed and described, 

SUBROUTINE RESIDU(ASDIS,COORD,EFFST,ELOAD,FACTO,IITER,LNODS, RSDU 1 
2 
3 
4 
5 
6 
7 
8 
9 

LPROP,HATNO,MELEM,HMATS,MPOIN,MTOTG,MTOTV,NDOFN,RSDU 
NELEM,NEVAB,NGAUS,NNODE,NSTR1,NTYPE,POSGP,PROPS,RSDU 

• NSTRE,NCRIT,STRSG WElGP TDlSP,EPSTN) RSDU 
C' ....................................... ~ ••••• ~.........••••••••••••• RSDU 
C RSDU 
C'''' ntIS SUBROUTINE REDUCES THE STRESSES TO THE YIELD SURFACE AND RSDU 
,C EVALUATES ntE EQUIVALENT NODAL FORCES RSDU 
C RSDU 
C' ................................................................... . 

• 
DIMENSION ASDIS(MTOTV),AVECT(4),CARTD(2,9),COORD(MPOIN,2), 

DEVIA(4),DVECT(4),EFFST(MTOTG),ELCOD(2,9),ELDIS(2,9), 
ELOAD(MELEM,18),LNODS(MELEM,9),POSGP(4),PROPS(MHATS,7), 
STRAN(4),STRES(4),STRSG(4,MTOTG), 
WEIGP(4),DLCOD(2,9),DESIG(4),SIGHA(4),SGTOT(4), 
DHATX(4,4),DERIV(2,9),SHAPE(9),GPCOD(2,9), 
EPSTN(MTOTG),TDISP(MTOTV),HATNO(MELEM),BHATX(4,18) 

ROOT3=1.73205080757 
TWOPI=6.283185308 
00 10 IELEM=1,NELEM 
00 10 IEVAB=1,NEVAB 

10 ELOAD(IELEM,IEVAB)=O.O 
KGAUS=O 
00 20 IELEM:1,HELEM 
LPROP=HATNO(IELEM) 
UNIAX=PROPS(LPROP, 5) 
HARDS:PROPS(LPROP,6) 

RSDU 10 
RSDU 11 
RSDU 12 
RSDU 13 
RSDU 14 
RSDU 15 
RSDU 16 
RSDU 17 
RSDU 18 
RSDU 19 
RSDU 20 
RSDU 21 
RSDU 22 
RSDU 23 
RSDU 24 
RSDU 25 
RSDU 26 
RSDU 27 
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C 
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FRICT:PROPS(LPROP 7) 
IF(NCRIT.EQ.3,<UNIAX:PROPS(LPROP,S)*COS(FRICT*O.017453292) 
IF(NCRIT.EQ:4) UNIAX:6.0*PROPS(LPROP,5)*COS(FRICT*0.017453292)/ 

• (ROOT3*(3.0-SIN(FRICT*0.017453292») 

C*** COMPUTE COORDINATE. AND INCREMENTAL DISPLACEMENTS OF THE 
C ELEMENT NODAL POINTS 
C 

DO 30 INODE :l,NNODE 
LNODE:IABS(LNODS(IELEM,INODE» 
NPOSN:(LNODE-l)*NDOFN 
DO 30 IDOFN:l,NDOFN 
NPOSN:NPOSN+ 1 
ELCOD(IDOFN,INODE):CooRD(LNODE,IDOFN) 

30 ELDIS(IDOFN,INODE):ASDIS(NPOSN) 
CALL HODPS(DMATX, LPROP,MMATS, NTYPE, PROPS) 
THICK:PROPS(LPROP,3) 
KGASP:O 
DO 40 IGAUS:l,NGAUS 
DO 40 JGAUS:l,NGAUS 
EXISP:POSGP(IGAUS) 
ETASP:POSGP(JGAUS) 
KGAUS:KGAUS+l 
KGASP:KGASP+l 
CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) 
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP, 

• NNODE SHAPE) 
DVOLU:DJACB*WEIGP(IGAUS)*WEIGP(JGAUSJ 
IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(l,KGASP) 
IF(THICK.NE.O.O) DVOLU:DVOLU*THICK 
CALL BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NTYPE,KGASP) 
CALL LINEAR(CARTD,DMATX,ELDIS.LPROP,MMATS,NDOFN,NNODE,NSTRE, 

NTYPE,PROPS,STRAN.STRES,KGASP,GPCOD,SHAPE) 
PREYS:UNIAX+EPSTN(KGAUS)*HARDS 
DO 150 ISTR1:l,NSTRl 
DESIG(ISTR1)=STRES(ISTR1) 

150 SIGMA(ISTR1):STRSG(ISTR1,KGAUS)+STRES(ISTR1) 
CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,SIGMA, 

• THETA,VARJ2,YIELD) 
ESPRE=EFFST(KGAUS)_PREYS 
IF(ESPRE.GE.O.O) GO TO 50 
ESCUR=YIELD-PREYS 
IF(ESCUR.LE.O.O) GO TO 60 
RFACT=ESCUR/(YIELD-EFFST(KGAUS» 
GO TO 70 

50 ESCUR=YIELD-EFFST(KGAUS) 
IF(ESCUR.LE.O.O) GO TO 60 
RFACT=1.0 

70 HSTEP=ESCUR*8.0/UNIAX+l.0 
ASTEP=HSTEP 
REDUC=1.0-RFACT 
DO 80 ISTR1=1,NSTRl 
SGTOT(ISTR1)=STRSG(ISTR1,KGAUS)+REDUC*STRES(ISTR1) 

80 STRES(ISTR1):RFACT*STRES(ISTR1)/ASTEP 
DO 90 ISTEP:l,MSTEP 
CALL INVAR(DEVIA,LPROP,HHATS,NCRIT,PROPS,SINT3,STEFF,SGTOT, 

• THETA VARJ2 YIELD) 
CALL YIELDF(AVEct,DEVIA,LPROP,MMATS,NCRIT,NSTR1, 

PROPS, SINT3, STEFF, THETA, VARJ2) 
CALL FLOWPL(AVECT,ABETA,DVECT,NTYPE,PROPS,LPROP,NSTR1,MMATS) 
AGASH:O.O 
DO 100 ISTR1:l,NSTRl 

100 AGASH:AGASH+AVECT(ISTR1)*STRES(ISTR1) 
DLAHD:AGASH*ABETA 

RSDU 28 
RSDU 29 
RSDU 30 
RSDU 31 
RSDU 32 
RSDU 33 
RSDU 34 
RSDU 35 
RSDU 36 
RSDU 37 
RSDU 38 
RSDU 39 
RSDU 40 
RSDU 41 
RSDU 42 
RSDU 43 
RSDU 44 
RSDU 45 
RSDU 46 
RSDU 47 
RSDU 48 
RSDU 49 
RSDU 50 
RSDU 51 
RSDU 52 
RSDU 53 
RSDU 54 
RSDU 55 
RSDU 56 
RSDU 557 
RSDU 8 
RSDU 59 
RSDU 60 
RSDU 61 
RSDU 62 
RSDU 63 
RSDU 64 
RSDU 65 
RSDU 66 
RSDU 67 
RSDU 68 
RSDU 69 
RSDU 70 
RSDU 71 
RSDU 72 
RSDU 73 
RSDU 74 
RSDU 75 
RSDU 76 
RSDU 77 
RSDU 78 
RSDU 79 
RSDU 80 
RSDU 81 
RSDU 82 
RSDU 83 
RSDU 84 
RSDU 85 
RSDU 815 

~tl g~ 
RSDU 89 
RSDU 90 
RSDU 91 
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IF(DLAHD.LT.O.O) DLAHD=O.O 
BGASH=O.O 
DO 110 ISTR1=l,NSTRl 
BGASH=BGASH+AVECT(ISTR1)*SGTOT(ISTR1) 

110 SGTOT(ISTR1)=SGTOT(ISTR1)+5TRES(ISlRl)-DLARD*DVECT(ISTR1) 
EPSTN(KGAUS)=EPSTN(KGAUS)+DLAHD*BGASH/YIELD 

90 CONTINUE . 
CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,SGTOT, 

• THETA,VARJ2,YIELD) 
CURYS=UNIAX+EPSTN(KGAUS)*HARDS 
BRING:l.0 
IF(YIELD.GT.CURYS) BRING=CURYS/YIELD 
DO 130 ISTR1=l,NSTRl 

130 STRSG(ISTR1\KGAUS)=BRING'SGTOT(ISTRll 
EFFST(KGAUS =BRING'YIELD 

01" ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD 
C 90 CONTINUE 
OlD 

GO TO 190 
60 DO 180 ISTR1=l,NSTRl 

180 STRSG(ISTR1,KGAUS)=STRSG(ISTR1,KGAUS)+DESIG(ISTR1) 
EFFST(KGAUS)=YIELD 

C 
OlD CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELEMENTNODES 

190 KlASH=O 
DO 140 INODE=l,NNODE 
DO 140 IDOFN=l, NDOFN 
KlASH=MGASH+ 1 
DO 140 ISTRE=l,NSTRE 

140 ELOAD(IELEM,MGASH)=ELOAD(IELEM,MGASH)+BMATX(ISTRE,MGASH)* 
.STRSG(ISTRE,KGAUS)·DVOLU 

40 CONTINUE 
20 CONTINUE 

RETURN 
END 

Compute y(3) and 27T. 
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RSDU 92 
RSDU 93 
RSDU 94 
RSDU 95 
RSDU 96 
RSDU 97 
RSDU 98 
RSDU 99 
RSDU 100 
RSDU 101 
RSDU 102 
RSDU 103 
RSDU 104 
RSDU 105 
RSDU 106 
RSDU 107 
RSDU 108 
RSDU 109 
RSDU 110 
RSDU 111 
RSDU 112 
RSDU 113 
RSDU 114 
RSDU 115 
RSDU 116 
RSDU 117 
RSDU 118 
RSDU 119 
RSDU 120 
RSDU 121 
RSDU 122 
RSDU 123 
RSDU 124 
RSDU 125 
RSDU 126 
RSDU 127 

RSDU 18-19 
RSDU 20-22 Zero the array in which the equivalent nodal forces, calcu

lated in Step h, will be stored. 
RSDU23 
RSDU24 
RSDU25 
RSDU26-28 

RSDU29 

RSDU 30-31 

RSl)U 36-42 

Zero the Gauss point counter over all elements. 
Loop over each element. 
Identify the element material property number. 
Ide!1tify the initial uniaxial yield stress, uy 0 (or c for Mohr
Coulomb or Drucker-Prager criteria), the linear strain 
hardening parameter H' and the friction angle</> for Mohr
Coulomb and Drucker-Prager materials. 
For a Mohr-Coulomb material evaluate the equivalent 
yield stress as c cos</>. 
For a Drucker-Prager material evaluate the equivalent 
yield stress as k' according to (7.18). 
Store the element nodal coordinates in array ELCOD and 
the nodal displacements due to the application of the 
residual forces in array ELDIS. 
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RSDU 43 
RSDU44 
RSDU45 
RSDU 46-49 

RSDU 50-51 
RSDU 52 

RSDU 53-54 

RSDU 55-57 

RSDU 58 
RSDU 59-60 

RSDU 61 

RSDU 62-64 
RSDU 65-66 

RSDU 67-68 

RSDU 69-70 

RSDU 71 

RSDU 73-74 

RSDU 75 
RSDU 76-77 

RSDU 78 
RSDU 79-81 

RSDU 82 
RSDU 83-87 

FINITE ELEMENTS IN PLASTICITY 

Evaluate the elastic D matrix. 
Identify the element thickness. 
Zero the local Gauss point counter. 
Enter the loops for numerical integration and evaluate the 
local coordinates (g, "}) at the sampling point. 
Increment the local and global Gauss point counters. 
Evaluate the shape functions Nt and their derivatives 
oNt/og, aNi/a"}. 
Evaluate the Gauss point coordinates GPCOD(lDIME, 
KGASP), the determinant of the Jacobian matrix I JI and 
the Cartesian derivatives of the shape functions aNt/ox, 
oNi/oy (or aNt/or, oNt/oz for axisymmetric problems). 
Calculate the elemental volume for numerical integration as 
I JI WI: W'l taking care to multiply by the appropriate thick
ness or by 217f for axisymmetric problems. The default 
value of the thickness is 1.0. 
Compute the strain matrix B for the Gauss point. 
Compute the stress increment STRES(ISTRI), assuming 
elastic behaviour as due' = Ddf.r. 
Compute the yield stress for the (r-l)th iteration as 
uyo+H'ipr-1. 

Store dUer as DESIG(lSTRl) and u/ as SIGMA(ISTR1). 
Evaluate the effective stress in Col. 3, Table 7.2 and store as 
YIELD. 
Check if the Gauss point had yielded on the previous 
iteration, i.e. if ar- 1> uy 0 + H' ipr-1 which is the first 
operation of Step d. 
If the Gauss point was previously elastic, check to see if it 
has yielded during this iteration. 
For a Gauss point which yields during the iteration calculate 

R= 
ueT-ay 

aer~ar-l 

Check to see if a Gauss point which had previously yielded 
is unloading during this iteration. If yes, go to 60. 
Otherwise, set R = 1. 'f >" ,:,,' 
Evaluate the number of'ste'ps into which the excess stress, 
Rduer is to be divided according to (7.94). 
Compute (1-R). 
Compute (}'r-1 +(1- R)dul according to Step e and store 
in SGTOT(ISTRI) and evaluate Rdul/m and store in 
STRES(ISTRI ). 
Loop over each stress reduction step. 
Compute the vectors a and dn. 
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RsDU 88-92 
RSDU93-96 

RSDU97 

RSDU98 

Compute dA according to (7.45) and store as DLAMD. 
Compute t1r = t1r- 1 +0- R)dt1eT + Rdt1l/m -dAdD/m. When 
the summation process from 1 to m required in DO 
LOOP to index 90 is completed this will result in 
a r = t1T- 1 +daeT -dAdD to give the stress point E in 
Fig. 7.11. 
Compute the effective plastic strain as follows. From (7.51) 
we have 

or rewriting the right hand side in terms of the effective 
stress ij and effective plastic strain ep we have 

and therefore 

(7.96) 

Return to loop over the next stress reduction step. This 
statement is so placed that the final stresses t1 r are scaled 
down to lie on the yield surface only after all the reduction 
steps have been completed. An additional refinement can be 
introduced where, with reference to Fig. 7.11, the stresses 
are scaled to the yield surface after each reduction step. 
Such a refinement is not normally required; however it can 
be introduced by moving statement RSDU 98 to the 
position indicated in RSDU 108. 

RSDU 99-100 Compute the effective stress ijT. 
RSDU 101 Evaluate ayO+H'epT. 
RSDU 102-105 Factor the stresses aT to ensure that they lie on the yield 

RSDU 106 
RSDU 108 

surface, according to t1r = t1r( ay 0 + H' epT)/ ijT as indicated 
in Fig. 7.11. 
Store the effective stress ijT in array EFFST. 
Location of end of loop if the refinement indicated in 
RSDU 98 is to be included. 

RSDU 111-1 \3 For elastic Gauss points compute t1T as t1T- 1 +dt1eT and 
store ijT in EFFST. 

RSDU 117-123 Compute the equivalent nodal forces as 

(pel), = r BT t1T dD. . 
. [} 

RSDU 124-125 Termination of loop for numerical integration and over 
each element respectively. 
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7.8.8 Subroutine OUTPUT 
This subroutine outputs the results at a frequency determined by the 

output parameters NOUTP(I) and NOUTP(2) whose role is described in 
Section 6.53. The principal stresses and direction are also calculated in this 
subroutine and these are given by the following expressions 

ax+ay J(ax -ay)2 ) 
amax = + +TXy2 , 

2 4 

amin = 
2 

( 
2Txy ) e = tan-1 . 

ax-ay 
(7.97) 

with x and y being replaced by rand z for the axisymmetric case. The term e 
defines the angle which the maximum principal stress makes with the y (or z) 
axis; a positive angle being measured anticlockwise. 

This subroutine is largely self-explanatory and is listed below. 

SUBROUTINE OUTPUT(IITER,MTOTG,MTOTV, MVFIX, NELEM,NGAUS, NOFIX, 
NOUTP, NPOIN,NVFIX, STRSG ,TDISP,TREAC , EPSTN , 
NTYPE,NCHEK) 

C********************************************************************* 
C 
C**** THIS SUBROUTINE OUTPUTS DISPLACEMENTS. REACTIONS AND STRESSES 
C 
C********************************************************************* 

C 

DIMENSION NOFIX(MVFIX),NOUTP(2) ,STRSG(4,MTOTG) ,STRSP(3) , 
• TDISP(MTOTV) ,TREAC(MVFIX, 2) ,EPSTN(MTOTG) 
KOUTP=NOUTP(1) 
IF(IITER.GT.1) KOUTP=NOUTP(2) 
IF(IITER.EQ.1.AND.NCHEK.EQ.0) KOUTP=NOUTP(2) 

C*** OUTPUT DISPLACEMENTS 
C 

IF(KOUTP.LT.1) GO TO 10 
WRITE (6 ,900) 

900 FORMAT(1HO,5X,13HDISPLACEMENTS) 
IF(NTYPE.NE.3) WRITE(6,950) 

950 FORMAT(1HO,6X,4HNODE,6X,7HX-DISP.,7X,7HY-DISP.) 
IF(NTYPE.EQ.3) WRITE(6,955) 

955 FORMAT(1HO,SX,4HNODE,6X,7HR-DISP.,7X,7HZ-DISP.) 
DO 20 IPOIN=1,NPOIN 
NGASH=IPOIN*2 
NGISH=NGASH-2+1 

20 WRITE(6,910) IPOIN,(TDISP(IGASH),IGASH=NGISH,NGASH) 
910 FORMAT(I10,3E14.6) 

10 CONTINUE 
C 
c*** OUTPUT REACTIONS 
C 

IF(KOUTP.LT.2) GO TO 30 
WRITE(6,920) 

920 FORMAT(1HO,5X,9HREACTIONS) 
IF(NTYPE.NE.3) WRITE(6,960) 

OTPT 1 
OTPT 2 
OTPT 3 
OTPT 4 
OTPT 5 
OTPT 6 
OTPT 7 
OTPT 8 
OTPT 9 
OTPT 10 
OTPT 11 
OTPT 12 
OTPT 13 
OTPT 14 
OTPT 15 
OTPT 16 
OTPT 17 
OTPT 18 
OTPT 19 
OTPT 20 
OTPT 21 
OTPT 22 
OTPT 23 
OTPT 24 
OTPT 25 
OTPT 26 
OTPT 27 
OTPT 28 
OTPT 29 
OTPT 30 
OTPT 31 
OTPT 32 
OTPT 33 
OTPT 34 
OTPT 35 
OTPT 36 
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960 FORMAT(1HO,6X/4HNODE,6X,7HX-REAC.,7X,7HY-REAC.) 
IF(NTYPE.EQ.3) WRITE(6,965) 

965 FORMAT(1HO,6X,4HNODE,6X,7HR-REAC.,7X,7HZ-REAC.) 
DO 40 IVFIX=1,NVFIX 

40 WRITE(6,910) NOFIX(IVFIX),(TREAC(IVFIX,IDOFN),IDOFN=1,2) 
30 CONTINUE 

C*** OUTPUT STRESSES 
C 

OTPT 37 
OTPT 38 
OTPT 39 
OTPT 40 
OTPT 41 
OTPT 42 
OTPT 43 
orPT 44 
orPT 45 

IF(KOUTP.LT.3) GO TO 50 orPT 46 
IF(NTYPE.NE.3) WRITE(6,970) orPT 47 

970 FORMAT(1HO,1X,4HG.P.,6X,9HXX-STRESS,5X,9HYY-STRESS,5X,9HXY-STRESS,orPT 48 
.5X,9HZZ-STRESS,6X,8HMAX P.S.,6x,8HMIN P.S.,3X,5HANGLE,3X, orPT 49 
· 6HE.P.S.) OTPT 50 
IF(NTYPE.EQ.3) WRITE(6,975) orPT 51 

975 FORMAT(1HO,1X,4HG.P.,6X,9HRR-STRESS,5X,9HZZ-STRESS,5X,9HRZ-STRESS,OTPT 52 
.5X,9HTT-STRESS,6X,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X, OTPT 53 
• 6HE.P.S.) orPT 54 
KGAUS:O orPT 55 
DO 60 IELEM=1,NELEM OTPT 56 
KELGS:O orPT 57 
WRITE(6,930) IELEM orPT 58 

930 FORMAT(1HO,5X,13HELEMENT NO. :,15) orPT 59 
DO 60 IGAUS:1,NGAUS orPT 60 
DO 60 JGAUS:1,NGAUS orPT 61 
KGAUS:KGAUS+1 OTPT 62 
KELGS:KELGS+1 OTPT 63 
XGASH:(STRSG(1,KGAUS)+STRSG(2,KGAUS»*0.5 orPT 64 
XGISH=(STRSG(1,KGAUS)-STRSG(2,KGAUS»*0.5 orPT 65 
XGESH:STRSG<3,KGAUS) OTPT 66 
XGOSH:SQRT(XGISH*XGISH+XGESH*XGESH) orPT 67 
STRSP(1)=XGASH+XGOSH orPT 68 
STRSP(2l=XGASH-XGOSH orPT 69 
IF(XGISH.EQ.O.O) XGISH=0.1E-20 orPT 70 
STRSP(3):ATAN(XGESH/XGISH)*28.647889757 orPT 71 

60 WRITE(6!940) KELGS,(STRSG(ISTR1,KGAUS),ISTR1=1,4), orPT 72 
• (STRSP\ISTRE),ISTRE=1,3),EPSTN(KGAUS) OTPT 73 

940 FORMAT(I5,2X,6E14.6,F8.3,E14.6) OTPT 74 
50 CONTINUE OTPT 75 

RETURN OTPT 76 
END OTPT 77 

OTPT 11-13 

OTPT 17-29 

OTPT 33-42 

OTPT 46 
OTPT 47-54 
OTPT 56-59 
OTPT 60-61 
OTPT 62-71 

Set the output indicator, KOUTP, according to whether or not 
this is the first iteration of a load increment or not. If it is the 
first iteration the results will be output according to NOUTP(I) 
but for a converged solution the results are output according to 
NOUTP(2). 
For an output code value of 1 or greater, output the nodal 
displacements after printing the appropriate headings. 
For an output code of 2 or greater, output appropriate head
ings and the reactions at restrained nodal points. 
For an output code of 3 output the Gauss point stresses. 
Write appropriate headings. 
Loop over each element and write the element number. 
Loop over each element Gauss point. 
Evaluate the principal stresses and direction for each Gauss 
point according to (7.97). 
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OTPT 72-74 Output the Cartesian stress components, the principal stresses 
and direction and the total effective plastic strain for each 
Gauss point. This latter quantity gives an immediate indication 
whether the Gauss point has yielded or not, since it will be 
zero for all elastic points. 

7.8.9 The main, master or controlling segment 
This segment controls the calling, in order, of the other subroutines and is 

similar in structure to the segment described in Section 3.8 for one-dimen
sional situations. Its other function is to control the iterative process and also 
the incrementing of the applied loads. 

The following channel numbers are employed by the program: 5 (card 
reader), 6 (line printer), 1, 2, 3,4, 8 (scratch files). 

This routine is self-explanatory and is presented below without further 
comment. 

MASTER PLAST PLAS 1 c..................................................................... PLAS 2 
C PROGRAM FOR THE ELASTO-PLASTIC ANALYSIS OF PLANE STRESS, PLAS 3 
C PLANE STRAIN AND AXISYMMETRIC SOLIDS PLAS 4 
C ... •••• ••••••• • •• ••• ••••••••• •••• •••••• •••••••••••••••••••••••••••••• PLAS 5 

DIMENSION ASDIS(300),COORD(150,2),ELOAD(40,1S),ESTIF(1S,1S), PLAS 6 
EQRHS(10)jEQUAT(80,10),FIXED(300),GLOAD(SO),GSTIF(3240),PLAS 7 
IFFIX(300 ,LNODS(40,g),LOCEL(18),MATNO(40), PLAS S 
NACVA(SO) ,NAMEV(10),NDEST(18) ,NDFRO(40),NOFIX(30) , PLAS 9 
NOUTP(2),NPIVOC10), PLAS 10 
POSGP(4),PRESC(30,2),PROPS(5,7),RLOADC40,18), PLAS 11 
STFOR(300),TREAC(30,2) ,VECRV(80) ,WEIGP(4), PLAS 12 
STRSGC4,360),TDISP(300),TLOAD(40,18), PLAS 13 
TOFOR(300),EPSTNC360),EFFSTC360) PLAS 14 

C 
C··· PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONING 

PLAS 15 
PLAS 16 
PLAS 17 
PLAS 18 
PLAS 19 
PLAS 20 
PLAS 21 
PLAS 22 
PLAS 23 
PLAS 24 
PLAS 25 
PLAS 26 
PLAS 27 
PLAS 2S 
PLAS 29 
PLAS 30 
PLAS 31 
PLAS 32 
PLAS 33 
PLAS 34 
PLAS 35 
PLAS 36 

C • 

C 

CALL DIMENCHBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN,MSTIF,MTOTG,MTOTV, 
MVFIX,NDOFN,NPROP,NSTRE) 

c··· CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA 
C 

C 

CALL INPUTCCOORD,IFFIX,LNODS,MATNO,MELEM,MEVAB,MFRON,MMATS, 
MPOIN,MTOTV,MVFIX,NALGO, 
NCRIT,NDFRO,NDOFN,NELEM,NEVAB,NGAUS,NGAU2, 
NINCS, NHATS,NNODE,NOFIX, NPOIN ,NPROP, NSTRE , 
NSTR1,NTOTG,NTOTV, 
NTYPE,NVFIX,POSGP,PRESC,PROPS,WEIGP) 

C·" CALL THE SUBROUTINE WHICH COMPUTES THE CONSISTENT LOAD VECTORS 
C FOR EACH ELEMENT AFTER READING THE RELEVANT INPUT DATA 
C 

C 

CALL LOADPS(COORD,LNODS,MATNO,MELEM,MMATS,MPOIN,NELEM, 
NEVAB,NGAUS,NNODE,NPOININSTRE,NTYPE,POSGP, 
PROPS,]!,OAD, WEIGP, NDOFN 

C··· INITIALISE CERTAIN ARRAYS 
C ~~ jb 
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CALL ZERO(ELOAD,MELEM,MEVAB,MPOIN,MTOTG,MTOTV,NDOFN,NELEM, 
NEVAB,NGAUS,NSTR1,NTOTG,EPSTN,EFFST, 
NTOTV,NVFIX,STRSG,TDISP,TFACT, 
TLOAD,TREAC,MVFIX) 

C c... LOOP OVER EACH INCREMENT 
C 

DO 100 IINCS = 1,NINCS 
C C... READ DATA FOR CURRENT INCREMENT 
C 

c 

CALL INCREM(ELOAD,FIXED, IINCS, MELEM ,MEVAB, MITER ,MTOTV , 
MVFIX ,NDOFN,NELEM,NEVAB,NOUTP, NOFIX , NTOTV, 
NVFIX, PRESC , RLOAD ,TFACT,TLOAD ,TOLER) 

C... LOOP OVER 
C 

EACH ITERATION 

DO 50 lITER = 1,MITER 
C 
C ••• CALL ROUTINE WHICH SELECTS SOLUTION ALORITHM VARIABLE KRESL 
C 

PLAS 39 
PLAS 40 
PLAS 41 
PLAS 42 
PLAS 43 
PLAS 44 
PLAS 45 
PLAS 46 
PLAS 47 
PLAS 48 
PLAS 49 
PLAS 50 
PLAS 51 
PLAS 52 
PLAS 53 
PLAS 54 
PLAS 55 
PLAS 56 
PLAS 57 
PLAS 58 
PLAS 59 

CALL ALGOR(FIXEDjIINCS,IITER,KRESL,MTOTV,NALGO, PLAS 60 
• NTOTV PLAS 61 

C PLAS 62 
C... CHECK WHETHER A NEW EVALUATION OF THE STIFFNESS MATRIX IS REQUIRED PLAS 63 
C PLAS 64 

IF(KRESL.EQ.1l CALL STIFFP(COORD,EPSTN,IINCS,LNODS,MATNO, PLAS 65 
MEVAB,MMATS,MPOIN,MTOTV,NELEM,NEVAB,NGAUS,NNODE, PLAS 66 

NSTRE,NSTR1,POSGP,PROPS,WEIGP,MELEM,MTOTG, PLAS 67 
STRSG, NTYPE, NCRIT) PLAS 68 

C 
C··. SOLVE EQUATIONS 
C 

C 

CALL FRONT(ASDIS,ELOAD,EQRHS,EQUAT,ESTIF,FIXED,IFFIX,IINCS,IITER, 
GLOAD,GSTIF,LOCEL,LNODS,KRESL,MBUFA,MELEM,MEVAB,MFRON, 
MSTIF,MTOTV,MVFIX,NACVA,NAMEV,NDEST,NDOFN,NELEM,NEVAB, 
NNODE,NOFIX,NPIVO,NPOIN,NTOTV,TDISP,TLOAD,TREAC, 
VECRV) 

C··· CALCULATE RESIDUAL FORCES 
C 

CALL RESIDU(ASDIS,COORD,EFFST,ELOAD,FACTO,IITER,LNODS, 
• LPROP,MATNO,MELEM,MMATS,MPOIN,MTOTG,MTOTV,NDOFN, 

NELEM,NEVAB,NGAUS,NNODE,NSTR1,NTYPE,POSGP,PROPS, 
C NSTRE,NCRIT,STRSG,WEIGP,TDISP,EPSTN) 

C·" CHECK FOR CONVERGENCE 
C 

PLAS 69 
PLAS 70 
PLAS 71 
PLAS 72 
PLAS 73 
PLAS 74 
PLAS 75 
PLAS 76 
PLAS 77 
PLAS 78 
PLAS 79 
PLAS 80 
PLAS 81 
PLAS 82 
PLAS 83 
PLAS 84 
PLAS 85 
PLAS 86 
PLAS 87 

CALL CONVER(ELOAD,IITER,LNODS,MELEM,MEVAB,MTOTV,NCHEK,NDOFN, PLAS 88 
NELEM,NEVAB,NNODE,NTOTV,PVALU,STFOR,TLOAD,TOFOR,TOLER)PLAS 89 

C 

C··· OUTPUT RESULTS IF REQUIRED 
C 

IF(IITER.EQ.l.AND.NOUTP(l).GT.O) 
.CALL OUTPUT(IITER,MTOTG,MTOTV,MVFIX,NELEM,NGAUS,NOFIX,NOUTP, 

C NPOIN,NVFIX,STRSG,TDISP,TREAC,EPSTN,NTYPE,NCHEK) 

g... IF SOLUTION HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS 

IF(NCHEK.EQ.O) GO TO 75 
50 CONTINUE 

C 
C··. 
C 

PLAS 90 
PLAS 91 
PLAS 92 
PLAS 93 
PLAS 94 
PLAS 95 
PLAS 96 
PLAS 97 
PLAS 98 
PLAS 99 
PLAS 100 
PLAS 101 
PLAS 102 
PLAS 103 
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IF(NALGO.EQ.2) GO TO 75 
STOP 

75 CALL OUTPUT(IITER,MTOTG,MTOTV,MVFIX,NELEM,NGAUS,NOFIX,NOUTP, 

PLAS 104 
PLAS 105 
PLAS 106 
PLAS 107 
PLAS 108 
PLAS 109 
PLAS 110 

• NPOIN,NVFIX,STRSG,TDISP,TREAC,EPSTN,NTYPE,NCHEK) 
100 CONTINUE 

STOP 
END 

7.9 Numerical examples 
The first numerical example considered is illustrated in Fig. 7.12(a). The 

problem studied is that of a thick cylinder subjected to a gradually increasing 
internal pressure, with plane strain conditions being assumed in the axial 
direction. A Von Mises yield criterion is assumed and the numerical solutions 
obtained compared with the theoretical results of Reference 14. The pressure/ • radial displacement characteristics are shown in Fig. 7 .12(b) and good 
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Fig.7.12 (a) Mesh and material properties employed in the elasto-plastic analysis 
of an internally pressurised thick cylinder under plane strain conditions. (b) Dis
placement of the inner surface with increasing pressure for the problem of Fig. 

7.12(a). 



ELASTO·PLASTIC PROBLEMS IN TWO IlIMENSIONS 2n3 

agreement between the numerical and analytical solutions is e.vident. In the 
numerical studies, collapse was deemed to have occurred It the IteratIve 
procedure diverged for an incremental load increase. 
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Fig. 7.13 Hoop stress distributions at various pressure values for the problem 
of Fig. 7.12(a). 

Fig. 7.13 shows the circumferential (hoop) stress distributions for specified 
pressure values. Again a good agreement is evident. In solution both a two
point and three-point Gaussian integration rule was considered. Whilst the 
nodal displacements obtained by use of both rules are practically identical, it 
is seen from Fig. 7.13 that use of a 2 x 2 integrating rule gives superior stress 
values to a 3 x 3 rule. This is a general result for elasto-plastic problems and 
therefore Use of a two-point rule is recommended. This phenomenon is an 
example of the benefit of a reduced integration order for parabolic isopara
metric elements. (15) 
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Fig.7.14 Load/central deflection response for a uniformly loaded simply supported 
circular plate. 

The second example considered is the simply supported circular plate 
shown in Fig. 7.14. 

The plate is modelled by five axisymmetric elements and the loading takes 
the form of a progressively increasing uniformly distributed load. The growth 
in central deflection with increasing load is shown in Fig. 7.14. A converged 
solution was obtained for P = 270 but the numerical process diverged for 
P = 280 and consequently the collapse load is taken to be 270. This is in 
good agreement with the value of 260 quoted in Ref. 16, particularly in 
view of the coarse mesh employed in the present study. Fig. 7.15 shows the 
deflection profile with increasing applied load. 
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Fig. 7.15 Deflection profiles for the problem of Fig. 7.14 at various applied 
load values. 
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1.10 Problems 
1.1 In Section 7.2.1 it was stated that the Von Mises law implies that 

yielding begins when the (recoverable) elastic energy of distortion, D, 
reaches a critical value. Prove this by showing that h' is proportional 
to D, since D can be written as 

(l-2v) ----ie Uit)2. 
12",(1 + v) 

(7.98) 

Fig. 7.16 Geometric representation of the Berg yield criterion-Problem 7.2. 

7.2 A yield criterion has been proposed by Berg(17) which attempts to 
account for the tensile failure of a material due to the formation of 
voids at a sufficiently high strain level. The yield surface is illustrated in 
Fig. 7.16 and can be seen to be made up of two distinct portions. For 
stress levels below a mean hydrostatic tension of P I the material yields 
according to the Von Mises cylinder of radius S. The yield surface in 
the tensile range is terminated by an elliptic cap whose extremity is 
defined by Po. The three constants S, PI and Po are material constants 
and must be experimentally determined. The two distinct portions of 
the yield surface can be expressed as 
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y2(N)* = S 

[2N+H(am-PI)2]l = S (7.99) 

where H = S2/(P 1-PO)2 and am is the mean hydrostatic pressure. 

Show that this yield criterion can be expressed in the form of three 
constants Cl, C2 and Ca as indicated in Section 7.4 where 

for 

PI":; am ":;PO. 

7.3 A certain material yields when the maximum principal stress reaches a 
critical value, Y. Assuming identical behaviour in tension and com
pression, determine the geometrical form of the yield surface. The 
solution is given in Fig. 7.17. 

u, 

Fig. 7.17 7t plane representation of a yield criterion based on maximum principal 
stress values-Problem 7.3. 

7.4 The assumption of a linear strain hardening material law may prove to 
be inadequate for certain situations. If the uniaxial stress/strain test 
curve for the material is known, then it is possible to represent the 
stress-plastic strain relationship in a piecewise linear fashion as shown 
in Fig. 7.18 and the instantaneous yield stress can be written in the 
form ay = ayO+S(Ep) -where Seep) is the piecewise linear function 
describing the increase (or decrease) in the initial yield stress ayo with 
the increase of effective plastic strain Ep. The program modifications 
required to describe this behaviour will all be included in subroutine 
RESIDU, except for changes in material property specification which 
will need to be made in subroutine INPUT. Carry out all necessary 
modifications. 
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Fig.7.18 Piecewise-linear representation of material strain hardening-Problem 7.4. 

7.5 By using the mesh of Fig. 7.12(a) and solving as an axisymmetric 
problem, use program PLANET (documented in Appendix II, Section 
AZ.l) to determine the elasto-plastic stress and displacement distri
butions in a sphere when it is loaded by an incrementaJIy applied 
internal pressure. The dimensions and material properties of the 
sphere are given by reference to Fig. 7.12. Assume a Tresca yield 
criterion for solution and compare your results with the solution given 
in Ref. 1. 

7.6 Use program PLANET to solve the problem iIIustrated in Fig. 1.2, 
Chapter 1. Use both a Tresca and Von Mises yield criterion and com
pare the plastic zone distributions obtained with those of Fig. 1.2. 

7.7 Subroutine CONYER, described in Section 6.5.4, bases convergence 
of the nonlinear solution process on the global norm of the residual 
force vector. Modify subroutine CONYER so that convergence is 
based on expression (3.27) in which the summation signs are absent; 
so that convergence is monitored locally at each of the nodes I to N in 
turn. 

7.8 Modify subroutine CONYER, Section 6.5.4 so that convergence is 
monitored locally at each node according to the displacement changes 
that occur during a particular iteration, r, as follows. 

(7.100) 

where d 1 is the elastic displacement occurring upon application of the 
load increment and 6.dr is the change in nodal displacement during the 
rth iteration. 
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7.9 Modify program PLANET to undertake the elasto-plastic solution of 
three-dimensional solids. To simplify the task consider only the Von 
Mises yield criterion and assume that the solid is loaded by nodal point 
loads only. 

7.10 The yield criterion to be employed in program PLANET is specified by 
means of control parameter NCRIT in subroutine INPUT described in 
Section 6.5.1. In some applications, such as steel-concrete composites, it 
is necessary to employ a different yield surface for different parts of the 
structure. Modify program PLANET so that the yield criterion 
governing elasto-plastic behaviour is separately specified for each 
element in the solid. 
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Chapter 8 
Elasto-viscoplastic problems 

two dimensions 

8.1 Introduction 
> .• 

• In 

In all inelastic deformations time rate effects are always present to some 
;degree. Whether or not their exclusion has a significant influence on the 
prediction of the material behaviour depends upon several factors. In the 
study of structural components under static loading conditions at normal 
temperatures it is accepted that time rate effects are generally not important 
and the conventional theory of plasticity, as described in Chapter 7, then 
models the behaviour adequately. However metals, especially under high 
temperatures, exhibit simultaneously the phenomena of creep and visco
plasticity. The former is essentially a redistribution of stress and/or strains 
with time under elastic material response while the latter is a time dependent 
plastic deformation. Experimental observations cannot distinguish between 
the two phenomena and their separation has been largely an analytical 
convenience rather than a physical requirement. Numerical processes, as 
described in this chapter, allow the simultaneous description of both effects. 

A further situation in which time rate effects are important is in the dynamic 
transient loading of structures. For example, it can be experimentally demon
strated that the instantan~(lUs_yiel~ str~ss ()f mate.rialsupdet high strain rates 
SID be significantly greater than Jhe_ (;orrespoIl9ing quasi-static ~alu!<. This 
class of problem is dealt with in Chapter 10. 

In this chapter we utilise the theory of viscoplasticity to provide a unified 
approach to problems of creep and plasticity. As well as providing solutions 
to time-dependent situations the viscoplastic algorithm can provide economic 
solution for classic elasto-plastic problems since it can be readily shown that 
the steady-state solution of the visco plastic problem is identical to the 
~rrew.onding conventional static elasto-plastic solution. Furthermore, by 
reducing the yield stress of the material to zero, elastic creep problems can be 
solved. 

The concept of 'overlay models' is also introduced in this chapter. In this, 
the solid is assumed, for mathematical convenience only, to be composed of 
several layers or overlays each of which undergo the same deformation. By 
assigning different properties to each overlay a composite behaviour can be 
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obtained which exhibits all the essential characteristics of the visco-elastic
plastic response of many real materials. 

The basic one-dimensional rheological model developed in Chapter 4 is 
now extended to the case of a general continuum and the essential steps 
employed in the numerical solution algorithm are discussed. Since most of 
the matrix expressions involved in viscoplastic analysis are common to 
conventional elasto-plastic theory, the majority of the subroutines developed 
in Chapter 7 can be again used with little or no change. The additional sub
routines required are then constructed and assembled to form a working 
program. Finally it is briefly demonstrated how the overlay principle can be 
used to simulate a complex material response. 

8.2 Tbeory of elasto-viscoplastic solids 

8.2.1 Basic expressions 
In the usual manner for nonlinear continua problems it is assumed that the 

total strain, E, can be separated into elastic, Ee, and viscoplastic, Evp, com
ponents, so that the total strain rate can be expressed as(1-3) 

(8.1) 

where (") represents differentiation with respect to time. The total stress rate 
depends on the.elastic strain rate according to .. ---=-== .. --- _. - -----. ----- ----

• D· 17 = Ee, 

where D is the elasticity matrix. The onset of viscoplastic 
governed by a scalar yield condition of the form 

F(u, Evp) - Fo = 0, 

(8.2) 

behaviour is 

(8.3) 

in which Fo is the uniaxial yield stress which may itself be a function of a 
hardening parameter, K. For frictional materials Fo is the equivalent yield 
stress as given by Column 4, Table 7.2. It is assumed that viscoplastic flow 
occurs for values of F>Fo only. 
- -It is now necessary to choose a specific law defining the viscoplastic strains. 

The simplest option is one in which the viscoplastic strain rate depends only 
on the current stresses, so that 

€vp = feu). (8.4) 

This relationship can be generalised to include strain hardening and tempera
ture dependence and the influence of state dependent variables, such as 
damage parameters for rupture theories, can also be considered. 
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One explicit form of (8.4) which has wide applicability, is offered by the 
following ~ti£Jlow~ule. (4) 

oQ 
t"p = y<<1>(F)-, (8.5) 

0([ 

in which Q = Q«([, e"p, K) is a 'plastic' potential and y is a fluidity parameter 
controlling the plastic flow rate. The term <1>(x) is a positive monotonic 
increasing function for x>O and the notation < ) implies 

<<1>(x) = <1>(x) for x>O 

<<1>(x) =0 x 0.:;;0. (8.6) 

Comparison of (8.5) with (7.28) shows an analogy between the flow rule of 
conventional non-associated plasticity and the present definition of visco
plastic flow rate. If, once again, we restrict ourselves to ~~~ociat~d plasticity 
situajions. in which case F = Q, expression (8.5) reduces to .. . 

of 
t"p = y<<1>(F)- = y<<1»a, 

C([ 
(8.7) 

where the same definition of the flow vector a is employed as in (7.42). 
Different choices have been recommended(5) for the function <1>. The two 
most common versions are 

and 

M(F-F,) 
<1>(F) = e f'; -1, 

(
F-FO)N 

<1>(F) = Fo ' 

(8.8) 

(8.9) 

in which M and N are arbitrary prescribed constants. The latter option, when 
. employed in (8.7) can be made to model the Norton power law of metallic 
creep by assigning the threshold uniaxial yield value, Fo, to zero (or to an 
arbitrarily small value fori, numerical convenience). 

8.2.2 The viscopJastic strain increment 
With the strain rate law expressed by (8.7) we can define a strain increment 

6Evpn occurring in a time interval t::..tn = In+!- tn using an implicit time 
stepping scheme, as(6) 

(8.10) 

For 0 = 0 we obtain the Euler time integration scheme which is also referred 
to as 'fully explicit' (or forward difference method) since the strain increment 
is completely determined from conditions existing at time, tn. On the other 
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hand e = I gives a 'fully implicit' (or backward difference) scheme with the 
strain increment being determined from the strain rate corresponding to the 
end of the time interval. The case e = ~ results in the so-called 'implicit 
trapezoidal' scheme which is also known generally as the Crank-Nicolson 
rule in the context of linear equations. 

To define Evpn+l in (8.10) we can use a limited Taylor series expansion and 
write 

(8.l I) 
where 

(8. I 2) 

and !J,,(Jn is the stress change occurring in the time interval !J"tn = tn+1-tn. 

Thus (8.10) can be rewritten as 

(8. I 3) 
where 

(8.l4) 

We draw the attention of the reader to the fact that the matrix H defined in 
(8.12) is the matrix whose eigenvalues determine the limiting time step length, 
!J"tn which can be employed in the explicit integration schemes. The matrix H 
depends on the stress level and no difficulty arises in its evaluation and 
specific forms will be developed in Section 8.5. 

8.2.3 Stress increments 
Using the incremental form of (8.2) we obtain 

(8.15) 

Or expressing the total strain increment in terms of the displacement in
crement as 

(8.16) 

and substituting for !J"Evpn from (8.13), then (8.15) becomes 

(8.17) 
where 

(8. I 8) 

In (8. I 6) and (8.17) the notation Bn is employed to denote the possibility 
that the strain matrix may not be constant throughout the solution. For 
example, if large deformations are to be considered, the strain matrix for a 
Lagrangian formulation is nonlinear and can be written 
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BI! = Bo+B1I/[)', (8.19) 

where Bo represents the standard linear terms which do not vary during 
solution and B"'L" contains the nonlinear quadratic terms. These latter 
expressions are dependent on the current displacements and therefore vary 
throughout the solution process. 

The matrix Dn is a symmetric matrix when the visco-plastic law is associ
atiVe: For the non-associated case, the matrix en is unsymmetric, requiring 
-unsymmetric equation solvers for analysis. 

For the solution of linear elastic problems by the explicit scheme (0 = 0), 
equation (8.17) simplifies considerably to give 

(8.20) 

8.2.4 Equations of equilibrium 
The equations of equilibrium to be satisfied at any instant of time, tn, are 

t [BnYun dO +/" = 0, (8.21) 

where tn is the vector of equivalent nodal loads due to applied surface 
tractions, body forces, thermal loads, etc. During a time increment the 
equilibrium equations which must be satisfied are given by the incremental 
form of(8.21) to be 

f [Bny D.U" dO -:- D.fn = 0, 
!J 

(8.22) 

in which D.fn represents the change in loads during the time interval D.tn• In 
the majority of problems encountered in engineering the load increments are 
applied as discrete steps and thus D.fn = ° for all time steps other than the 
fi!st withi!l an increment. -- -- - -

Using (8.13) and {8.l0) the displacement increment occuliring during time 
step D.tn can be calculated as ; 

D.dn = [KTnj-1D.V" 

D.V" = J' [Bny DUEvp"D.tndO+D.fn, 
!} 

where KTn is the tangential stiffness matrix with the folIowing form 

Kr" = f [Bny Dn B"dO, 
_ • !J _ _ ---

(8.23) 

(8.24) 

and D. vn are termed the incremental pseudo-loads. The displacement in
crements, D.dn, when substituted back into (8.20) give the stress increments 
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l:!.(ln and thus 
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(In+ 1 = (In + l:!.(ln 

dn+1 = d"+l:!.dn. 

Use of (8.15) and (8.16) gives 

and then 

(8.25) 

(8.26) 

(8.27) 

Arrival at stationary or steady state conditions can be monitored by examin
ation of the strain rates. In particular tvp, as given by (8.7), is calculated at 
each time interval and the time marching process halted as soon as this 
quantity becomes tolerably small. 

8.2.5 Equilibrium correction 
The stress increment calculation is based on a linearised form of the 

incremental equilibrium equations (8.22). Therefore the total stresses, (In+1, 

obtained by accumulating all such stress increments are not strictly correct 
and will not exactly satisfy the equations of equilibrium, (8.21). There are 
several solution procedures available for applying the necessary correction 
and Reference 7 discusses the relative merits of various options. The simplest 
approach is to evaluate (l1H1 according to (8.20) and (8.25) and then compute 
the residual, or out-of-balance, forces, "', as 

",n+l = JQ[Bn+l]T(ln+1dO+fn+l :"0, (8.28) 

noting, for geometrically nonlinear problems, that Bn+l is evaluated for a 
displacement state dn+l. This residual force is then added to the applied force 
increment at the next time step. Such a technique avoids an iteration process 
and at the same time achieves a reduction in error. 

8.3 Selection of the time step length 
It can be shown(14) that the time integration scheme formally represented 

by (8.10) is unconditionally stable for values of e;?; 1. This implies that the 
time marching scheme is numerically stable but does not guarantee the 
accuracy of the solution at any stage; so that in practice even for values of 
e ;?; t limits must be placed on the time step length in order to achieve a 
valid solution. 

For e < 1 the integration process is only conditionally stable and numerical 
time integration can only proceed for values of l:!.tn less than some critIcal 
value. We now proceed to establish rules for choosing the time step length 
for computation. 
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Schemes can be employed in which the time step length can be either 
constant or vary for each time interval. In the variable scheme the magnitude 
of the time step is controlled by a factor T which limits the maximum effective 
viscoplastic strain increment, ll€vpn as a fraction of the total effective strain, 

-En, so that- - - ---- - ~- - --

(8.29) 

For isoparametric elements, all strains are evaluated at the Gaussian inte
gration points. Therefore !::..tn must be computed to satisfy (8.29) at each such 
point and the least value taken for analysis. A variant on the above is to limit 
the time step length according to 

(8.30) 

in which Ettn is the first total strain invariant and (E;in)VP is the first visco
plastic strain rate invariant. Thus !::..tn can be formally written for this case as 

(8.31) 

The minimUlIl in (8.31) is that taken over all integrating points in the solid. 
Thevalue of the time increment parameter T must be specified by"the user 
and for explicit time marching schemes accurate results have been ob
tained(4,8) in the range 0.01 < T<0.15. For implicit schemes, values of T up to 
10 have been found to be stable though the accuracy deteriorates. 

Another useful limit can be imposed while using the variable time stepping 
scheme. The change in the time step length between any two intervals is 
limited according to 

(8.32) 

where k is a specified constant. Experience suggests a value of k = 1·5 to be 
suitable although there are no fixed criteria for its specification. 

The above time step limiting values are basically empirical. Theoretical 
restrictions on the time step length have been provided by Cormeau(9) for 
specific forms of the viscoplastic flow rule and for explicit time integration 
only. In particular, for associated viscoplasticity Q = F and a linear function 
$(F) = Fwe have the following limits on the time step length. 

(1 +/I)Fo 
!::..t :;:; ----

yE 

4(1 +/I)Fo 

3yE 

for Tresca materials 

Von Mises 

4(1 +/I)(1-2/1)Fo 
!1t :;:; Mohr-Coulomb, 

y(l-2v+sin2<,6)£ 
(8.33) 
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where y is the fluidity parameter and c/> is the angle of internal friction. The 
term Fo is the uniaxial yield stress for Tresca and Von Mises solids and is the 
equivalent value (c cosc/» for Mohr-Coulomb materials where c is the co
hesion. No simple expression exists for the limiting time step length in 
Drucker-Prager solids. 

8.4 Computational procedure 
The essential steps in the solution process can be summarised as follows. 

Solution to the problem must begin from the known initial conditions at 
time t = 0, which are, of course, the solution of the static elastic situation. 
At this stage dO, FO, EO, 0'0 are known and Ev1'o = O. The time marching 
scheme described in Section 8.2.4 can then be employed to advance the 
solution by one timestep at a time. The solution sequence adopted is as 
follows. 

Stage 1 Suppose at time t = I" we have an equilibrium situation and d", a", 
E", Evp", Fn are known. The following quantities are assembled: 

(a) 

(b) 

(c) 

(d) 

(e) 

IJn = Bo+BNdd"), 

C" = C"( 0''', ~I ,,), ... 
Dn = (D-l+C")-l, 

KT" = r [Bn]T j)" BndQ, 
J!J 

Slage 2 i) Compute the displacement increments I:!.d" according to (8.23) as 

'where 

I:!.V" = In [B,,]T D"Ev1'n MndQ-l A/". 

ii) Calculate the stress increment 1:!.00n as 
A 

I:!.a" = Dn(B"l:!.d"-Ev1'nMn). 

Slage 3 Determine the total displacements and stresses 

d,,+1 = d" + I:!.d" 

0',,+1 = an + I:!.an. 

Stage 4 Calculate the viscopiastic strain rate 

Stage 5 Apply the equilibrium correction. First calculate B1I+1 using dis-
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placements d"+ 1• Substitute stresses 17,,+1 into the equilibrium equations and 
evaluate the residual forces V'''+! as 

Add these to the vector of incremental pseudo loads for use in the next time 
step 

(8.34) 

Stage 6 Check to see if the visco plastic strain rate E"pn+! is acceptably 
close to zero at each Gaussian integrating point throughout the structure 
(i.e. to within a specified tolerance). 

If so, steady state conditions are deemed to have been achieved and the 
solution is either terminated or the next load increment is applied. If Evp"+1 is 
non-zero return to Stage I and repeat the entire procedure for the next time 
step. 

The above algorithm can be employed with either a constant or variable 
time step length. For the variable time step option the interval length M,,+J. 
for the next time step must be calculated according to (8.29) or (8.31) subject 
to the restriction of (8.32). 

8.S Evaluation of matrix, H 

For solution by the fully implicit or semi-implicit (trapezoidal) time 
stepping scheme, matrix e" is required which in turn can be expressed in 
terms of H" as indicated in (8.14). Matrix H" must be explicitly determined 
for the yield criterion assumed for material behaviour. From (8.7) and (8.12) 
we have 

OEVp {OaT d<f> } 
H = -- = y <f>-+-aaT , 

0f1" (}f1 d F 
(8.35) 

where the symbols < > on <f> and the superscript n are dropped for con
venience. Restricting discussion to the Von Mises yield criterion we have, 
from (7.64), 

1 of 0[( y'3)(N)112] 
a = - = -=----:......--=-

OU OU 
(8.36) 

or 

(8.37) 
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for a three dimensional situation. Thus 

(8.38) 

where 

( 0'",')2 
, , , , 

20'.,' T1/Z 20'.,' Tz", 20'",' T"'1/ 0'", 0'1/ Ux Uz 

( 0'1/')2 
, , 

20'1/' T1/Z 20'1/' Tz", 20'1/' T"'1/ 0'1/ o'z 

( 0'0')2 20'0' T1/Z 20'0' T.", 20'0' T"'1/ 
M2 = 

4(T1Iz)2 4T1/ZT.", 4T1/Z T"'1/ 
(8.39) 

Symmetric 4(T.",)2 4TZ",T"'1/ 

4(T"'1/)2 

Also from (8.37) 

(8.40) 

where 

i -1 -! 0 0 0 

i -1 0 0 0 

i 0 0 0 
MI = 

2 0 0 
(8.41) 

Symmetric 2 0 

2 

Substituting from (8.38) and (8.40) into (8.35), and restoring the symbols 
< ), we have finally 

(8.42) 
where 

PI = Y<2(~~I/2' <1> ) 

< 3 d<1> ('\1'3)<1> ) 
P2 = y 4N dF 4(N)3/2 . 

(8.43) 

The form of d<1>/dF depends on the explicit form of <1> employed, examples of 
which were given in (8.8) and (8.9). Matrix Hn is then obtained by using 
stresses an to evaluate J2' and M 2• 

For two-dimensional situations (plane stress, plane strain and axial 
symmetry) the only relevant stress terms are given in (7.72). In this case MI 
and M2 reduce, on deletion of the appropriate terms, to 
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and 

M2 = 

Ml = 

( ax')2 

i -i 0 1-1 
i O:-! 

Symmetric 2: 0 ________ J 

' , 2' I 
, 

ax ay ax Txy I ax az 
I 

( ay')2 2ay'Txy I 
, 

ay a. 
I 

, 

, 

Symmetric 4( Txy)2 ! 2Txya/ 
____________ J 

( az')2 

(8.44) 

l (8.45) 

j' 
and Jz' is given by (7.76). For plane stress and plane strain problems only the 
upper 3 x 3 partition is employed while for axisymmetric situations the 
complete matrices are utilised with x and y being replaced by rand z respect
ively. 

Similar expressions can be derived for the Tresca, Mohr-Coulomb and 
Drucker-Prager yield criteria by employing the appropriate expression for 
F in (8.36) and repeating the above calculations. The form of F is given in 
(7.63), (7.65) and (7.66) for the Tresca, Mohr-Coulomb and Drucker-Prager 
laws respectively. 

8.6 Program structure 
The computation sequence for the program is shown in Fig. 8.1. The 

program structure follows closely that for static elasto-plastic analysis 
described in Chapter 7. In fact, the majority of the subroutines utilised are 
common to both applications and it is only the additional subroutines 
required that are described in this chapter. For the viscoplastic program. 
~e time stepping loop replaces the nonlinear solution iteration Loop for 
'conventionalpIaSticlty and_subroutine STEPVP, whose main role is to
evaluate quantities at the end of a timestep, replaces the plasticity subroutine 
RESIDU. In this chapter we need to describe in detail subroutines STIFVP, 
TANGVP, STEPVP, FLOWVP and STEADY. The descriptions of all other 
subroutines required for assembly of a working viscoplastic program have 
been given in Chapters 6 and 7. The version described is restricted to the case 
of infinitesimal strains. The modifications required to include large defor
mation effects are straightforward and are left as an exercise to the reader. 
Furthermore, for implicit schemes, only the Von Mises yield criterion is 
considered. 

The list of material properties accepted in subroutine INPUT described in 
Section 6.5.1 must be ext~nded beyond those required for elasto-plastic 
analysis, since additional material parameters are required to define the 
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I START 

I 
D1MEN 

Presets the variables associated with 
the dynamic dimensioning process 

I 
INPUT 

Inputs data defining geometry, boundary 
conditions and material properties 

I 
LOADPS 

Evaluates the equivalent nodal forces for 
pressure loading, gravity loading, etc. 

I 
ZERO 

Sets to zero arrays required for 
accumulation of data 

[NCREM 
Increments the applied loads according to 
specified load factors 

I 
STIFVP TANGVP 

Calculates the element stiffnesses f-- Evaluates jjn according 
as KTA(tr") (Eq. (8.24» to (8.18) 

-- ~~ I 
0.. 

FRONT § 0.. 

8 Solves the simultaneous equation system 

~ 
...l by thefrontal method. i.e. /!.d" ~ [KT']-'hV" 
0 I 

III Z 11"+1 ~11" + tld" 
I 

)! a:: I 

III 0.. I .. III U !ii STEPVP INVAR ~ 

~ 
III Evaluates quantities at the end of the timestep Evaluates the )! - a) M"~/}n(JJn[;'d-"",,·/'l/.) b) 0'71+1 =«1" + tlan - effective 0 f-o 

...l c) Et7p-ft+l=Etop"+tvp".6.tn d) [;./0+1 stress level -- -r- Calculate residual forces and pseudo loads for 
next time step YIELDF& 
a) ,."+1 = Iv [.8"+1]'1' aft+}dv+ fft+! FLOWVP 
b) 6. J',,+l = Iv [8'$+1]'1' D"+l€t,,, rl+l.6.t'H tdv - Determines:-

+r+1 +¥,'11+1 a) The flow 
vecto"r, II 

I b) Evpn+1 = 

OUTPUT y{<I» .... ' 
Prints the results for the current timestep 

I END 

Fig. 8.1 Flow sequence for the two-dimensional elasto-viscoplastic stress analysis 
program. 

viscoplastic flow. This is accomplished by specifying the value of NPROP 
as 10 in subroutine DIMEN. described in Section 7.8.1. and inputting the 
following properties for each different material. 
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PROPS(NUMAT, I) Elastic modulus, E. 
PROPS(NUMAT,2) Poissons ratio, v. 

PROPS(NUMAT, 3) Material thickness, t. 
PROPS(NUMAT,4) Material mass density, p. 
PROPS(NUMAT, 5) Uniaxial yield stress ay (Tresca and Von Mises solids); 

Cohesion c (Mohr-Coulomb and Drucker-Prager 
materials). 

PROPS(NUMAT, 6) Hardening parameter H' for linear strain hardening. 
PROPS(NUMAT,7) Angle of internal friction for Mohr-Coulomb and 

Drucker-Prager materials only. 
PROPS(NUMAT,8) The fluidity parameter, y. 
PROPS(NUMAT, 9) The coefficient M in (8.8) or coefficient N in (8.9). 
PROPS(NUMAT, 10) Indicator specifying type of flow function to be 

employed: 
0- Flow function (8.8) 
1 - Flow function (8.9) 

8.7 Formulation of the tangential stiffness matrix 
The role of the subroutines described in this section is to calculate the 

tangential stiffness matrix for each element according to (8.24). The complete 
operation is shared between three subroutines which will now be described. 

8.7.1 Subroutine STIFVP 
This subroutine controls the overall formulation of the tangential stiffness 

matrix for each element and is very similar to subroutine STIFFP, described 
in Section 7.8.5, which performs the same task for conventional plasticity. 
For the case of small deformations, matrix B" is constant and equal to Bo the 
usual infinitesimal elastic value. Matrix Bo is given by subroutine BMATPS 
described in Section 6.4.7. To evaluate Kr" it is necessary to find 
/In whose precise form is given by (8.18). With the normal elastic material 
matrix D replaced by fjn, the stiffness evaluation follows the' standard 
procedure described in Section 7.8.5. Subroutine STIFVP can now be 
pr~erited and described. 

SUBROUTINE STIFVP(COORD,IINCS,LNODS,MATNO,MEVAB,MMATS, 
MPOIN,MTOTV,NELEM,NEVAB,NGAUS,NNODE,NSTRE, 

NSTR1,POSGP,PROPS,WEIGP,MELEM,MTOTG, 
• STRSG NTYPE NCRIT TIMEX DTIME) 

0-......................................................•••••••••••••• 
C 
0-." THIS SUBROUTINE EVALUATES THE STIFFNESS MATRIX FOR EACH ELEMENT 
C IN TURN 
C 
C-......... ***** •••••••••••••••••••••• ** •••• ** •••••••••••••••••••••• _-

DIMENSION BMATX(4,18),CARTD(2,9),COORD(MPOIN,2),DBMAT(4,18), 
DERIV(2,g),DEVIA(4),DMATX(4,4), 
ELCOD(2,9),EPSTN(MTOTG),ESTIF(18,18)!LNODS(MELEM,9), 
MATNO(MELEM),POSGP(4),PROPS(MMATS,10J,SHAPE(9), 
WEIGP(4),STRES(4),STRSG(4,MTOTG), 

STVP 1 
STVP 2 
STVP 3 
STVP 4 
STVP 5 
STVP 6 
STVP 7 
STVP 8 
STVP 9 
STVP 10 
STVP 11 
STVP 12 
STVP 13 
STVP 14 
STVP 15 
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• DVECT(4) ,AVECT(4) ,GPCOD(2,9) STVP 16 
-TWOPI=6.283185308 STVP 17 

REWIND 1 STVP 18 
KGAUS=O STVP 19 

C STVP 20 
C*** LOOP OVER EACH ELEMENT STVP 21 
C STVP 22 

DO 70 IELEM= 1 , NELEM STVP 23 
LPROP=MATNO(IELEM) STVP 24 

C STVP 25 
C*** EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS STVP 26 
C STVP 27 

DO 10 INODE=l,NNODE STVP ~ LNODE=IABS(LNODS(IELEM,INODE» STVP 
IPOSN=(LNODE-1)*2 STVP 30 
DO 10 IDIME= 1 ,2 ~- ) STVP 31 
IPOSN=IPOSN+1 STVP 32 

10 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) STVP 33 
THICK=PROPS(L.PllOP j 3) __ STVP 34 

C STVP 35 
C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX STVP 36 
C STVP 37 

DO 20 IEVAB=1,NEVAB STVP 38 
DO 20 JEVAB=1,NEVAB STVP 39 

20 ESTIF(IEVAB,JEVAB)=O.O STVP 40 
KGASP=O STVP 41 

C STVP 42 
C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION STVP 43 
C STVP 44 

DO 50 IGAUS=1,NGAUS STVP 45 
EXISP=POSGP(IGAUS) STVP 46 
DO 50 JGAUS=1,NGAUS STVP 47 
ETASP=POSGP(JGAUS) STVP 48 
KGASP=KGASP+ 1 ~ STVP 49 
KGAUS=KGAUS+ 1 STVP 50 

C STVP 51 
C*** EVALUATE THE D-MATRIX STVP 52 
C STVP 53 

d:ALL MODPS(DMATX, LPROP ,MMATS, NTYPE, PROPS) STVP 54 
C STVP 55 
C*** EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL VOLUME,ETC. STVP 56 
C STVP 57 

CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) STVP 58 
CALL JACOB2(CARtD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP, STVP 59 

NNODE,SHAPE) STVP 60 
, DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) STVP 61 

IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(1,KGASP) STVP 62 
IF(THICK.NE.O.O) DVOLU=DVOLU*THICK STVP 63 

C STVP 64 
C*** EVALUATE THE B AND DB MATRICES STVP 65 
C STVP 66 

CALL BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NTYPE,KGASP) STVP 67 
DO 25 ISTR1=1,NSTR1 STVP 68 

25 STRES(ISTR1)=STRSG(ISTR1,KGAUS) STVP 69 
IF(TIMEX.GT.O.O) CALL TANGVP(LPROP,STRES,PROPS,TIMEX,DTIME, STVP 70 

NSTRE,NTYPE,MMATS,NCRIT,DMATX) STVP 71 
CALL DBE(BMATX,DBMAT,DMATX,MEVAB,NEVAB,NSTRE,NSTR1) STVP 72 

C STVP 73 
C*** CALCULATE THE ELEMENT STIFFNESSES STVP 74 
C STVP 75 

DO 30 IEV AB= 1 ,NEV AB STVP 76 
DO 30 JEVAB=IEVAB,NEVAB STVP 77 
DO 30 ISTRE=1,NSTRE STVP 78 

30 ESTIF(IEVAB,JEVAB)=ESTIF(IEVAB,JEVAB)+BMATX(ISTRE,IEVAB)* STVP 79 
• DBMAT(ISTRE,JEVAB)*DVOLU STVP 80 
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50 CONTINUE 
C 
C... CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX 
C 

STVP 81 
STVP 82 
STVP 83 
STVP 84 
STVP 85 
STVP 86 
STVP 87 
STVP 88 
STVP 89 
STVP 90 
STVP 91 
STVP 92 
STVP 93 
STVP 94 
STVP 95 

C 

DO 60 IEVAB=1,NEVAB 
DO 60 JEVAB=1,NEVAB 

60 ESTIF(JEVAB,IEVAB)=ESTIF(IEVAB,JEVAB) 

C··· STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C COORDINATES FOR EACH ELEMENT ON DISC FILE 
C 

WRITE ( 1) ESTIF 
70 CONTINUE 

RETURN 
END 

STVP 17 
STVP18 

STVP 19 

STVP 23 
STVP 24 
STVP 28-33 

STVP 34 
STVP 38-40 
STVP 41 
STVP45-48 

STVP 49-50 
STVP 54 
STVP 58 

STVP 59-60 

STVP 61-63 

STVP 67 
STVp 68-69 
STVP 70-71 

STVP72 
STVP 76-80 

Compute the value of 217. 
Rewind the disc file on which the element stiffness matrices 
will be stored in turn. 
Set to zero the counter which indicates the overall Gauss point 
location. 
Enter the loop over each element in the structure. 
Identify the material property type of the current element. 
Store the element nodal coordinates in the local array ELCOD 
for convenient use later. 
Identify the element thickness. 
Zero the element stiffness array. 
Set to zero the element Gauss point counter. 
Enter the numerical integration loops and locate the position 
(g, "I) of the current point. 
Increment the local and global Gauss point counters. 
Call subroutine MODPS to evaluate the elasticity matrix, D .. 
Evaluate the shape functions Nt and aNt/ag, aNt/a"l for the 
current Gauss point. 
Evaluate the Gauss point coordinates, GPCOD(IDIME, 
KGASP), the determinant of the Jacobian matrix I II and the 
Cartesian derivatives of the shape functions aNt/ax, aNi/ay 
(or aNt/or, aNt/az for axisymmetric problems). 
Calculate the elemental volume for numerical integration as 
I II W~ W'I taking care to multiply by the appropriate element 
thickness or by 217r for axisymmetric problems. 
Evaluate the B matrix. 
Store the current stresses in a local array. 
For an implicit or semi-implicit timestepping scheme (0 f= 0), 
call subroutine TANGVP to evaluate Dn which is stored as 
DMATX. ... 
Evaluate DB (or DnB for implicit schemes). 
Compute the upper triangle of the element stiffness matrix as 



286 FINITE ELEMENTS IN PLASTICITY 

In BT iJn B dO.. 

STVP 81 
STVP 85-87 

End of loop for numerical integration. 
Complete the lower triangle of the element stiffness matrix by 
symmetry. 

STVP 92 
STVP 93 

Store the element stiffness matrix on disc file 1. 
Return to process the next element. 

8.7.2 Subroutine TANGVP ,.. 
,.. The function of this subroutine is to evaluate Dn for use in (8.24). Matrix 
Dn, which is defined in (8.18), is stress dependent and therefore must be 
calculated for each Gaussian integrating point in turn. The computational 
sequence followed is: 
a) Evaluate Hn according to (8.42) 
b) Calculate en according to (8.14) ,.. 
c) Evaluate Dn according to (8.18) 
Two forms of the flow function <l> are considered as defined in (8.8) and (8.9). 
Thus, for use in (8.43), we have 

d<l> = M eM(F~F,) 
dF Fo ' 

or 
d<l> = N(F-FO)N-I. 
dF Fo Fo 

(8.46) 

Array DMATX which originally contains the elastic matrix D is used to 
finally store fJn. The matrix inversions required in (8.18) are performed by a 
separate subroutine, INVERT. 

/Subroutine TANGVP is now presented and described. 

SUBftOUTINE TANGVP(LPROP,STRES,PROPS,TIMEX,DTIME, TGVP 1 
. NSTRE,NTYPE,MHATS,NCRIT,DMATX) TGVP 2 

c···········.········································· ....•. * ••. *.*.** TGVP 3 
C TGVP II 
c···· THIS SUBROUTINE EVALUATES THE PSEUDO D-MATRIX TGVP 5 
C TGVP 6 
C···· ... *.* ••••••••••••••• ··.·······**·*·············· .. * .......••.•. * TGVP 7 

DIMENSION STRES(4) ,CMATX(4,1I),TMATX(4,4) ,TRIX1(4,4) ,TRIX2(4,4) , TGVP 8 
PROPS(MHATS,10),DEVIA(4),DMATX(4,4) TGVP 9 

ROOT3=1.73205080757 TGVP 10 
FDATM=PROPS(LPROP,5) TGVP 11 
GAMHA=PROPS(LPROP,8) TGVP 12 
DELTA=PROPS(LPROP,9) TGVP 13 
NFLOW=PROPS(LPROP,10) TGVP 14 
CALL INVAR(DE1!.!i\, LPROP, MHATS, NCR IT , PROPS, SINT3,STEFF, STRES, THETA, TGVP 15 

. FCURR=YIELD~.JR'llELD) . fg~~ 1~ 
FNORM=FCURR/FDATM TGVP 18 
IF(FNORM.LE.O.O) RETURN TGVP 19 
IF(NFLOW.EQ.ll GO TO 10 TGVP 20 
CMULT=EXP(DELTA*FNORM)-1.0 TGVP 21 
GRADP=DELTA.(EXP(DELTA.FNORM»/FDATM TGVP 22 
GO TO 20 TGVP 23 
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10 CMULT=FNORM**DELTA 
GRADP=DELTA*(FNORM**(DELTA-1.0»/FDATM 

20 FACT1=GAMMA*ROOT3*CMULT/(2.0*STEFF) 
FACT2=GAMMA*(0.75*GRADP/VARJ2-3.0*CMULT/(4.0*ROOT3*STEFF*VARJ2» 
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rGV? 24 
rGV? 25 
rGV? 26 
rGV? zr 
rGV? 28 C 

C**" MATRICES M1 AND M2 FOR A VON MISES MATERIAL rGV? 29 
C 

TRIX1(1,1)=0.666666667 
TRIX1(1,2)=-0.333333333 
TRIX1 (1 ,3)=G-.tO, 
TRIX1(2,2)=0.666666667 
TRIX 1( 2 , 3) =cr.q 
TRIX1(3,3)=~.Q 
IF(NTY?E.NE.3) GO TO 30 
TRIX1(1,4)=-O.333333333 
TRIX1(2,4)=-0.333333333 
TRIX1(3,4)=0.O 
-TRIX1(4,4)=0.666666667 

30 TRIX2(1,1)=DEVIA(1)*DEVIA(1) 
TRIX2(1,2)=DEVIA(1)*DEVIA(2) 
TRIX2(1,3)=2.0*DEVIA(J)*DEVIA(3) 
TRIX2(2,2)=DEVIA(2)*DEVIA(2) 
TRIX2(2,3)=2.0*DEVIA(2)*DEVIA(3) 
TRIX2(3,3)=4.0*DEVIA(3)*DEVIA(3) 
IF{NTY?E.NE.3) GO TO 40 
TRIX2(1,4)=DEVIA(1)*DEVIA(4) 
TRIX2(2,4)=DEVIA(2)*DEVIA(4) 
TRIX2(3,4)=2.0*DEVIA(3)*DEVIA(4) 

. TRIX2(4,4)=DEVIA(4)*DEVIA(4) 
'40 DO 50 ISTRE= 1 ,NSTRE 

DO 50 JSTRE=1,NSTRE 
TRIX1(JSTRE,ISTRE)=TRIX1(ISTRE,JSTRE) 

50 TRIX2(JSTRE,ISTRE)=TRIX2(ISTRE,JSTRE) 
DO 60 ISTRE=1,NSTRE 
DO 60 JSTRE=1,NSTRE 

60 CMATX(ISTRE ,JSTRE) =TIMEX*DTIME*(FACT1*TRIX1 (ISTRE,JSTRE ) 
• +FACT2*TRIX2(ISTRE,JSTRE» 
CALL INVERT(DMATX,TMATX,NSTRE) 
DO 70 ISTRE=1,NSTRE 
DO 70 JSTRE=1,NSTRE 

70 TMATX(ISTRE,JSTRE)=TMATX(ISTRE,JSTRE)+CMATX(ISTRE,JSTRE) 
CALL INVERT(TMATX,DMATX,NSTRE) 
RETURN 
END 

Evaluate Y(3). 
Identify the yield stress F as FDATM. 
Identify the fluidity parameter y as GAMMA. 

rGV? 30 
rGVP 31 
TGVP 32 
TGV? 33 
TGV? 34 
TGVP 35 
TGVP 36 
TGVP 37 
TGVP 38 
TGVP 39 
TGVP 40 
TGV? 41 
TGVP 42 
TGV? 43 
TGV? 44 
TGVP 45 
TGVP 46 
TGVP 47 
rGV? 48 
TGVP 49 
TGVP 50 
TGVP 51 
TGVP 52 
TGVP 53 
TGVP 54 
TGVP 55 
TGVP 56 
TGVP 57 
TGV? 58 
TGVP 59 
TGV? 60 
TGVP 61 
TGVP 62 
TGVP 63 
TGVP 64 
TGV? 65 
TGV? 66 
TGVP 67 

TGVP 10 
rGVP 11 
TGVP 12 
TGVP 13 For flow law (8.8) store the index M as DELTA, or for flow 

law (8.9) store the index N as DELTA. 
TGVP14 Identify the type of flow function to be used as governed by 

material property PROPS(LPROP,lO) supplied as input: 
NFLOW = 0 - Flow function (8.8) to be used, 
NFLOW = 1 - Flow function (8.9) to be used. 

TGVP 15-16 Call subroutine INV AR to evaluate the effective stress com
ponents, the effective stress level and 12'. 

TGVP 17-18 Evaluate F-Fo/Fo as FNORM. 
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TGVP 21-22 Evaluate <!J and d<!JjdFfor flow function (8.8). 
TGVP 24-25 Evaluate <!J and d<!JjdFfor flow function (8.9). 
TGVP 26-27 Compute PI and pz according to (8.43). 
TGVP 31-41 Evaluate MI according to (8.44) taking the full 4x4 matrix 

for axisymmetric situations. 
TGVP 42-52 Evaluate M2 according to (8.45) taking the full 4 x4 matrix for 

axisymmetric situations. 
TGVP 53-56 Complete the lower triangle of MI and M2 by symmetry. 
TGVP 57-60 Compute matrix Cn according to (8.14) and (8.42). 
TGVP 61 Call subroutine INVERT to evaluate D-I and store as 

TMATX. 
Compute D-l+Cn. TGVP 62-64 

TGVP 65 Call subroutine INVERT to evaluate (D-I+Cn)-1 and store 
asDMATX. 

8.7.3 Subroutine INVERT 
The function of this subroutine is to determine the inverse of any arbitrary 

square matrix. In particular. the subroutine accepts a matrix AMATX with 
dimensions NARA Y x NARA Y and evaluates the inverse as BMATX. The 
procedure employed is the standard method of reduction in which starting 
from the original matrix AMATX and assuming an identity matrix for 
BMATX. an elimination process is followed until AMA TX is reduced to an 
identity form. Then at this stage BMATX is the inverse of AMA TX. 

The subroutine is presented below without further comment. 

SUBROUTINE INVERT(AMATX BMATX NARAY) 
C •• * •••••• I •• __ ._ •••• _-, ••••• '_'._.'-------_' •• **--_'-*"*'*.I*III.! •• 
C 
c··· TO PROVIDE THE INVERSE OF AMATX AS BMATX 
C . 
c-·*·,·_· __ ·····_·_·_···,·-··_*·*·_--_·_***-_··_··_·_·**************~ 

DIMENSION AMATX(4,4),BMATX(4,4) 
DO 10 IARAY=l,NARAY 
DO 10 JARAY=1,NARAY 
BMATX(IARAY.JARAY)=O.O 

10 IF(IARAY.EQ.JARAY) BMATX(IARAY,JARAY)=1.0 
DO 20 IARAY=1,NARAY 
DENOM=AMATX(IARAY,IARAY) 
DO 30 JARAY=1,NARAY 
AMATX(IARAY,JARAY)=AMATX(IARAY, JARAY)/DENOM 

30 BMATX(IARAY,JARAY)=BMATX(1ARAY,JARAY)/DENOM 
KARAY=IARAY+ 1 
IF (KARAY .GT .NARAY) GO TO 40 
DO 20 JARAY=KARAY, NARAY 
CONST=AMATXeJARAY,IARAY) 
DO 20 LARAY=IARAY,NARAY 
AMATX(JARAY ,LARAY) =AMATX(JARAY , LARAY)-AMATX(IARAY , LARAY) 

• ·CONST 
20 BMATX(JARAY,LARAY)=BMATX(JARAY,LARAY)-BMATX(IARAY,LARAY) 

• ·CONST 
40 CONTINUE 

DO 50 IARAY=2,NARAY 
KARAY=NARAY-IARAY+2 

INVT 1 
INVT 2 
1NVT 3 
INVT 4 
INVT 5 
INVT 6 
INVT 7 
INVT 8 
INVT 9 
INVT 10 
INVT 11 
INVT 12 
INVT 13 
INVT 14 
INVT 15 
INVT 1b 
1NVT 17 
1NVT 18 
1NVT 19 
1NVT 20 
INVT 21 
INVT 22 
1NVT 23 
INVT 24 
INVT 25 
INVT 26 
1NVT zr 
1NVT 28 
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LIMIT=KARAY-1 
DO 50 LARAY=l,LIMIT 
CONST=AMATX(LARAY,KARAY) 
DO 50 JARAY=l,KARAY 
AMATX(LARAY ,JARAY) =AMATX(LARAY, JARAY)-AMATX(KARAY,JARAY) 

· *CONST 
50 BMATX(LARAY,JARAY)=BMATX(LARAY,JARAY)-BMATX(KARAY,JARAY) 

. *CONST 
RETURN 
END 
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INVT 29 
INVT 30 
INVT 31 
INVT 32 
INVT 33 
INVT 34 
INVT 35 
INVT 36 
INVT 37 
INVT 38 

8.8 Subroutine STEPVP for the evaluation of end of time step quantities 
and equilibrium correction terms 

With reference to Fig. 8.1, this subroutine evaluates quantities, such as 
stresses and viscoplastic strains, at the end of the current timestep and also 
calculates the loading to be applied during the next timestep. The subroutine 
is structured to perform the following operations sequentially: 
\ (a) All quantities at the end of timcstep 11 are calculated as ( )n+l. 

(b) Subroutine INVAR, YIELDF and FLOWVP are called to evaluate the 
current viscoplastic flow rate, Evp"'[. 

(c) The maximum permissible interval length, fl.tll-i-l, for the next timestep 
as governed by (8.29) and (8.32) is calculated. 

(d) The residual forces, IfIn~l, are evaluated and the loads, fI. vn~l, for the 
next timestep then calculated. 

In the program presented we restrict ourselves to loads applied in discrete 
increments. An increment of load is applied and the time stepping process is 
followed until either steady state conditions are achieved, or a specified 
number of timesteps is reached. Then a further increment of load is applied 
and the process repeated. Thus in (8.23), ;;;'f" = 0 for all stages other than 
the first timestep of a particular load increment. 

The attainment of steady state conditions can be monitored by accumu
lating some measure of the viscoplastic strain rate for all Gauss points in the 
structure. At steady state this quantity will become zero. The degree of total 
viscoplastic flow at any point is best monitored by evaluating the total 
effective viscoplastic strain rate at all Gauss points according to 

-c (.I·')f(·) (. ) }1? Evp = v 3 l EiJ "P Eif rp i-. 

Subroutine STEPVP is now presented and described. 

SUBROUTINE STEPVP(ASDIS,COORD,ELOAD,ISTEP,LNODS,LPROP,TlMEX, 
MATNO,MELEM,MMATS,MPOIN,MTOTG,TAUFT,DTIME, 
MTOTV,NDOFN,NELEM,NEVAB,NGAUS,NNODE,NSTR1, 

• NTYPE,POSGP,PROPS,NSTRE,NCRIT,STRSG,WEIGP{ 
• TDISP,VISTN,VIVEL,TLOAD,FTIME,DTINT,IINCS) 

C.· ... *** ••• ****.** •••• ****************.**************1 •• ***.***11*_** 
C c·· .. EVALUATES QUANTITIES AT END OF TIME STEP AND CALCULATES THE 
C RESIDUAL FORCES AND PSEUDO FORCES FOR THE NEXT STEP 
C C.-.*.* .. I.** _____ ** __ ._ •• *_ ••• * •• * •• _* •• ****_ •• *_* ••• **_*_1.1_1._._._ 

(8.47) 

SPVP 1 
SPVP 2 
SPVP 3 
SPVP 4 
SPVP 5 
SPVP 6 
SPVP 7 
SPVP 8 
SPVP 9 
SPVP 10 
SPVP 11 
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DIMENSION ASDIS(MTOTV),AVECT(4),CARTD(2,9),CooRD(HPOIN,2), 
DEVIA(4) ,ELCOD(2,9),ELDIS(2,9) ,ELOAD(MELEM,18) , 
LNODS(MELEM,9) ,POSGP(4) ,PROPS(HHATS, 10) ,STRAN(4) , 
STRES(4),STRSG(4,MTOTG),VIVEL(5,MTOTG), 
VISTN(4,MTOTG),WEIGP(4),DHATX(4,4),TLDIS(2

j
9), 

DERIV(2,9),SHAPE(9),GPCOD(2,9),TDISP(MTOTV , 
MATNO(MELEM),DJACH(2,2),BHATX(4,18),DESTN(4), 

• TLOAD(MELEM,18),SVECT(4) 
TWOPI=6.283185308 
DO 10 IELEM=l, NELEM 
DO 10 IEVAB=l,NEVAB 

10 ELOAD(IELEM,IEVAB)=O.O 
KGAUS=O 
DNEXT=FTIME*DTIME 
DO 80 IELEM=l,NELEM 
LPROP=HATNO(IELEM) 

C*** STORE COORDINATES AND INCREMENTAL DISPLACEMENTS OF THE 

SPVP 12 
SPVP 13 
SPVP 14 
SPVP 15 
SPVP 16 
SPVP 17 
SPVP 18 
SPVP 19 
SPVP 20 
SPVP 21 
SPVP 22 
SPVP 23 
SPVP 24 
SPVP 25 
SPVP 26 
SPVP Z7 
SPVP 28 
SPVP 29 
SPVP 30 
SPVP 31 

C ELEMENT NODAL POINTS 
C 

DO 20 INODE= 1 ,NNODE SPVP 32 
LNODE=IABS(LNODS(IELEM,INODE» SPVP 33 
NPOSN=(LNODE-1J*NDOFN SPVP 34 
DO 20 IDOFN=l,NDOFN SPVP 35 
NPOSN=NPOSN+1 SPVP 36 
ELCOD(IDOFN,INODE)=CooRD(LNODEtIDOFN) SPVP 37 
TLDIS(IDOFN,INODE)=TDISP(NPOSN) SPVP 38 

20 ELDIS(IDOFN,INODE)=ASDIS(NPOSN) SPVP 39 
THICK:PROPS(LPROP,3) SPVP 40 
KGASP=O SPVP 41 
DO 70 IGAUS=l,NGAUS SPVP 42 
DO 70 JGAUS=l,NGAUS SPVP 43 
EXISP=POSGP(IGAUS) SPVP 44 
ETASP=POSGP( JGAUS) SPVP 45 
KGAUS=KGAUS+ 1 SPVP 46 
KGASP=KGASP+1 SPVP 47 
CALL HODPS(DMATX,LPROP,HHATS,NTYPE,PROPS) SPVP 48 
DO 30 ISTR1=l,NSTR1 SPVP 49 

30.STRES(ISTR1)=STRSG(ISTR1,KGAUS) SPVP 50 
CALL INVAR(DEVIA,LPROP,HHATS,NCRIT,PROPS,SINT3,STEFF,STRES,THETA, SPVP 51 

VARJ2,YIELD) SPVP 52 
IF(TIHEX.GT.O.O) CALL TANGVP(LPROP,STRES,PROPS,TIMEX,DTIME, SPVP 53 

. NSTRE,NTYPE,HHATS,NCRIT ,DMATX) SPVP 54 
CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) SPVP 55 
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP,NNODE,SHAPE)SPVP 56 
DVOLU=DJACB*WHGP(IGAUS)*WEIGP(JGAUS)- ,. . . SPVP 57 
IF(NTlPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(l,KGASP) SPVP 58 
IF{THICK.NE.O.O) DVOLU=DVOLU*THICK SPVP 59 
CALL STRESS (DMATX , LPROP , NTYPE ,PROPS,NDOFN,CARTD ,ELDIS, SHAPE, SPVP 60 

GPCOD,NSTRE, VIVEL,DTIHE,STRSG,KGASP ,MTOTG,HHATS, SPVP 61 
SVECT,NNODE,NSTR1,KGAUS,TLDIS) SPVP 62 

DO 60 ISTR1=1,NSTR1 SPVP 63 
---DESTN(ISTR1l=VIVEL(ISTR1,KGAUS)*DTIME SPVP 64 
60 VISTN(ISTR1,KGAUS)=VISTN(ISTR1,KGAUS)+DESTN(ISTR1) SPVP 65 

DEBAR=SQRT«2.0*(DESTN(1)*DESTN(1)+DESTN(2)*DESTN(2)+DESTN(4)* SPVP 66 
· DESTN(4»+DESTN(3)*DESTN(3»/3.0) SPVP 67 

DO 65 ISTR1=l,NSTR1 SPVP 68 
65 STRES(ISTR1)=STRSG(ISTR1,KGAUS) SPVP 69 

VIVEL(5,KGAUS) =VIVEL(5 ,KGAUS)+DEBAR SPVP 70 
CALL INVAR(DEVIA,LPROP,HHATS,NCRIT,PROPS,SINT3,STEFF,STRES,THETA, SPVP 71 

VARJ2, YIELD) SPVP 72 
CALL YIELDF(AVECT,DEVIA,LPROP,HHATS, NCRIT,NSTR1, SPVP 73 

PROPS,SINT3, STEFF, THETA, VARJ2) SPVP 74 
CALL FLOWVP(AVECT ,PROPS,LPROP ,STEFF ,NSTR1,MTOTG, VIVFI" SPVP 75 

· YIELD,KGAUS,HHATS,NCRIT,FNORH,ALLOW) SPVP 76 
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IF(FNORM.LT.ALLCM) GO TO 70 SPVP 77 
EPBAR=SQRT«2.0*(AVECT(1)*AVECT(1)+AVECT(2)*AVECT(2)+AVECT(4) SPVP 78 

· *AVECT(4»+AVECT(3)*AVECT(3»/3.0) SPVP 79 
TSBAR=SQRT«2.0*(SVECT(1)*SVECT(1)+SVECT(2)*SVECT(2)+SVECT(4) SPVP 80 

· *SVECT(4»+SVECT(3)*SVECT(3»/3.0) SPVP 81 
DELTM=TAUFT*TSBAR/EPBAR SPVP 82 
IF(DELTM.LT .DNEXT} DNEXT=DELTM SPVP 83 

70 CONTINUE SPVP 84 
80 CONTINUE SPVP 85 

DTIME=DNEXT SPVP 86 
IF(ISTEP.EQ.ll DTIME=DTINT SPVP 87 
KGAUS=O SPVP 88 
00 140 IELEM= 1 , NELEM SPVP 89 
LPROP=MATNO( IELEM) SPVP 90 
00 90 INODE=l,NNODE SPVP 91 
LNODE=IABS(LNODS(IELEM,INODE» SPVP 92 
NPOSN= (LNODE-ll *NDOFN SPVP 93 
DO 90 IDOFN= 1 ,NDOFN SPVP 94 
NPOSN=NPOSN+ 1 SPVP 95 

90 ELCOD(IDOFN,INODE)=COORD(LNODE,IDOFN) SPVP 96 
THICK=PROPS( LPROP ,3) SPVP 97 
KGASP=O SPVP 98 
DO 130 IGAUS= 1 ,NGAUS SPVP 99 
DO 130 JGAUS=l,NGAUS SPVP 100 
EXISP=POSGP(IGAUS) SPVP 101 
ETASP=POSGP(JGAUS) SPVP 102 
KGAUS=KGAUS+ 1 SPVP 103 
KGASP=KGASP+ 1 SPVP 104 
CALL SFR2(DERIV,ETASP,EXISP,NNODE,SHAPE) SPVP 105 
CALL JACOB2(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM,KGASP,NNODE,SHAPE)SPVP 106 
DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) SPVP 107 
IF(NTYPE.EQ.3) DVOLU=DVOLU*rwOPI*GPCOD(l,KGASP) SPVP 108 
IF(THICK.NE.O.O) DVOLU=DVOLU*THICK SPVP 109 
CALL BMATPS(BMATX,CARTD,NNODE,SHAPE,GPCOD,NTYPE,KGASP) SPVP 110 
CALL MODPS(DMATX,LPROP,MMATS,NTYPE,PROPS) SPVP 111 
DO 100 ISTR1=1,NSTRl SPVP 112 

100 STRES(ISTR1)=STRSG(ISTR1,KGAUS) SPVP 113 
CALL INVAR(DEVIA,LPROP,MMATS,NCRIT,PROPS,SINT3,STEFF,STRES,THETA, SPVP 114 

VARJ2,YIELD) SPVP 115 
IF(TIMEX.GT.O.O) CALL TANGVP(LPROP,STRES,PROPS,TIMEX,DTlME

I 
SPVP 116 

• NSTRE,NTYPE,MMATS,NCRIT,DMATX SPVP 117 
c 
C*** CALCULATE THE RESIDUAL FORCES AND INCREMENTAL PSEUDO LOADS 
C 

SPVP 118 
SPVP 119 
SPVP 120-
SPVP 121 
SPVP 122 
SPVP 123 
SPVP 124 
SPVP 125 
SPVP 126 
SPVP 127 
SPVP 128 
SPVP 129 
SPVP 130 
SPVP 131 
SPVP 132 
SPVP 133 
SPVP 134 
SPVP 135 
SPVP 136 
SPVP 131 
SPVP 138 
SPVP 139 

00 110 ISTRE=l,NSTRE 
STRES(ISTRE) =0.0 
DO 110 JSTRE=l,NSTRE 

110 STRES(ISTRE)=STRES(ISTRE)+DMATX(ISTRE,JSTRE)*VIVEL(JSTRE,KGAUS) 
• *DTIME 
IfJASlbO 
DO 120 INODE=l,NNODE 
00 120 IDOFN=l,NOOFN 
IfJASH=MGASH+ 1 
00 120 ISTRE=l,NSTRE 

120 ELOAD(IELEM,MGASH)=ELOAD(IELEM,MGASH)+BMATX(ISTRE,MGASH) 
• *(STRES(ISTRE)-STRSG(ISTRE,KGAUS»*DVOLU 

130 CONTINUE 
140 CONTINUE 

00 150 IELEM= 1 ,NELEM 
00 150 IEVAB=l,NEVAB 

150 ELOAD(IELEM,IEVAB)=ELOAD(IELEM,IEVAB)+TLOAD(IELEM,IEVAB) 
RETURN 
END 
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SPVP20 
SPVP 21-23 

SPVP 24 
SPVP 25 

SPVP 26 
SPVP 27 
SPVP 32-39 

SPVP 40 
SPVP41 
SPVP 42-45 

SPVP 46-47 
SPVP 48 
SPVP 49-50 
SPVP 51-52 
SPVP 53-54 

SPVP 55 

SPVP 56 

SPVP 57-59 

SPVP 60--62 

SPVP 63--65 

SPVP 66--67 

SPVP 70 

SPVP 71-76 

SPVP 77 

FINITE ELEMENTS IN PLASTICITY 

Compute 21T. 
Zero the array in which the pseudo loads for the next time
step will be stored. 
Zero the Gauss point counter over all elements. 
Increase the timestep length from the value used for the 
previous step by the factor FfIME. If this new value is less 
than that predicted later in this routine, this step length will 
be employed for the next time step. 
Loop over each element. 
Identify the element material property number. 
Store the element coordinates in array ELCOD, the incre
mental displacements Adn in ELDIS and the total displace
ments dn in TLDIS. 
Identify the element thickness. 
Zero the local Gauss point counter. 
Enter the loops for numerical integration and evaluate the 
local coordinates a, ?)) at the sampling point. 
Increment the local and global Gauss por·nt counters. 
Compute the elasticity matrix, D. , 
Store the total current stresses un locally in STRES. 
Evaluate the deviatoric stresses and 12'. 

For the implicit or semi-implicit time stepping scheme 
"' evaluate Dn. 

Evaluate the shape functions N/ and the derivatives aN/foe, 
aNt/a?). 
Evaluate the Gauss point coordinates GPCOD(IDIME, 
KGASP), the determinant of the Jacobian matrix I II and 
the Cartesian derivatives of the shape functions. 
Calculate the elemental volume for numerical integration as 
I II Wg W1) taking care to multiply by 21Tr for axisymmetric 
problems. 
Call subroutine STRESS to evaluate the stress increment 
Aun according to (8.20) and also un+l = un+Aun • 

Evaluate the incremental viscoplastic strain and the total 
current viscoplastic strain, Evpn+l. 

Accumulate the absolute value of the viscoplastic strain 
increment. This will allow us to monitor whether or not 
steady state conditions are being approached. 
Also calculate the total current effective viscoplastic strain 
ivpn+l according to (8.47) .. 
Evaluate the current viscoplastic flow rate tvpn+l according 
to (8.7). 
If the Gauss point is elastic, avoid calculation of the new time 
step length. 
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SPVP 78-79 Calculate lvp1l+1, the effective value of the viscoplastic strain 
rate. 

SPVP 80-81 Calculate i 1l+1, the total effective strain. 
Spyp 82-83 Evaluate the interval length for the next time step according 

to (8.29) as 

SPVP 84-85 

SPYP 87 

SPVP 88 
SPVP 89 
SPVP90 

SPYP 91-96 
SPVP 97 
SPVP 98 

[ 

i"+1 ] l/Z 
~t1l+1 = T , 

£vp'!+1 min 

where TF ACT is the parameter T and the minimum value of 
~tn+1 is taken with respect to all Gauss points througholJt the 
structure. 
Termination of loops over Gauss points and elements 
respectively. 
For the first time step of a load increment reset the step length 
equal to the initial value input. 
Zero the Gauss point counter over all elements. 
Loop over each element. 
Identify the element material property number. 

Store the element coordinates in array ELCOD. 
Identify the element thickness. 
Zero the local Gauss point counter. 

SPVP 99-102 Enter the loops for numerical integration and evaluate the 
local coordinates (g, '1) at the sampling point. 

SPVP 103-104 Increment the local and global Gauss point counters. 

SPVP 105 Evaluate the shape functions and their local derivatives. 

SPVP 106 Evaluate the Gauss point coordinates, determinant of the 
Jacobian matrix and the Cartesian derivatives of the shape 
functions. 

SPVP 107-109 Calculate the elemental volume for numerical integration. 

SPVP 110 Evaluate the B matrix. 

SPVP 111 Evaluate the D matrix. 

SPVP 112-113 Store the total current stresses 17,,+1 locally in STRES. 

·SPVP 114-115 Calculate the deviatoric stresses and Jz'. 

SPVP 116-117 For the implicit or semi-implicit time stepping scheme 
evaluate fjn+1. 

SPVP 121-125 Calculate J}"+1 Evp"+16tn+1 and store locally in STRES. 

SPVP 126-132 Evaluate the pseudo loads to be applied for the next timestep, 
~ V"+1 according to (8.28) and (8.34) as 
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DoVn+1 = J BT{Dn+1EI'/,n11 DoI1l+1-10'1!+I}dQ+ /,1-11. 
!1 

SPVP 133-134 Termination of loops over Gauss points and elements 
respectively. 

SPVP 135-137 Complete the computations of SPVP 126-132 by adding the 
term /'1+1. 

Subroutine INVAR which calculates the deviatoric stresses and h' is 
identical to that employed in Chapter 7 for elasto-plastic problems and is 
described in detail in Section 7.8.3. Subroutine YIELDF has been previously 
described in Section 7.8.4.1. 

8.9 Subroutine FLOWVP 
The function of this subroutine is to determine the viscopiastic strain rate 

according to (8.7). 
Subroutine FLOWVP is now presented and described. 

SUBROUTINE FLOWVP(AYECT,PROPS,LPROP,STEFF,NSTR1,MTOTG
1
VIVEL, FLVP 1 

. ~IELD,KGAUS,HHATS,NCRIT,FNORM,ALLOW FLVP 2 
C···············,·········.·***···*,*·*·*···*··**·**··.* •• ,*.*.***.... FLVP 3 
C FLVP 4 
c •••• THIS SUBROUTINE EVALUATES THE VISCOPLASTIC STRAIN RATE FLVP 5 
C FLW 6 
C························ •••••• ••••••••••••••••••••••••••••••••••••••• FLVP 7 

DIMENSION AVECT(4) ,PROPS(HHATS, 10) ,VIVEL(5,MTOTG) FLVP 8 
ALLOW~O.01 FLVP 9 
IF(STEFF.EQ.O.O) GO TO 90 FLVP 10 
YOUNG~PROPS(LPROP,l) FLVP 11 
POISS~PROPS(LPROP,2) FLVP 12 
HARDS~PROPS(LPROP,6) FLVP 13 
FRICT~PROPS(LPROP,7) FLVP 14 
GAHHA~PROPS(LPROP,8) FLVP 15 
DELTA~PROPS(LPROP,9) FLVP 16 
NFLOW~PROPS(LPROP,10) FLVP 17 
ROOT3~1.73205080757 FLVP 18 
FDATM~PROPS(LPROP,5) FLVP 19 
FRICT~FRICT·0.017453292 FLVP 20 
IF(NCRIT.EQ.3) FDATM:FDATM*COS(FRICT) FLVP 21 
IF(NCRIT.EQ.4) FDATM:6.0*FDATM*COS(FRICT)/(ROOT3*(3.0-SIN(FRICT»)FLVP 22 
IF(HARDS.GT.O.O) FDATM~FDATM+VIVEL(5,KGAUS)'HARDS FLVP 23 
IF(FDATM.LT .0.001) FDATM:1.0 FLVP 24 
FCURR~YIELD-FDATM FLVP 25 
FNORM~FCURRlFDATM FLVP 26 
IF(FNORM.LT . ALLOW) GO TO 90 FLVP 27 
IF(NFLOW.EQ.l) GO TO 50 FLVP 28 
CMULT~GAHHA·(EXP(DELTA*FNORM)-1.0) FLVP 29 
GO TO 60 FLVP 30 

50 CMULT~AMMA*(FNORM**DELTA) FLVP 31 
60 DO 70 ISTR1:l,NSTRl FLVP 32 
70 AVECT(ISTR1)=CMULT*AVECT(ISTR1) FLVP 33 

DO BO ISTR1=1,NSTRl FLVP 34 
BO VIVEL(ISTR1,KGAUS):AVECT(ISTR1) FLVP 35 

RETURN FLVP 36 
90 DO 100 ISTR1=1,NSTRl '. J FLVP 37 

100 VIVEL(ISTR1,KGAUS)=0.0 FLVP 38 
RETURN FLVP 39 
END FLVP 40 
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FLVP9 

FLVP 10 

FLVP 11 
FLVP12 
FLVP 13 
FLVP14 

FLVPl5 
FLVPl6 

FLVP 17 

FLVP 18 
FLVP 19-22 

FLVP 23 

FLVP 24 

FLVP 25-26 

FLVP 27 

FLVP 29 
FLVP 31 
FLVP 32-35 
FLVP 37-38 

Specify ALLOW, the permitted tolerance by which the stress 
point is allowed to deviate from the yield surface. 
For the (unlikely) case of a Gauss point with zero stress 
(identified by N = la' = 0) avoid all viscoplastic calculations. 
Identify YOUNG as the elastic modulus, E. 
Identify POISS as the Poissons ratio, v. 

Identify HARDS as H' for linear strain hardening. 
Identify FRICT as the friction angle if> for Mohr-Coulomb 
and Drucker-Prager materials. 
Identify GAMMA as the fluidity parameter, y. 

Identify DELTA as the index Min (8.8) or N in (8.9), according 
to the flow function specified. 
Identify NFLOW as the parameter specifying type of flow 
function: 

NFLOW = 0 - flow function (8.8) to be used, 
NFLOW = 1 - flow function (8.9) to be used. 

Compute Y(3). 
Identify FDATM as the effective yield stress, ayo, according 
to Column 4, Table 7.2. 
Evaluate the current yield stress as Fo = ayo + H' i vp , where 
EVp is the· current effective viscoplastic strain, according to 
(8.47). 
For elastic creep problems, solved by setting Fo = 0, reset 
Fo as a low value to avoid overflow in (8.8) and (8.9). 
Calculate (F -Fo)/Fo where F is the effective stress value 
evaluated as YIELD in subroutine INV AR. 
If (F -Fo)/Fo is less than ALLOW avoid any further visco
plastic calculations, i.e. the stress point is assumed to be 
sufficiently close to the yield surface. 
Evaluate y<!D) for flow function (8.8). 
Evaluate y<!D) for flow function (8.9). 
Use flow vector a to form Evpn+l = y<q»an+1. 

For elastic points only, set the viscoplastic strain rate to zero. 

8.10 Subroutine STRESS 
The function of this subroutine is to evaluate the increment In stress 

occurring during a time step according to (8.20). 
Subroutine STRESS is presented below: 

SUBROUTINE STRESS (DMA TX, LPROP , NTY PE, PRO PS, NDOFN , CARTD , ELD IS, STRS 1 
SHAPE,GPCOD,NSTRE,VIVEL,DTIME,STRSG.KGASP, STRS 2 

• MTOTG,MMATS,SVECT,NNODE,NSTR1,KGAUS,TLDIS) STRS 3 c·· •..•.........•.... ** •• *** •••• *****.****** ••• ** ••••• * ••••••••• ****** STRS 4 
C STRS 5 
C·... EVALUATE THE INCREMENTS OF STRAIN AND STRESS STRS 6 
C STRS 7 
C ••••••••••••• ** ••••••••••••••••••••• *** ••••• ****.** ••• *.****.*** •• *** STRS 8 
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C 

DIMENSION SVECT(4) ,PROPS(MMATS,10),ELDIS(2,9) ,CARTD(2,9), 
DMATX(4,4) ,AGASH(2,2) ,STRES(4),STRAN(4) ,STRSG(4,MTOTG) , 
SHAPE(9),VIVEL(5,MTOTG),TLDIS(2,9),CGASH(2,2), 
GPCOD(2,9) 

POISS=PROPS(LPROP, 2) 
DO 10 IDOFN=l,NDOFN 
DO 10 JDOFN=1,NDOFN 
BGASH=O.O 
DGASH=O.O 
DO 20 INODE=l,NNODE 
DGASH=DGASH+CARTD(JDOFN ,INODE) *TLDIS(IDOFN,INODE) 

20 BGASH=BGASH+CARTD(JDOFN,INODE)*ELDIS(IDOFN,INODE) 
CGASH(IDOFN,JDOFN)=BGASH 

10 AGASH(IDOFN,JDOFN)=DGASH 

C*.. CALCULATE THE TOTAL AND INCREMENTAL STRAINS 
C 

SVECT(1)=AGASH(1,1) 
SVECT(2)=AGASH(2,2) 
SVECT(3)=AGASH(1,2)+AGASH(2,1) 
IF(NTYPE.NE.3) GO TO 70 
SVECT(4)=0.0 
DO 60 INODE=1,NNODE 
SVECT(4)=SVECT(4)+TLDIS(1,INODE)*SHAPE(INODE)/GPCOD(1,KGASP) 

60 CONTINUE 
70 CONTINUE 

STRAN(1)=CGASH(l,1) 
STRAN(2)=CGASH(2,2) 
STRAN(3)=CGASH(1,2)+CGASH(2,l) 
IF(NTYPE.NE.3) GO TO go 
STRAN(4)=0.0 
DO 80 INODE=l,NNODE 
STRAN(4)=STRAN(4)+ELDIS(1,INODE)*SHAPE(INODE)/GPCOD(1,KGASP) 

80 CONTINUE 
90 CONTINUE 

DO 50 ISTRE= 1 ,NSTRE 
C 50 STRAN (ISTRE) =STRAN (ISTRE) -VIVEL( ISTRE,~AUS) *DTIME 

C·*· AND THE INCREMENTAL STRESSES 
C 

DO 30 ISTRE=l,NSTRE 
STRES(ISTRE)=O.O 
DO 30 JSTRE=1,NSTRE 

30 STRES(ISTRE)=STRES(ISTRE)+DMATX(ISTRE,JSTRE)*STRAN(~STRE) 
IF(NTYPE.EQ.1) STRES(4)=0.0 
IF(NTYPE.EQ.2) STRES(4)=POISS*(STRES(1)+STRES(2» 
DO 40 ISTR1=1,NSTR1 

40 STRSG(ISTR1,KGAUS)=STRSG(ISTR1,KGAUS)+STRES(ISTR1) 
RETURN 
END 

STRS 9 
STRS 10 
STRS 11 
STRS 12 
STRS 13 
STRS 14 
STRS 15 
STRS 16 
STRS 17 
STRS 18 
STRS 19 
STRS 20 
STRS 21 
STRS 22 
STRS 23 
STRS 24 
STRS 25 
STRS 26 
STRS 27 
STRS 28 
STRS 29 
STRS 30 
STRS 31 
STRS 32 
STRS 33 
STRS 34 
STRS 35 
STRS 36 
STRS 37 
STRS 38 
STRS 39 
STRS 40 
STRS 41 
STRS 42 
STRS 43 
STRS 44 
STRS 45 
STRS 46 
STRS 47 
STRS 48 
STRS 49 
STRS 50 
STRS 51 
STRS 52 
STRS 53 
STRS 54 
STRS 55 
STRS 56 
STRS 57 
STRS 58 
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Identify PO ISS as the material Poisson's ratio. STRS 13 
STRS 14-22 Evaluate the Cartesian derivatives of both the displacement 

increment and the total displacement. 
STRS 26-33 
STRS34-4S 
STRS49-S2 
STRSS3-S4 

Evaluate the total and incremental strains Bdn and Bl:l.dn. 
Calculate the elastic portion of the strains, Bl:l.dn -Evpn I:l.tn. 
Calculate the stresses according to (8.20). 
For plane stress and plane strain problems evaluate the out-of
plane stress component. 

STRSSS-S6 Finally calculate the total current stress as un+1 = un+l:l.un. 

8.11 Subroutine ZERO 
This subroutine performs the same task as the subroutine described in 

Section 7.8.2 for eiasto-piastic problems. It merely initializes to zero some 
arrays required for the accumulation of data. Subroutine ZERO is presented 
below without further comment. 

SUBROUTINE ZERO(ELOAD,MELEM,MEVAB,MPOIN,MTOTG,MTOTV,NDOFN,NELEM, 
NEVAB,NGAUS,NSTR1,NTOTG,NTOTV,NVFIX,STRSG, 
TDISP,VIVEL,VISTN,TTIME,TLOAD,TREAC, 

• TFACT, MVFIX) 
C'-*'_"'.I •••• -.****---,.,**-*--_.*--.. *-***----*'-'-*_***1_* __ **'-'
C 
c •••• THIS SUBROUTINE INITIALISES VARIOUS ARRAYS TO ZERO 
C 
c·····.··········***********************·***************************** 

DIMENSION ELOAD(MELEM,MEVAB),STRSG(4,MTOTG),TDISP(MTOTV), 
TLOAD(MELEM,MEVAB),TREAC(~ruyIX,2),VIVEL(5,MTOTG), 
VISTN(4,MTOTG) 

TTIME=O.O 
TFACT=O.O 
DO 30 IELEM=l,NELEM 
DO 30 IEVAB=l,NEVAB 
ELOAD(IELEM, IEVAB) =0.0 

30 TLOAD(IELEM,IEVAB)=O.O 
DO 40 ITOTV = 1 , NTOTV 

40 TDISP(ITOTV)=O.O 
DO 50 IVFIX=l,NVFIX 
DO 50 IDOFN = 1 , NDOFN 

50 TREAC(IVFIX,IDOFN)=O.O 
DO 60 ITOTG= 1 , NTOTG 
VIVEL(5,ITOTG)=0.O 
DO 60 ISTR1=1,NSTR1 
VISTN(ISTR1,ITOTG)=0.0 
VIVEL(ISTR1,ITOTG)=0.0 

60 STRSG(ISTR1,ITOTG)=0.0 
RETURN 
END 

8.12 Subroutine STEADY for monitoring steady state convergence 

ZR02 1 
ZR02 2 
ZR02 3 
ZR02 4 
ZR02 5 
ZR02 6 
ZR02 7 
ZR02 8 
ZR02 9 
ZR02 10 
ZR02 11 
ZR02 12 
ZR02 13 
ZR02 14 
ZR02 15 
ZR02 16 
ZR02 17 
ZR02 18 
ZR02 19 
ZR02 20 
ZR02 21 
ZR02 22 
ZR02 23 
ZR02 24 
ZR02 25 
ZR02 26 
ZR02 zr 
ZR02 28 
ZR02 29 
ZR02 30 
ZR02 31 

The role of this subroutine is to check whether or not steady state con
ditions have been achieved at the end of each time step. Convergence to a 
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steady state condition is monitored according to the increment in visco
plastic strain which occurs during the time step. For checking purposes the 
effective viscoplastic strain rate, ivpn+l, defined by (8.47) is employed and 
steady state conditions are deemed to have been achieved at the end of time 
step n, if 

All Gauss 
points 

All Gauss 
points 

where TOLER is a convergence tolerance value prescribed as input in Sub
routine INCREM, described in Section 6.5.3. From (8.48) it is seen that a 
global measure of convergence is taken in the subroutine presented in this 
section. A local steady state convergence condition could alternatively be 
enforced by requiring (8.48) to be satisfied for each Gauss point in the 
structure which is yielding viscoplastically. 

The structure of this subroutine is identical to that of subroutine CONVP, 
presented in Section 4.9, for one-dimensional structures. 

Subroutine STEADY is now presented. 

SUBROUTINE STEADY(NELEM,NGAUS,NCHEK,VIVELIISTEP,FIRST,TOLER,PVALU,STDY 1 
. MTOTG, DTIME , NSTR 1 , TTIME STDY 2 

C·*···******·***·*········*···.··*·***······· •••• *.*·................. STDY 3 
C " STDY 4 c·.·· THIS SUBROUTINE CHECKS FOR ATTAINMENT OF STEADY STATE CONDITIONS STDY 5 
C STDY 6 
C····· ••••• ··***··· ........••••••••••....•..••••.• ···•.••.....••.•..•• STDY 7 

DIMENSION VIVEL( 5, MTOTG) , DESTN ( 4) STDY 8 
NCHEK=1 STDY 9 
NTOTG=NELEH.NGAUS.NGAUS STDY 10 
TOTAL=O.O STDY 11 
00 10 ITOTG= 1 , NTOTG STDY 12 
00 40 ISTR1=1,NSTR1 STDY 13 

40 DESTN(ISTR1)=VIVEL(ISTR1,ITOTG).DTIME STDY 14 
10 TOTAL=TOTAL+5QRT«2.0.(DESTN(1).DESTN(1)+DESTN(2).DESTN(2)+ STDY 15 

. DESTN(4).DESTN(4))+DESTN(3).DESTN(3))/3.0) STDY 16 
IF (ISTEP .EQ.ll FIRST=TOTAL STDY 17 
IF (FIRST .EQ.O.O) GO TO 15 STDY 18 
RATIO=100.0.TOTALIFIRST STDY 19 
GO TO 25 STDY 20 

15 RATIO=O.O STDY 21 
25 CONTINUE STDY 22 

IF ( ISTEP . EQ. 1) GO TO 20 STDY 23 
. IF(RATIO.LE.TOLER) NCHEK=O STDY 24 

IF(RATIO.GT.PVALU) NCHEK=999 STDY 25 
20 PVALU=RATIO STDY 26 

WRITE(6,900) TTlME STDY Zl 
900 FORHAT(1HO

I
5X,12HTOTAL TIME =,E17.6) STDY 28 

WRITE(6,30 NCHEK,RATIO,REHAX STDY 29 
30 FORHAT(1HO,3X,18HCONVERGENCE CODE =,I4,3X,28HNORM OF RESIDUAL SUM STDY 30 

.RATIO =,E14.6,3X,18HHAXIMUM RESIDUAL =,E14.6) STDY 31 
RETURN STDY 32 
END STDY 33 
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8.13 The main, master or controlling segment 
This segment controls the timestepping process and accesses all the other 

subroutines appropriately. In particular it controls the incremention of the 
applied loads and the output of results at selected time intervals. The fre
quency of output is controlled by means of two parameters NOUTP(I) and 
NOUTP(2) which are specified as input data for every load increment in 
subroutine INCREM described in Section 6.5.3. The precise specification of 
these parameters is however somewhat different for the present application. 
In this case NOUTP(1) controls the frequency of output of the displacements 
and NOUTP(2) .the frequency of output of the stresses and viscoplastic 
strairis. In particular, if NOUTP(I) is specified as 7 for a particular load 
increment, then the displacements will be output every 7th timestep within 
that increment. This is accomplished by evaluating for every timestep, 
ISTEP, the quantity 

(ISTEP/NOUTP(I»*NOUTP(I) 

and then checking this value against ISTEP. The two will be equal only when 
ISTEP is an exact mUltiple of NOUTP(l). A similar check for stress output is 
undertaken for NOUTP(2). 

The parameter MSTEP specifies the maximum number of timesteps to be 
considered for the load increment. If steady state conditions are achieved 
before MSTEP timesteps, the next load increment, is applied immediately 
condition (8.48) is satisfied. 

The role of the load incrementing factor, FACTO, is identical to that 
described in Section 6.5.3. 

In this segment input data is also received which controls the timestepping 
algorithm to be employed. The following information is input: 

TIMEX Parameter, e, which controls the type of timestepping algorithm to 
be employed: 
TIMEX = O.O-Explicit scheme, 

= O.5-Semi-implicit or trapezoidal scheme, 
= l.O-Fully implicit. 

TAUFT- The parameter T discussed in Section 8.3. 
DTINT The initial time step length. This specifies the step length for the 

first time step of each load increment. The time step length needs to 
be readjusted at the beginning of a new load increment since the 
step length computed as steady state conditions are approached in 
the previous time step will in general be too large. 

FTIME The factor by which it is attempted to increase the step length from 
the value used for the previous time step. This parameter is generally 
input as 1.5 as mentioned in Section 8.3. 

The following channel numbers are employed by the program: 5 (card 
reader), 6 (line printer), I, 2, 3, 4, 8 (scratch files). This main segment is now 
presented and descriptive notes provided where necessary. 
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MASTER VISCO VIse 1 
C····················································· ................ VIse 2 
C PROGRAM FOR THE ELASTO-VIseOPLASTIC ANALYSIS OF PLANE STRESS, VIse 3 
C PLANE STRAIN AND t.XISYMMETRIC SOLIDS VISC 4 
C· .. · .. · .. ·· .. · .. ··· .. · .... ·· .... · ............ · .. ··· .. · .. · .... ·· .... ·· VIse 5 

DIMENSION ASDIS(120),CooRD(60,2),ELOAD(20,18),ESTIF(18,18), VIse 6 
EQRHS(10),EQUAT(40,10),FIXED(120), VISC 7 
GLOAD(40),GSTIF(986), VISC 8 
IFFIX(120),LNODS(20,9),LOCEL(18),MATNO(20), VISC 9 
NACVA(40) ,NAMEV(10),NDEST(18) ,NDFRO(20) ,NOFIX(2S) , VISC 10 
NOUTP(2),NPIVO(10), VISC 11 
POSGP(4) ,PRESC(25,2),PROPS(S, 10),RLOAD(20,18), VISC 12. 
STFOR(120),TREAC(25,2),VECRV(40),WEIGP(4), VISC 13 
STRSG(4,180),TDISP(120), VIse 14 
TLOAD(20, 18),VIVEL(S,180),VISTN(4, 180) VISC 15 

C VISC 16 
C... PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONING VISC 17 
C VISC 18 

CALL DIMEN(MBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN,MSTIF,MTOTG,MTOTV, VIse 19 
MVFIX,NDOFN,NPROP,NSTRE) VIse 20 

C VIse 21 
C'" CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA VIse 22 
C VISC 23 

CALL INPUT(CooRD,IFFIX,LNODS,MATNO,MELEM,MEVAB,MFRON,MMATS, VISC 24 
MPOIN,MTOTV,MVFIX,NALGO, VISC 25 
NCRIT,NDFRO,NDOFN,NELEM,NEVAB,NGAUS,NGAU2, VISC 26 
NINCS,NMATS,NNODE,NOFIX,NPOIN,NPROP,NSTRE, VISC 27 
NSTR 1 , NTOTG, NTOTV , VISC 28 
NTYPE,NVFIX,POSGP,PRESC,PROPS,WEIGP) VISC 29 

C VISC 30 
C··· CALL THE SUBROUTINE WHICH COMPUTES THE CONSISTENT LOAD VECTORS VIse 31 
C FOR EACH ELEMENT AFTER READING THE RELEVANT INPUT DATA VISC 32 
C VISC 33 

CALL LOADPS(CooRD,LNODS,MATNO,MEL~,MMATS,MPOIN,NELEM, VIse 34 
· NEVAB,NGAUS,NNODE,NPOI ~TRE,NTYPE,POSGP, VISC 35 

PROPS,RLOAD,WEIGP,NDOFN) VIse 36 
C VISC 37 
C··· INITIALISE CERTAIN ARRAYS VISC 38 
C VISC 39 

eALL ZERO(ELOAD,MELEM,MEVAB,MPOIN,MTOTG,MTOTV,NDOFN,NELEM, VISC 40 
NEVAB,NGAUS,NSTR1,NTOTG,NTOTV,NVFIX,STRSG,TDISP, VISC 41 
VIVEL,VISTN,TTIME,TLOAD,TREAC,TFACT,MVFIX) VISC 42 

READ(5,900) TIMEX, TAUFT , DTINT ,FTIME VISC 43 
WRITE(6,910) TIMEX,TAUFT,DTINT,FTIME VISC 44 

900 FORMAT(4F10.3) VISC 45 
910 FORMAT(1HO,5X,25HTIME STEPPING PARAMETER =,F10.3,5X, VISC 46 

• 28HTIME STEP STABILITY FACTOR =,F10.5,11 VISC 47 
· 5X,26HINITIAL TIME STEP LENGTH =,F10.5,5X,32HTIME STEP INCREMENT VISC 48 
.PARAMETER = ,F10.5) VISC 49 

C VISC 50 
C'" LOOP OVER EACH INCREMENT VISC 51 
C VISC 52 

DO 100 IINCS = 1,NINCS VIse 53 
C VISC 54 
C'" READ DATA FOR CURRENT INCREMENT VISC 55 
C VISC 56 

CALL INCREM(ELOAD,FIXED,IINCS,MELEM,MEVAB,MITER,MTOTV, VISC 57 
• MVFIX , NDOFN ,NELEM, NEVAB, NOUTP, NOFIX ,NTOTV, VISC 58 

NVFIX,PRESC,RLOAD,TFACT,TLOAD,TOLER) VISC 59 
C VIse 60 
C'" LOOP OVER EACH ITERATION VISC 61 
C VIse 62 

DTIME=O.O VISC 63 
DO 50 ISTEP=1,MITER VISC 64 
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TTIME=TTIME+DTIME 
C 
C.** CALL ROUTINE WHICH SELECTS SOLUTION ALORITHM VARIABLE KRESL 
C 

VISC 65 
VISC 66 
VISC 67 
VISC 68 

CALL ALGOR(rIXED,IINCS,ISTEP,KRESL,TIMEX,MTOTV,NALGO,NTOTV) VISC 69 
C ••• CHECK WHETHER A NEW EVALUATION Or THE STIrrNESS MATRIX IS REQUIRED VISC 70 
C VISC 71 

Ir(KRESL.EQ.l) CALL STIrVP(COORD,IINCS,LNODS,MATNO, VISC 72 
MEVAB,MMATS,MPOIN,MTOTV,NELEM,NEVAB,NGAUS,NNODE, VIse 73 

NSTRE,NSTR1,POSGP,PROPS,WEIGP,MELEM,MTOTG, VIse 74 
STRSG,NTYPE,NCRIT, TIMEX,DTIME) VIse 75 

C 
C... SOLVE EQUATIONS 
C 

c 

CALL rRONT(ASDIS , ELOAD ,EQRHS,EQUAT,ESTIr,rIXED,IrrIX,IINCS, ISTEP , 
GLOAD,GSTIr,LOeEL,LNODS,KRESL,MBUrA,MELEM,MEVAB,MrRON, 
MSTIr,MTOTV,MVrIX,NACVA,NAMEV,NDEST,NDOrN,NELEM,NEVAB, 
NNODE,NOrIX,NPIVO,NPOIN,NTOTV,TDISP,TLOAD,TREAC, 
VECRV) 

C... CALCULATE RESIDUAL rORCES 
C 

C 

CALL STEPVP(ASDIS,eOORD,ELOAD,ISTEP,LNODS,LPROP,TIMEX, 
MATNO,MELEM,MMATS,MPOIN,MTOTG,TAUrT,DTIME, 
MTOTV,NDOrN,NELEM,NEVAB,NGAUS,NNODE,NSTR1, 
NTYPE,POSGP,PROPS,NSTRE,NCRIT,STRSG,WEIGP, 
TDISP,VISTN,VIVEL,TLOAD,rTIME,DTINT,IINCS) 

C··· CHECK FOR CONVERGENCE TO STEADY STATE 
C 

CALL STEADY(NELEM,NGAUS,NCHEK,VIVEL,ISTEP,FIRST,TOLER,PVALU, 
MTOTG,DTIME,NSTR1,TTIME) 

C 
C··· OUTPUT RESULTS IF REQUIRED 
C 

IF(NOUTP(1).EQ.0) GO TO 110 
KOUTD=(ISTEP/NOUTP(1))*NOUTP(1) 
KOUTS=(ISTEP/NOUTP(2))*NOUTP(2) 
IF(KOUTD.NE.ISTEP.OR.KOUTS.NE.ISTEP) GO TO 110 
KOUTP=2 
IF(KOUTS.EQ.ISTEP) KOUTP=3 

. 
CALL OUTPUT(ISTEP,MTOTG,MTOTV,MVrIX,NELEM,NGAUS,NOFIX,NOUTP, 

NPOIN,NVFIX,STRSG,TDISP,TREAC,NTYPE,NCHEK,VIVEL, 
KOUTP) 

110 CONTINUE 
C c·.. IF SOhUTION HAS CONVERGED STOP ITERATING AND OUTPUT 
C 

IF(NeHEK.EQ.O) GO TO 75 
50 CONTINUE 

c 
C*** 
C 

RESULTS 

15 CALL OUTPUT(ISTEP,MTOTG,MTOTV,MVFIX,NELEM,NGAUS,NOFIX,NOUTP, 
• NPOIN,NVFIX,STRSG,TDISP,TREAC,NTYPE,NCHEK,VIVEL, 

100 CONTINUE 
STOP 
END 

KOUTP) 

VIse 76 
VIse 77 
VISC 78 
VIse 79 
VISC 80 
VISC 81 
VISC 82 
VISC 83 
VISC 84 
VISC 85 
VISC 86 
VISC 87 
VISC 88 
VISC 89 
VISC 90 
VISC 91 
VISC 92 
VISC 93 
VISC 94 
VIse 95 
VISC 96 
VISC 97 
VISC 98 
VISC 99 
VIse 100 
VIse 101 
VIse 102 
VIse 103 
VIse 104 
VISC 105 
VIse 106 
VIse 107 
VIse 108 
VIse 109 
VISC 110 
VIse 111 
VIse 112 
VISC 113 
VIse 114 
VIse 115 
VI5C 116 
VISC 117 
VIse 118 
VIse 119 
VIse 120 
VISC 121 
VIse 122 
VISC 123 
VISC 124 
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VISC 64 
VISC 65 
VISC 66 
VISC 70 

VISC 73-85 
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For each load increment, initialise the time step length. 
Enter the time-stepping loop for the current load increment. 
Compute the total time elapsed. 
For the first timestep of the first load increment prepare for a. 
full equation solution rather than a resolution for an explicit 
formulation. For the implicit or semi-implicit algorithm a 
complete equation solution is required each and every time
step. 
Formulate the element stiffnesses and solve the resulting 
equations. 

VISC 89-94 Calculate quantities at the end of the timestep and evaluate 
the loads for the next timestep. 

VISC 98-99 Check for convergence of the time stepping process to steady 
state conditions. 

VISC 103-105 Check to see if either displacement or stress output is required 
for this timestep. 

VISC 106--107 Set KOUTP = 2 for displacement output only and KOUTP 
= 3 for both stress and displacement output. 

VISC 108-110 Output the results. 
VISC 115 If steady state conditions have been reached, output the 

converged results, increment the loads and proceed with the 
time-stepping process. 

8.14 General comparison of implicit and explicit time integration schemes 
Before discussing the general case of a two-dimensional continuum it is 

instructive to consider the behaviour of a single degree of freedom system. 
In particular we will consider the response of a simple linear Maxwell model, 
as iIIustrated in Fig. 8.2. This situation is equivalent to the uniaxial visco
plastic model when the initial yield or threshold value, Fo, is reduced to zero. 
Figure 8.2 shows the stress relaxation histories for different time integration 
schemes when the model is subjected to a constant total strain. It is observed 
that all results obtained using the fully implicit scheme (0 = I) lie to one side 
of the theoretical solution while the semi-implicit method (0 = !) gives 
results which lie to either side of the true curve. It is also evident that the 
explicit method (0 = 0) gives an oscillatory solution with the rate of con
vergence decreasing as the time step stability limit is approached. However, 
in each case the steady state solution is eventually correctly predicted. For the 
solution of elasto-plastic problems by use of the viscoplastic algorithm it is 
only the steady state solution that is of importance. Similarly in problems of 
creep, the transient stage may not be of interest in itself, as long as the steady 
state values are correctly arrived at. 

For problems which are geometrically linear the solution process simplifies 
considerably. The strain matrix Bn is then constant throughout the analysis 
and from (8.19) it is seen to be equal to Bo. For solution by the explicit time 
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- 0- 0 =0 Explicit 
-6- 0=k Semi-implicit (C.N.) 
- 0- 0 = I Fully-implicit 

,,(0) = I 

\ 4-«~ ------ a u I E I 

Oscillatory 
Eydt> 2 unstable; 

"Y 

dUn=(0&.+(1-0)&.+Ildl 
dl, =2/Ey for El=O 

7 Time 

Stress relaxation-single dof system
curves showing time wise modes of 
relaxation for different schemes 

Fig. 8.2 Characteristics of explicit and implicit time stepping algorithms when 
applied to a linear Maxwell model. 

marching scheme, e = 0 and from (8.14) we have that en = O. Conse
quently, from (8.18), fjn = D and (8.24) implies that the tangential stiffness 
matrix becomes the linear elastic stiffness matrix and is constant throughout 
the solution process. Thus for the equation solution demanded by (8.23), a 
complete reduction and back-substitution is only required for the first time 
step and subsequent time intervals only require equation resolution. 

Experience to date(2) indicates that solution by the implicit method increases 
tbe computation time by approximately a factor of 4-5 in comparison with 
the explicit approachifor the same solution tolerance factor (or time step 
length). This cost differential must be balanced against the greater time step 
lengths permitted by the unconditionally stable implicit method. However, 
increasing the time step length beyond prescribed limits results in a deterio
tation in solution accuracy. Where a variable stiffness approach is employed 
for some other reasons, such as to include geometric nonlinearity effects or 
time dependent material properties, solution by an implicit scheme entails 
littIe or no additional computing effort and such an approach is particularly 
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advantageous. Modification of the program presented to account for large 
deformation effects is set as an exercise to the reader in Section 8.17. 

Implicit and explicit time integration schemes are considered further in 
Chapters 10 and II for the solution of dynamic transient problems. 

8.15 The overlay method for improved material response 
The viscoplastic model described in the previous sections gives a material 

response whose general form is in keeping with experimental observations. 
However the precise strain/time histories (or creep curves) of many real 
materials cannot be accurately represented by a simple viscoplastic model. 
This is particularly so for materials whose strain response curves are non
linear with regard to the applied stress level, so that a doubling of the applied 
stress does not result in twice the strain at any given time. 

A more elaborate material response can be modelled by use of the so-called 
overlay or mechanical sub/ayer method(lO-13) in which the solid to be analysed 
is assumed to be composed of several layers or overlays each of which under
goes the same deformation. The total stress field is obtained by summing the 
different contributions of each overlay. By introducing a suitable number of 
overlays and assigning different material characteristics to each, a variety of 
sophisticated composite actions can be reproduced. In this section it is 
demonstrated how time-dependent overlay models can be used to simulate 
some experimentally observed material behaviours. 

c .; ... 
Vi A 

Primary creep 

B 

Secondary creep 

C 

o D 

Failure 

Tertiary creep 

G 

H 
J Penn anent set 

T, 

Fig. 8.3 Strain/time relationship at constant stress for many typical materials. 

The strain-time relationship at constant stress which most materials 
exhibit to some degree or other is illustrated in Fig. 8.3. The instantaneous 
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elastic strain, OA, is followed by a primary creep AD during which if un
loading takes place an instantaneous elastic recovery results, followed by 
delayed elastic recovery, CD. If the load is not removed at time Tl secondary 
creep begins which is accompanied by permanent deformation. Unloading at 
any time on the curve DE leaves a permanent set in the material. On con
tinued loading past time T2 tertiary creep begins, leading almost inevitably to 
failure. 

p.. 

p., '1, 

y 
'1. 

(a) Standard visco-elastic model (b) Four parameter model 

Fig. 8.4 Material models for simulation of the material behaviour of Fig. 8.3. 
(a) Standard visco-elastic model. (b) Four parameter model. 

This behaviour can be numerically simulated by use of the rheological 
models shown in Fig. 8.4. The standard linear solid iIlustrated in Fig. 8.4(a) 
provides a visco-elastic response and represents the behaviour of the material 
up to time n. After this time the behaviour is closely approximated by the 
five parameter model shown in Fig. 8.4(b) where a friction slider component 
in parallel with a viscous dash pot has been added. This component becomes 

. active only if the applied stress exceeds some limiting value, Y and the 
li'iction slider provides the permanent deformation or viscoplastic effect. 
For use in the overlay method it is desirable to consider 'Maxwell equivalents' 
'Of these models. Figure 8.5(a) shows the equivalent model to that of 
Fig. 8.4(a) both being governed by the differential equation 

(8.49) 

'where Pi and ql are constants and D denotes the differential operator with 
'tespect to time. Similarly Fig. 8.5(b) illustrates the Maxwell equivalent of 
Fig. 8.4(b), the governing equation for this case being 

(8.50) 
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Hookean element 
(b) before yielding 

Fig. 8.5 Equivalent representation of the models of Fig. 8.4 using Maxwell type 
components. 

The constants for the various components of the models in Figs. 8.4 and 8.5 
are different but unique relationships exist. The configurations of Fig. 8.5 
immediately suggest the use of overlay models. By employing at least one 
viscoplastic overlay and one Maxwell overlay (i.e. setting the threshold 
uniaxial yield value, Fo = 0) the complete behaviour in the visco-elastic 
range as well as irrecoverable creep deformation can be generated. The model 
behaves as a 'standard linear solid' until failure of the friction slider in the 
visco-plastic overlay after which it behaves as a four parameter solid. In fact 
a fifth parameter, the yield limit of the slider must also be defined. These 
parameters are material characteristics and their values must be experi
mentally determined. 

, , , 

Fig. 8.6 The overlay model in two-dimensional situations. 
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8.15.1 Basic expressions of the overlay concept 
The overlay model in a two-dimensional situation is illustrated sche

matically in Fig. 8.6. Each overlay can have a different thickness and material 
behaviour. With the nodes in each overlay coincidental, the same strain 
pattern is produced in each component. This results in a different stress field 
{If in each layer which contribute to the total stress field u according to the 
overlay thickness, (j, so that 

(8.5 I) 

in which k is the total number of overlays in the model, and 

(8.52) 

The equilibrium equations (8.21) which must be satisfied at each stage become 

(8.53) 

Also the element stiffnesses (8.24) are the sum of each overlay contribution 
so that 

(8.54) 

. where (iJn)J is the value of iJn for each overlay in turn. Matrix (iJn)j will 
differ from overlay to overlay according to the material properties of each. 
The solution process is then identical to that described in the preceding 
sections with stress and strain terms being calculated for each overlay 
separately. It should be noted that the viscoplastic strain in each overlay will 
generally be different due to differences in threshold yield values and flow 
rates but the total strains must be the sam\). 

Although the name overlay model arises from the physical interpretation 
of the two-dimensional situation the technique is essentially a mathematical 
convenience and can be readily extended to three-dimensional problems. In 
such cases the thickness can no longer be interpreted as a physical quantity 
and beComes merely a weighting parameter for combining the contribution 
of individual overlays. Indeed this is also the case in two-dimensional 
problems where negative thicknesses can be employed to simulate strain
softening conditions. (12) 
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8.15.2 Overlay models for some standard material behaviours 
In this section we reproduce some standard material responses by com

bining different viscoplastic components through the overlay concept. (13) 

II. '1. 

II. '1. 

Fig. 8.7 Use of the overlay concept for the simulation of some standard material 
behaviours. 

(i) Visco-elastic response 
A two overlay model with Fo set to zero for one overlay and infinitely 

large in the other reproduces a standard linear visco-elastic solid 
(Fig. 8.7). Any higher order time dependent constitutive relation can be 
simulated by the introduction of more overlays of the Maxwell type 
(i.e. Fo = 0). Quite generally a stress-strain relationship of the form 

(8.55) 

in which a Ie and b Ie are real valued functions of the spatial coordinates 
and D denotes the differential time operator, can be modelled by the 
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use of n Maxwell type overlays. The overlay approach reduces the nth 

order differential equation (8.55) to n first order equations. 

(ii) Four parameter viscous model 
Two overlays with Fa set to zero in each case provides a four par

ameter viscous model of the first kind (Fig. 8.7). Three overlays with 
Fa set to (a) zero for one overlay (b) infinitely large for the second unit, 
(c) zero for the third overlay together with a small prescribed elastic 
modulus, reproduces a four parameter model of the second kind. 

(iii) Three element viscous model 
A two overlay model with Fo set to zero in both and the elastic 

modulus assigned to be infinitely large in one reproduces the three 
element viscous model. 

(iv) Visco-elastic-plastic four parameter model 
This two overlay model is capable of reproducing the behaviour of 

most real engineering materials and is achieved by setting the threshold 
yield value of one overlay to zero. Before yielding of the friction slider, 
the material behaviour is visco-elastic followed by a viscoplastic 
response after initial yielding. By choosing the viscosity coefficients of 
the two dash pots appropriately the rate of straining after first yield can 
be controlled. 

In order to illustrate how the combination of two simple material responses 
by the overlay method can simulate a more complex material behaviour the 
load cycling problem indicated in Fig. 8.8 is presented. One elastic (yield 
value set very large) and one viscoplastic overlay are considered. A static 
analysis of the load cycling of this model was performed by allowing steady 
state conditions to be achieved after application of each increment of load. 
The results are shown in Fig. 8.8 where the material properties employed are 
also included. A Bauschinger effect is immediately apparent on reversal of 
loading with yielding in compression commencing at a reduced value com
pared with initial yield in tension. Thus although each overlay has been 
assumed to be non-strain hardening with equal yield stress in tension and 
compression, the composite model exhibits a kinematic hardening behaviour. 

As a further demonstration of the overlay approach, Fig. 8.9 shows how 
two overlays can be used to simulate the response of a real engineering 
material. The solid lines represent experimentally obtained creep curves for a 
rock salt and it is evident that the material behaviour is highly nonlinear with 
regard to the strain obtained at any time for a given applied load. The broken 
lines are the numerical material response obtained by using two overlays with 
material properties as shown in Fig. 8.9. The agreement obtained is acceptable 
for engineering purposes but a closer correspondence could be readily 
achieved by the use of additional overlays. 
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The main advantage of the overlay technique is that it allows the descrip
tion of complex material behaviours by the use of components which indi
vidually exhibit a simple response. 

All the program changes required to implement the overlay method in the 
viscoplastic program described earlier in this chapter are of a minor nature. 
Almost all the changes are associated with the summation process over each 
overlay demanded by (8.51), (8.53) and (8.54). Several array sizes must also 
be extended to allow separate storage of quantities for each overlay. Modifi
cation of the program is set as an exercise for the reader in Section 8.17. 

8.16 Numerical examples 
The first problem considered is the elasto-viscoplastic deformation of a 

thick tube under the action of internal pressure loading with the exterior 
surface remaining free. The mesh of Fig. 7.12(a) is employed in analysis with 
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Fig. 8.8 Load cycling response of an overlay composite illustrating the Bauschinger 
effect. 
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plane strain conditions being assumed in the axial direction. The material 
properties employed are identical to the case of Fig. 7.12(a) and the fluidity 
parameter is chosen as y = 0.001. Again a Von Mises yield surface is adopted 
in solution and the flow function (J>(F) = F is assumed. An explicit time 
stepping algorithm (0 = 0) is initially employed and the radial displacement 
of the inner surface with time is shown in Fig. 8.10 for two increments of 
applied pressure. Steady state conditions are allowed to develop for an applied 
pressure of 12 dNjmm2 before a further pressure increment of 2 dNjmm2 

is added. For each increment the time stepping parameter values T = 0.01, 
k = 1.5 were employed, the initial time-step length was chosen as 0.1 days 
and the steady state convergence tolerance parameter taken as 0.1 %. Also 
shown in Fig. 8.10 are the results for the situation when an internal pressure 
of P = 14 dNjmm2 is instantaneously applied. The steady state displacement 
is seen to be in good agreement with that obtained from the two-load 

0.140 radial displacement 
+ of inner face (mm) + 

+ 

0.135 
P = 14 dN/mm' 

explicit time integration scheme 
0.130 time stepping {0.01 0 

parameter . T 0.05 + 
E = 21000 dN/mm' 

0.125 v = 0.3 
Fo = ay = 24.0 dN/mm' 
H' =0.0 

0.120 'Y = 0.00 1/ day 
flow function ~(F) = F 
von mises yield criterion 

0.115 applied 
pressure 
p = 12 dN/mm' 

0.110 time (days) 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

Fig. 8.10 Displacement of the inner surface with time of an elasto-viscoplastic 
cylinder subjected to an incrementally applied internal pressure (Mesh or 

Fig. 7.12(a». 

increment solution. The problem was reanalysed for an applied pressure, 
P = 14 dNjmm2 using larger time-step lengths as governed by T = 0.05. 
The loss of accuracy is immediately apparent, with the larger time steps 
overestimating the viscoplastic strain rates. 

The problem was then resolved using in tum, the implicit trapezoidal 
time stepping scheme (0 = l) and the full implicit or backward difference 
scheme (0 = I). Good agreement between the three time integration schemes 
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0.140 radial displacement 
of inner face (mm) 

0.136 

0.132 

0.128 

0.124 

applied pressure 
P = 14 dN/mm' 

L 
elasto-plastic 
displacement 

explicit (euler) integration scheme 9 = 0 0 
implicit trapezoidal scheme e = 0.5 • 
fully implicit scheme 9 = 1.0 x 
(time stepping parameters T = 0.01. k = 1.5) 

time (days) 
0.120L __ L-__ L-__ L-_--.-JL-_--.-J __ --' __ ---' __ ~ 

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 

Fig. 8.11 Comparison of various time integration schemes for the internally 
pressurised cylinder of Fig. 8.10. 

24 tangential stress 
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14 

12 

10 
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P = 14 dN/mm' 

--+ ----)( ----~-=-=-=----)( 
----+-

8~ _________________________ -" 

r = 100 mm r ~ 200 mm 

Fig. 8.12 Steady state tangential stress distribution in an elasto-viscoplastic 
internally pressurised cylinder. 

is evident in Fig. 8.11 with the steady state displacement in each case com
paring well with the corresponding elasto-plastic value of Fig. 7.12(b). 

The steady state hoop stress distributions are shown in Fig. 8.12 for the 
time integration schemes 0 = 0 and t) = 1, and the results are compared 
with the elasto-plastic solution of Fig. 7.13. Excel!ent agreement is obtained 
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as required; since theoretically the steady state viscoplastic solution coincides 
with the corresponding elasto-plastic solution. 

The problem of the stresses induced in the vicinity of an excavated under
ground storage cavity is illustrated in Fig. 8.13. Applications in this area 
include oil and gas reservoirs, nuclear waste disposal and geothermal 
energy problems. The cavity is assumed to be axisymmetric and Fig. 8.13 

A B 
0 

-0.2 

-0.4 
-0.6 steady state HO()m 

radial -0.8 

"tt:b=:t----=-j --+-+ r 

displacement (m) 

gravity and pressure loading 
instantaneously applied at time, t = 0 

E = 6.9 x \0' KN/m' 
v = 0.4 

800 m ?-4--';'--"'\ 

p = 2550 Kg/m" 
Fo = 10000 KN/m' 
'Y = 0.07S/year 

1 
f----- 800 m ---I---

I 

I 
40800 KN/m' 

4>(F) = F 
H' =0.0 
Von mises yield criterion 
explicit time integration, 7 = 0.05 
steady state conditions 
achieved in 0.7 years. 

Fig. 8.13 Elasto-viscoplastic analysis of a subterranean cavity, showing zones 
of plasticity and steady state radial displacement at mid-height. 

shows the finite element idealisation of a cylindrical portion of the surround
ing rock mass. Before excavation of the cavity the tectonic stress field in the 
rock is assumed to be hydrostatic. This condition is simulated by a gravity 
loading together with a lateral hydrostatic pressure applied to the cylindrical 
face of the model. The material properties employed are indicated in Fig. 
8.13. The cavity is assumed to be instantaneously excavated at time 1 = 0 
and visco plastic solution to steady state conditions performed by explicit 
time integration (0 = 0). Steady state conditions are achieved in 0.7 years 
and the zones of viscoplastic deformation at this time are illustrated in 
Fig. 8.13. It should be emphasised that since the fluidity parameter y only 
enters the viscoplastic expressions through the product y.1, then solution 
for different material fluidity values simply necessitates an adjustment of the 
time scale. Figure 8.13 also shows the radial displacement along section AB 
at steady state. The displacement distribution is seen to be made up of a 
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Fig.8.14 Radial and tangential stress distributions for the problem of Fig. 8.13. 

linear field caused by the external applied pressure. superimposed on which 
is the effect of the cavity presence (the shaded area). 

Finally, Fig. 8.14 shows the steady state radial and tangential stress 
distributions along the line of Gaussian integration points nearest section 
AB. It is noted that away from the vicinity of the cavity. the hydrostatic 
condition Ur = ao is reproduced. 

8.17 Problems 
8.1 Use program VISCOUNT documented in Appendix II, Section A2.2 to 

solve the thick sphere considered in Problem 7.5 for the viscoplastic 
case. Employ the same material properties and load increment sizes 
as used in the elasto-plastic analysi,. As~;ume the fluidity paramekr 
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y = 0.001 and flow function (»(F) = F. Use explicit time integration 
(8 = 0) and compare your steady state solutions with the results of 
Problem 7.5. 

8.2 Repeat Problem 8.1 for different limiting time step lengths employing 
explicit time integration. Take the factor T, described in Section 8.3, in 
the range 0.01:!i; T:!i;O.S. Comment on the accuracy of solution in each 
case. 

8.3 Repeat Problem 8.1 using the flow functions (8.8) and (8.9). Take the 
indices M and N in the range 2 to 4. Comment on the solutions. 

8.4 Repeat Problem 8.1 using (a) Fully implicit method (8 = I) and 
(b) Implicit trapezoidal rule (8 = i). Comment on the accuracy and 
computational costs of solution. 

8.5 Modify program VISCOUNT to include the strain-hardening law 
considered in Problem 7.4. 

8.6 Undertake all the coding changes required to program VISCOUNT to 
include the overlay concept described in Section 8.15. 

8.7 Test the modified program of Problem 8.6 by employing it in the 
solution of the uniaxial problem of Fig. 8.15. A constant stress of 100 is 
applied at time t = 0 to the plane stress model shown. Determine the 
development of strain with time. Verify the numerical solution by 
noting Figs. 8.4 and 8.5 and hence comparing with the analytical 
solution of Problem 4.2. 

100 

t t t t t Overlay 1 Overlay 2 
E 1000.0 1000.0 
v 0.0 0.0 
t O.S 0.5 
Uy 0.0 25.0 
H' 100.0 100.0 

////////~ 

:::~ 
"-./ 

'Y 0.01 0.01 :::~ 
,,~ 
I> 

100 

Fig. 8.15 Overlay model example-Problem 8.7. 

8.8 In Section 8.2.3 it was stated that large deformation effects could be 
included, adopting a Lagrangian formulation, by including both the 
linear and nonlinear terms of the general quadratic relationship 
between strains and displacements according to (8.19). Details of 
geometrically nonlinear expressions can be found in Chapters 10 and II. 
Modify program VISCOUNT to include such geometrically nonlinear 
behaviour. 



ELASTO-VISCOPLASTIC PROBLEMS IN TWO DIMENSIONS 317 

8.9 Employ the modified program of Problem 8.8 to solve the creep 
buckling problem illustrated in Fig. 8.16. The creep law employed is 
indicated in Fig. 8.16 and is a particular form of expression (8.9). Using 
the finite element mesh shown, apply the eccentric load to the cantilever 
at time, t = 0, and employ the implicit time integration algorithm 
(8 = 1) to determine the deformation with increasing time. At some 
stage of the solution process the structure will become unstable due to 
creep buckling. Carry out the analysis for>. = 1.0, 1.5, 2.0 and 2.5 and 
compare the lateral deflection/time relationships with those provided in 
Ref. 6. 

~IO< KN 
-l1-0.25m 

I 

r-

E = 2.0 x I ()6 KN/m2 
f...-- .=0 

E. = 1O"1IU' 

10m f...--

Fig. 8.16 Creep buckling example-Problem 8.9. 

8.10 Modify program VISCOUNT to undertake the elasto-viscoplastic 
solution of three-dimensional solids. The majority of the subroutines 
required have been already modified in Problem 7.9. 

8.11 Repeat Problem 7.10 for the elasto-viscoplastic program VISCOUNT. 
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Chapter 9 
Elasto-plastic Mindlin plate 

bending analysis 

Written in collaboration with M. M. Huq 

9.1 1jtroduction 
In <lJ.apter 5 we introduced some elastoplastic Timoshenko beam formu

lations. In this chapter we introduce some related elasto-plastic Mindlin 
plate bending formulations. 

There are basically three theories which we could use as a basis for elastic 
plate bending: 

(i) Kirchhoff classical thin plate theory This theory, which takes no 
account of transverse shear deformation, is usually favoured by 
engineers because of its simplicity. It is the plate bending equivalent of 
Euler-Bernoulli beam theory. Many conforming C(1) and non
conforming C(O) plate elements are available. 

(ii) Mindlin (or Reissner) plate theory Mindlin and the related Reissner 
plate theories allow for transverse shear effects. Mindlin plate theory is 
the plate bending equivalent of Timoshenko beam theory. Several 
Mindlin plate elements have been presented in the literature and it 
emerges that the most convenient one is the 'Heterosis' element of 
Hughes. (l) 

(iii) Full three-dimensional theory For the greatest accuracy, full three
dimensional theory should be employed. Many 3 D hexahedral and 
tetrahedral elements have been presented. Unfortunately when the -aSjJect ratio of the element is very large as in thin plates, an iII-con-
conditioned stiffness matrix results and roundoff problems predominate. \ 
Several schemes for avoiding this difficulty have been presented and 
undoubtedly an analysis based on this procedure is the most accurate. 

Let us now consider the various possibilities for elasto-plastic analysis. 

(i) We could use a full 3D analysis with a yield function F(a:r, ay, az, Try, 

TXZ, Tyz). 

(ii) In a Mindlin plate formulation we can also use the yield function 
F(ax, ay, az, T:ry, Tzz, TyZ). It should be ncted that az is taken as zero in 
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Mindlin plates. This approach allows for the spread of plasticity from 
the extreme fibre over the entire plate thickness. In the evaluation of the 
internal virtual work integrals we may sample the stresses ofthe Gauss
Legendre or Lobatto integration points. Alternatively we may divide 
the plate into layers and use a mid-ordinate rule. 

(iii) In a Mindlin or Kirchhoff formulation we can use a yield function 
F(a:r;, all, T:r;II). In Mindlin plate theory we ignore the effect of T",. and 
Til. on the plastic behaviour. Since, in the absence of inplane forces, 
the inplane stresses are a maximum at the extreme fibres where the 
transverse shear stresses are a minimum and the inplane stresses are a 
minimum at the mid-plane where the transverse shears are a maximum, 
this is a reasonable assumption. (There is also further evidence to 
suggest that it is likely to lead to insignificant errors.) This approach also 
allows for the spread of plasticity over the depth of the plate. In the 
evaluation of the internal virtual work integrals we may sample the 
stresses at the Gauss-Legendre or Lobatto integration points. Alterna
tively we may divide the plate into layers* and use a mid-ordinate rule. 
This 'layered' approach has been described in Chapter 5 fQr a Timo
shenko beam element and is a very popular method. 

(iv) In a Mindlin or Kirchhoff formulation we can adopt in the absence of 
inplane forces a yield function F(M"" Mil' M",") which is a function of 
the bending moments. Here it is assumed that at a point the whole 
plate section becomes plastic simultaneously. A similar approach was 
described in Chapter 5 for Timoshenko beam elements. 

The elasto-plastic analysis of Mindlin plates is considered in this chapter, 
where both layered and non-layered approaches are treated in detail. 

Finite elements based on Mindlin's assumptions have one important 
advantage over elements based on classical thin plate theory. Mindlin plate 
elements require only C(O) continuity of the lateral displacement wand the 
two independent nodal rotations 8:r; and 811 • However elements based on 
classical Kirchhoff thin plate theory require C(l) continuity; in other words 
awlax and awlay as well as w must be continuous across element interfaces. 
Thus, Mindlin plate elements are simpler to formulate and they have the 
added advantage of being able to model shear-weak as well as shear-stiff 
plates. Consequently, if transverse shear deformations are present they are 
automatically modelled with Mindlin elements. 

Recent research(l) indicates that the use of a 'Heterosis' quadrilateral 
Mindlin plate element with quadratic Lagrangian interpolation for 8:r; and 
811 and quadratic Serendipity interpolation for w together with selective 
integration of the stiffness matrix, gives the best overall performance. It 

• These layers are symmetric about the midsurface of the plate in the present 
formulation. 
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avoids locking and contains no spurious mechanisms. The Heterosis element 
is implemented here using a hierarchical formulation described later. 

We have already considered elastic Mindlin plate finite element analysis in 
Chapter 6. Nonlinear Mindlin plate finite element analysis is now considered. 

9.2 Equilibrium equations 

9.2.1 Three-dimensional equilibrium equations 
Let us begin with the equilibrium equations of three-dimensional stress 

analysis. We will assume that, for convenience, no tractions are present on 
the boundary r t of the three-dimensional domain n. The virtual work 
equation may be expressed as 

J {[oEJTo--[ouJTb}dn = 0 
!} 

(9.1) 

where the vector of virtual displacements in the x, y and z directions is 
OU = lou, OV, ow JT, the vector of associated virtual strains is O€ = [O€x, 
0"1/, o'-z, oYXy, 0Yxz, oYyzJT, the vector of stress is 0- = [ax, ay, az, Txy, TXZ, 
Tl/zJT and the vector of applied body forces is b = [bx, by, bzJT. Displacements 
u are prescribed on boundary ru of domain n. 

The stress-strain relationships for an isotropic material are given as 

a2 aa aa 0 0 0 

a3 a~ ua 0 0 0 

ua U3 U2 0 0 0 
D= UI (9.2) 

0 0 0 u~ 0 0 

0 0 0 0 U4 0 

0 0 0 0 0 U4 

where Ul = £/(1 +v)(1-2v), a~ = I-v, U3 = v and U4 = (1 - 2v)/2. Note 
that £ is the elastic modulus and v is Poisson's ratio. 

9.2.2 Mindlin plate equilibrium equations 
In Mindlin plate theory, the domain of interest n is of the special form 

n = {(x, y, z).-R3 1z.-[ -t/2, t/2], (x, y).-A.-R2} (9.3) 

where t is the plate thickness which may be a function of x and y and A IS 

the plate area. The boundary of A is denoted by r. 
We also make the following set of assumptions: 

(i) Normals to the midsurface (i.e., z = 0) before deformation remain 
straight but not necessarily normal to the midsurface after deformation. 
If 8x and 8y are the rotations of the mid surface normal in the xz- and 
yz- plane respectively, then 
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I u(X, y, z) 1 I -z8",(x, y) l 
u = l vex, y, z) = I -z8y(x, y) J 

w(x, y, z) l w(x, y) 

(9.4) 

The sign convention is illustrated in Fig. (9.1). Right hand rotations 
e", and ey are defined by the expression 

(9.5) 

It is usually more convenient to develop the theory in terms of 8", and 
8y rather than e", and ey since the resulting algebra is greatly simpli
fied. 

(ii) The normal stress az is assumed equal to zero. The virtual work state
ment may be expressed as 

fa [SE']T 0" dQ - fa [SU]T bdQ = 0 

in which 

[SE'] = [S€"" S€y, Sy",yl SY"'z, SyyzlT = [(SEf)T, (SEs)T]T 

and 

0" = [a"" ay, az I Tzz, Tyz)T = [(O'f)T, (O's)T]T. 

Note that 

SEf = z[- 0(S8",) , 
ox 

0(S8y) 
oy , ( 

0(S8",) 0(S8y))] T. ~ - + = ZSEf 
oy ox 

(9.6)* 

(9.7)t 

• In Mindlin plate theory a reduced form of the constitutive relations is obtained by 
making rI, = 0 and subsequently eliminating .,. Thus 

0" = D' E' 
where for elastic isotropic situations 

1 v 0 I 0 0 

v 1 0 I 0 0 
I 

(I-v) I 
0 0 I 0 0 

E 2 I = [Dt' 0 ] D' = ----- ------
(l-v2) I (I-v) o Ds' 

0 0 0 I 0 
I 2 

0 0 0 I 0 
(I-v) 

I 2 

t Terms symbolised thus (.) denote quantities integrated over the thickness. 
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and 

J

T 
3fJy = OEs. (9.8) 

Using (9.7) and (9.8) we find that (9.6) can be rewritten as 

t '0 II J_::2[::(3€f)Taf-i(8is)Tas-(8U)Tb]d::dA = 0 (9.9) 

This equation is adopted in the layered approach. After integration over the 
thickness of the plate (9.9) can be rewritten in the form 

where 

and 

r [(3€f)TUf-(3€s)TUs-(3u)Tb]dA = 0 
• A 

'" t it) 

(;[ = I ,- ::a[d:: 
"" -t/2. 

.. t h) 

Us = I ,- a" d: 
.. - t/2.. 

(9.10) 

We interpret G-[ = [Mr, My, MxyF as the bending moments and as = 
[Qx, Qy]T as the shear force. Usually we take h = [q, 0, OF in which q is the 
lateral distributed loading acting on the plate. We use (9.10) in the non
layered plate formulation. 

Z, H.' 

Q, 
M, 

\' 

Q, 

Fig. 9.1 Sign convention for Mindlin plate theory. 
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9.3 Discretisation 

9.3.1 Standard representation 
If we adopt a standard C(O) finite element representation then the dis

placements can be written as 

(9.11) 

in which the shape function matrix is Nt = Nth and the vector of nodal 
values ~ = [WI, 8",1, 0llljT. 

The flexural strain displacement equations are given as 

n 

3if = 2: Bfl 3dt (9.12) 

1-1 

in which 
aNt 

0 0 
ox 

oN, 
Bft = 0 0 

ay 

0 
aNi eNi 

OJ' ex 

The shear strain displacement equations have the form 

n 

3£s = 2: Bst 3d; (9.13 ) 

1=1 

in which 

oN, 
-Ni 0 

ox 
Bst = 

oNt 0 -Ni 

ey 

Ifwe substitute (9.11)-(9.13) in (9.9) we obtain the expression 
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Since (9.14) must be true for any set of virtual displacements we obtain the 
expressIOn 

or 

f 
,/2 

f [[BtilT tIt Z -I- [BsdT tIs - [NiJT b ]d= dA 
A -1/2 

'fli(d) = O. 

=0 (9.15) 

We use (9.15) in the layered approach. If we integrate the terms in square 
brackets over the thickness of the plate then we obtain the following equation 

(9.16) 

or I{IM) = O. 

Equation (9.16) is used in the nonlayered approach. 
Note that we obtain equations for the residual force vector I{It(d) for every 

node in the finite element discretisation. When the stresses are nonlinear then 
both (9.15) and (9.16) are sets of nonlinear simultaneous equations. 

Contributions to the residual force vector I{I = [I{II T, ... , I{InT]T may be 
evaluated at the element level and then assembled to form I{I. We may use any 
standard ceO) two-dimensional isoparametric element. Several elements have 
been presented in the literature and it emerges that the most convenient one 
is the 8/9 node 'Heterosis' element of Hughes. O) In the programs described 
later we use 4, 8 and 9-noded isoparametric quadrilateral elements (see 
Chapter 6), as well as the Heterosis element. Selective integration is adopted 
and this will be described later. 

9.3.2 llierarchical formulation of the Heterosis element 
In the implementation of the Heterosis and the 9-node element a hier

archical formulation is adopted. The first 8 shape functions are borrowed 
from the 8-noded Serendipity element and the shape function for the central 
9th node is the bu bble function 

(9.17) 

which is already available from the quadratic Lagrangian clement. This 
means that all variables associated with the central node arc hierarchical in 
nature. In other words, they are departures from the interpolated Serendipity 
values. The hierarchical representation can be used for geometrical rep
resentation as well as for interpolating displacements. 

In order to implement the heterosis element we adopt a hierarchical 
formulation either by adding a stiff spring (large number) to the leading 
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diagonal term of the stiffness matrix associated with the lateral displacement 
parameter for node 9, or by prescribing displacement at this centre node to 
zero. This has the effect of forcing 11' to behave as though it was represented 
by Serendipity quadratic shape functions. Thus the desired effect is achieved. 

It is worth noting that if no spring is added the element obtained is identical 
to the 9-noded Lagrangian element provided that care is taken in evaluating 
the consistent nodal forces. Furthermore if stiff springs are added to all the 
terms of the leading diagonal associated with node 9, then the element 
reverts to a Serendipity 8-noded element. 

For convenience, in the present case, when representing the geometry of 
the heterosis element, the x and y coordinate departures from the interpolated 
Serendipity values are taken as equal to zero. In other words, as Serendipity 
geometrical representation is adopted this distinction is only of importance 
when elements with curved boundaries are present. (N.B. This is auto
matically taken care of by a modified version of Subroutine. NODEXY 
described in Section 6.4.1). 

9.4 Solution of nonlinear equations 

9.4.1 Plasticity in layered plates 
For Mindlin plates we may assume that the yield function F is a function of 

tlf, the direct stresses associated with flexure, but not of the transverse shear 
stresses tI •• The yield function Fis also a function of the hardening parameter, 
H. When yielding occurs at some point, it is assumed that, unless unloading 
takes place, the stresses always remain on the yield surface so that 

F(tlf, H) = 0 (9.18) 

Thus the incremental stress-strain relationship is given as 

(9.19) 

or 

in which (D.p')f is identical to Dep given in Chapter 7 for the elasto-plastic 
plane stress problem. Note that Da' always remains elastic. Recall from 
equation (7.47) that 

where 
, 

a = [
oF 
au,: 

of OF] T 

OUy' OTxV 

(9.20) 
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dlJ = Dr' n' 

I iF 
A = -- -dJf 

,\ iii 

in which ,\ is the proportionality constant. Here we cater for Von Mises and 
Tresca materials only. We can thus use a slightly modified version of the 
coding described in Chapter 7 when evaluating (D"P')! and when testing for 
yielding etc. 

9.4.2 Solution of the nonlinear equilibrium equations for layered plates 
The incremental equilibrium equations for the plate can be written at some 

stage in the solution (i.e., at an iteration during a load increment) as 

(9.21) 

where", is obtained from (9.15) and Kr(dP) is the tangential stiffness matrix 
which may be approximated as 

.. ." t/2 

K1,(dp) = J J ([B!JT[De/]rBf-'-[BsJTDs'Bs}d::dA. 
A -1/2 

(9.22) 

Since [D"p']! is a function of :: we lllay employ a numerical integration 
technique to evaluate the integral over the thickness of the plate. Here, we 
divide the plate into layers and use a mid-ordinate rule as described in 
Chapter 5 for the Timoshenko beam. We usc a similar method to evaluate 
",(dP). Thus we have 

Kr(dP) = L {[Bf JT [Dep]f Br [B8 JT Ds B8J idA (9.23) 

where 

t/2 

[D,p]! = {liZ [DeP']fd:: 

and 
.. t:") 

D8 = I .- Ds' d:: . 
.. - (/2 

We now use the standard procedure to solve (9.21). Instead of using Kr(dP) 

we may use some previously calculated value of Kr just as in the other 
applications. 

9.4.3 Plasticity in nonlayered plates 
In Chapter 5 we considered the elasto-plastic non layered analysis of 

Timoshenko beams in which we assumed that when the bending moment 
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reaches the yield moment Mo. the whole cross-section of the beam becomes 
plastic instantaneously. We noted that this is a convenient fiction as in 
reality there is always a gradual spread of plasticity over the depth of the 
beam. In elasto-plastic nonlayered Mindlin plate analysis we make a similar 
approximation. Here we assume that the yield function F is expressed as a 
function of the bending moments tJ" but not of the shear forces a,. The yield 
function is also assumed to be a function of a hardening parameter Ii. During 
yield it is assumed that the stress resultants at must remain on the yield 
surface so that 

(9.24) 

where for the Tresca and Von Mises materials under consideration 

f 
1/2 

F(a,.I1) = F(a" H)dz. 
-1/2 

(9.25) 

~ 

Therefore. although F replaces F. (M",. My. M",y) replace (0"",. O"y. 'T",y) and 
Mo = 0"0t2/4 replaces 0"0. everything else remains unchanged and we can 
again make use of the coding given in Chapter 7. 

The incremental stress-strain resultant relationships are given as 

in which 

in which 

and 

Note also that 

of 
a= 

~ . 1 of 
A = -- -dn 

A an 

f 
1/2 

D, = Dr' zdz. 
-1/2 

f 
1/2 

D. = D: dz. 
-1/2 

of ] T 

aM",y 

(9.26) 

(9.27) 
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9.4.4 Solution of nonlinear equilibrium equations for nonlayered Mindlin 
plates 

For the nonlayered plates the equilibrium equations are identical to (9.21). 
Here, however, the tangential stiffness matrix is given as 

(9.28) 

Apart from this modification the solution procedure is unchanged. 

9.4.5 Summary of solution procedures 
The solution procedures for elasto-plastic Mindlin plate analysis are 

summarised in Tables 9.1-9.3. The overall process is given in Table 9.1. The 
iteration loop is shown for the nonlayered and layered plates in Tables 9.2 
and 9.3 respectively. 

Table 9.1 Equation solving technique for layered and non layered Mindlin plates 

1 Begin new load incremen t, f = f + Do! 
2 Set Dot equal to the current load increment vector. 
3 Set dO equal to 0 for the first increment or equal to the total 

displacement vector at the end of the last load increment. 
4 Set ",0 equal to the residual force vector at the end of the last 

w-rement or equal to 0 for the first load increment. 
5 Set ",0 = ",0 + Do! 
6 Solve DodO = - [KT ]-1 ",0. 

Use old or updated value KT . 

7 Set d' = dO+ DodO. 

S Evaluate", 'Cd'). 
9 If solution has converged go to 11; otherwise continue. 

IO Iterate until solution has converged. 
1 I If this is not the last increment go to 1 ; otherwise stop. 

Table 9.2 The iteration loop for elasto-plastic non layered Mindlin plates. 

I Set iteration number i = I. 

2 Solve Dod' = - [KT]-I ",i. 
Use old or updated KT . 

3 Set d i
+1 = d i + Dodi . 

4 For each Gauss point, evaluate the increments in strain resultants 

Doi/ = B, Dod' 

DoE: = B, Dod£ 
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Table 9.2---continlled 

5 Using the elastic rigidities estimate, at each Gauss point, the 
increments in stress resultants and hence the total stress resultants 

..... .... ..... 
6.a • = D 6.E • s s s 

hence 

hence 

a
A i+l _ a" i I Aa

A i 
J - f TWo f 

6 At each Gauss point, depending on the states of a/ and a/+1, 
adjust 6/+1 to satisfy the yield criterion and preserve the normality 
condition. 

7 Evaluate the residual force vector 

",i+l = f {[BfjT ur+[Bs jTu8}dA-f 
A 

8 If the solution has converged, continue, otherwise set i = i+ I 
and go (0 2. 

9 Move to next load increment. 

Table 9.3 The iteration loop for elasto-plastic layered Mindlin plates. 

I Set iteration number i = I. 
2 Solve 6.di = - [KT 1-1",i. 

Use old or updated KT . 

3 Set d i+1 = d i+ 6.d i . 

4 For each Gauss point in each layer evaluate the increment in strain 

6.E/ = zB,6.d i 

ilE i = B 6.d i 
s s • 

5 Estimate the increments in stress at each Gauss point in each layer 
using the elastic stress-strain matrix. Hence evaluate the total 
stress value. 

ila/ = D/ tiE/, 

tia / = D.' tiE,', 

a/+1 = af
i+ tia/ 

a i+1 = a i+ tia i s s s . 

6 Depending on the states of at
i and a/+1, adjust a/+ 1 to satisfy the 

yield criterion and preserve the normality condition. 
7 Evaluate the stress resultants 0/+1 and 0/+1 at each Gauss point. 
8 Evaluate the residual force vector 

9 If the solution has converged continue, otherwise set i = i+ I and 
go to 2. 

IO Move to next load increment. 
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In this application we recommended the following convergence criteria. Let 

[:::(~o/iI)~P/~ 
j 

Es =------

["(Oi(i+lIn\'~ 
j 

where OJ may equal Wj, exj or ey}. We take in any combination 

E"., Eox, Eoy. (E".+Eox+Eo!l)(;TOLER 

(9.29) 

(9.30) 

where TOLER is a specified tolerance. We can also take the residual force 
equivalents of II'j. eXj or eyj in (9.29) and (9.30). 

9.5 Software for the non-layered approach 

9.5.1 Overall program structure 
The overall program structure for the elasto-plastic Mindlin plate bending 

analysis program MIN DLI N using a non layered approach is given in Fig. 9.2. 
The dimensions given in subroutine FEMP agree with those given in sub

routine DIMMP and limit the program to the following maximum size 
problems in the present form 

MELEM - maximum number of elements 
MEVAB - maximum number of variables per element 
MFRON - maximum front width 
MMA TS - maximum number of material sets 
MPOIN - maximum nwmber of nodal points 
MTOTV - maximum tltal number of degrees of freedom 
MVFIX - maximum number of prescribed boundary nodes 

- 25 
27 

- 40 
- 10 

80 
= 240 
= 40 

To modify these values the DIMENSION statement in FEMP and the 
appropriate statements in DIMMP should be carefully changed and checked. 
All new routines are now documented and these include: FEMP, CONVMP, 
DIMMP, FLOWMP, GRADMP, INVMP, MINDPB, OUTMP, SFR2,* 
RESMP, STIFMP, STRMP, SUBMP, VZERO and ZEROMP. The other 
routines, which have been described earlier, include ALGOR, BMATPB, 
CHECKl, t CHECK2, ECHO, FRONT, INCREM, INPUT, JACOB2, 
MODPB and NODEXY. * 

The files which are used in the program are 5 (cardreader), 6 (lineprinter) 
and 1,2, 3,4, 8 (scratch files). 

• Note we include the modified versions of SFR2 and NODEXY to allow for hier
archical representation. 

t We include a very slightly modified version of CH ECK I. Note also that for 4-node 
Mindlin plate clements, GAUSSQ is modified tll allow for a single point Gauss rule. 
See Section 6.4.2. 
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[START[ 

DIMMP 
Presets the variables associated with the 

dynamic dimensioning process 

INPUT 
Inputs data defining geometry. boundary 

conditions and material properties 

ZEROMP 
Sets to zero arrays required for accumulation 

of data 

MINDPB 
Inputs additional data required for Mindlin 

plate analysis 

LOADPB 
Reads loading data and evaluates the 

equivalent nodal forces for distributed loading 

INCREM 
Increments the applied load according to 

specified load factors 

ALGOR 
Sets indicator to identify the type of solution 

algorithm. i.e .• initial or tangential stiffness etc. 

A 
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A 

- -
"- "-

Is it 
0 0 necessary to recalculate No 
0 0 stiffness matrix with --I --I 
!- Z present algorithm? 
Z 0 u.l 
~ [: 
u.l « 
0:: 0:: 
U u.l 
Z f-
~ -
Cl Cl 
« « Yes 
0 0 
--I --I 

'- STIFMP 
Calculate element stiffness matrices for non layered 

elasto-plastic Mindlin plate 

FRONT 
Solve the simultaneous equation system by the 

frontal method 

RESMP 
Evaluate the residual force vector for the non layered 

elasto-plastic Mindlin plate 

CONYMP 
Check whether solution has converged using a residual 

force or displacement norm 

OUTMP 
Prints out the displacements. reactions and stress 

resultants for the current load increment 

l END I 

Fig.9.2 Overall structure of prograT'1 MINDLIN. 
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9.5.2 Subroutine FEMP 
This routine controls the calling sequence of all of the other main routines 

as indicated in Fig. 9.2. 

PROGRAM FEMP(INPUT ,OUTPUT ,TAPES=INPUT ,TAPE6=OUTPUT , FEMP 1 
.TAPE1,TAPE2,TAPE3,TAPE4,TAPE8,TAPE9) FEM? 2 

C .................... **** •• *.*.**.********** •• ***.**.********··******··*FEMP 3 
C FEMP 4 
C· .. ELASTO-PLASTIC ANALYSIS OF NON-LAYERED MINDLIN PLATES USING FEMP 5 
C .. • 4-,8- , 9-NODED OR HETEROSIS lSOPARAMETRIC QUADRILATERALS FEMP 6 
C FEMP 7 
C ••••••••••••••••••••• _ •••••• __ ••••• _-_.····-••••••••• ***********.******FEMP 8 

DIMENSION ASDIS(240) ,CooRD(8o,2)IEFFST(225) ,ELOAD(25 ,27) , FEMP 9 
• EPSTN(225),ESTIF(27,27 , FEMP 10 

EQRHS(10),EQUAT(40,10),FIXED(240), FEMP 11 
IFFIX(240),GLOAD(40) ,GSTIF(860) ,LNODS(25,9) ,LOCEL(27) , FEMP 12 
MATNO(2S),NACVA(40),NAMEV(10),NCDIS(4),NCRES(4), FEMP 13 
NDEST(27),NDFRO(25),NOFIX(40),NOUTP(2),NPIVO(10), FEM? 14 
POSGP(4),PRESC(40,3),PROPS(10,8),REFOR(240), FEMP 15 
RLOAD(25 ,27) ,STRSG(S,225) ,TOFOR(240) , FEMP 16 
TDISP(240),TLOAD(25,27) ,TREAC(40,3) ,VECRV(40), FEMP 17 
WEIGP(4) FEMP 18 

C FEMP 19 
C·.* PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONS FEMP 20 
C FEMP 21 

CALL DIMMP (MBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN, FEMP 22 
MSfIF ,MTOTG, MTOTV ,MVFIX, NDlME, NDOFN , FEMP 23 
NPROP,NSTRE) FEMP 24 

C FEMP 25 
C··* CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA FEMP 26 
C FEMP 27 

CALL INPUT (CooRD,IFFIX,LNODS,MATNO,MELEM,MEVAB, FEMP 28 
MFRON ,MMATS , MPOIN 'MTOTV, MVFIX ,NALGO, FEMP 29 
NCRIT,NDFRO,NDIME,NDOFN,NELEM,NEVAB, FEMP 30 
NGAUS,NLAPS,NINCS,NMATS,NNODE,NOFIX, FEMP 31 
NPOIN,NPROP,NSTRE,NSTR1,NSWIT,NTOTG, FEM? 32 
NTOTV1NTYPE,NVFIX,POSG?,PRESC, PROPS, FEM? 33 
WEIG? FEM? 34 

C FEM? 35 
C'" INITIALIZE ARRAYS TO ZERO FEMP 36 
C FEM? 37 

CALL ZEROMP (EFFST,ELOAD,EPSTN,MELEM,MEVAB,MTOTG, FEM? 38 
MTOTV, MVFIX , NDOFN,NELEM ,NEVAB,NGAUS , FEMP 39 
NTOTG,NTOTV,NVFIX,STRSG,TDIS?,TFACT, FEMP 40 
TLOAD, TREAC ) FEM? 41 

C FEM? 42 
C"· FEM? 43 
C FEM? 44 

CALL MINDPB (IFDIS, IFFIX,IFRES, LNODS,MELEM,MTOTV, FEM? 45 
NCDIS , NCRES , NELEM ,NTY?E) FEM? 46 

C FEM? 47 
C FEM? 48 
C FEMP 49 
C··* COMPUTE LOAD AFTER READING RELEVANT EXTRA DATA FEM? 50 
C FEM? 51 

CALL LOADPB (COORD ,LNODS, MATNO, MELEM ,MMATS, MPOIN , FEMP 52 
NELEM,NEVAB,NGAUS,NNODE,N?OIN,PROPS, FEM? 53 
RLOAD) FEM? 54 

C FEMP 55 
C·*· LOOP OVER EACH INCREMENT FEM? 56 
C FEM? 57 
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DO 70 IINCS=l,NINCS 
C 
C*** 
C 

READ DATA fOR CURRENT INCREMENT 

CALL 

C 
C*" LOOP OVER 
C 

INCREl-l (ELOAD, FIXED, IINCS, ~IELE~I, MEVAB, MITER, 
MTOTV,MVfIX,NDOfN,NELEI-I,NEVAB,NOUTP, 
NOfIX , NTOTV, NVFIX,PRESC , RLOAD,TFACT, 
TLOAD,TOLER) 

EACH ITERATION 

DO 90 IITER=1,lnTER 
C 
C*" CALL ROUTINE WHICH SELECTS SOLUTION ALGORITHI1 VARIABLE KRESL 
C 

CALL ALGOR (fIXED,IINCS,IITER,KRESL,MTOTV,NALGO, 
NTOTV) 

FEMP 58 
FEMP 59 
FEMP 60 
FEMP 61 
FEMP 62 
FEMP 63 
FEMP 6~ 

FEMP 65 
FEMP 66 
FEMP 67 
FEMP 68 
FE~IP 69 
FEMP 70 
fEMP 71 
fEMP 72 
fEMP 73 
FEMP 7~ 
fEMP 75 C 

c*n 
C 

CHECK WHETHER A NEW EVALUATION OF THE STIFFNESS r~ATRICES IS NEEDED FEMP 76 

If(KRESL.EQ. 1) 
. CALL STIfMP 

c 
C*,* SOLVE EQUATIONS 
C 

CALL fRONT 

C 

(COORD,EPSTN,IINCS,LNODS,MATNO,MELEM, 
MEVAB,MMATS,MPOIN, MTOTG, NCRIT INELE~I, 
NEVAB,NGAUS,NNODE,PROPS,STRSG) 

(ASDIS, ELOAD,EQRHS, EQUAT ,ESTIF ,fIXED, 
IFfIX,IINCS,IITER,GLOAD,GSTIF,KRESL, 
LNODS,LOCEL,MBUFA,MELEM,MEVAB,MFRON, 
MSTlf,MTOTV,MVfIX, NACVA ,NAMEV, NDEST , 
NDOFN,NELEM,NEVAB,NNODE,NOFIX,NPIVO, 
NPOIN,NTOTV,TDISP,TLOAD,TREAC,VECRV) 

C*" CALCULATE 
C 

RESIDUAL FORCES 

CALL 

C 

RESMP (ASDIS,COORD,EFFST,ELOAD,EPSTN,LNODS, 
MAT NO , flELEfl ,MMATS,MPOIN ,MTOTG, MTOTV, 
NCRIT,NELEM,NEVAB,NGAUS,NNODE,PROPS, 
STRSG) 

C*** CHECK fOR CONVERGENCE 
C 

CALL 

C 

CONVMP (ASDIS,ELOAD,IITER,IFDIS,IFRES,LNODS, 
MELEM,MEVAB,MTOTV,NCHEK,NCDIS,NCRES, 
NDOfN,NELEM,NEVAB,NNODE,NPOIN,NTOTV, 
REFOR,TOFOR,TDISP,TLOAD,TOLER) 

C*** OUTPUT RESULTS IF REQUIRED 

c 

C 

IF(IITER.EQ.l.AND.NOUTP(l).GT.O) 
. CALL OUTMP (EPSTN,IITER,MTOTG,MTOTV, MVFIX, NELEM , 

NGAUS,NOFIX,NOUTP,NPOIN,NVFIX,STRSG, 
TDISP,TREAC) 

C*** IF SO~TION HAS CONVERGED STOP ITERATING AND OUTPUT RESULTS 
C 

IF(NCHEK.EQ.O) GO TO 100 
90 CONTINUE 

C 
C*** 
C 

IF(NALGO.EQ.2) GO TO 100 

fEMP 77 
FEMP 78 
FEMP 79 
FEMP 80 
fEMP 81 
fEMP 82 
fEMP 83 
FEMP 8~ 

FEMP 85 
FEMP 86 
FEMP 87 
FEMP 88 
fEMP 89 
FEMP 90 
FEMP 91 
FEr·lP 92 
FEMP 93 
fEMP 94 
FEMP 95 
FEMP 96 
FEMP 97 
fEMP 98 
FEMP 99 
fEMP 100 
fEMP 101 
FEMP 102 
fEMP 103 
FEMP 1O~ 
FEMP 105 
FEMP 106 
fEMP 107 
FEMP 108 
fEMP 109 
FEMP 110 
FEMP 111 
fEMP 112 
FEMP 113 
FEMP 114 
FEMP 115 
fEMP 116 
FEMP 117 
FEMP 118 
FEMP 119 
FEMP 120 
FEMP 121 
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STOP 
100 CAll. OUTHP (EPSTN,IITER,MTOTG,MTOTV,MVFIX,NELEM, 

NGAUS, NOFIX, NCUTP , NPCIN ,NVFIX ,STRSG, 
TDISP,TREAC) 

FEMP 122 
FEMP 123 
FEMP 124 
FEMP 125 
FEMP 126 
FEMP 127 
FEMP 128 
FEiiP 129 
FEMP 130 

70 CONTINUE 
20 CONTINUE 
10 CONTINUE 

STOP 
END 

9.5.3 Subroutine CONVMP 
This routine establishes whether a solution has converged with reference to 

some displacement or residual force norm. 

SUBROUTINE CONVMP (ASDIS,ELOAD,IITER,IFDIS,IFRES,LNODS, CONV 1 
MELEM,MEVAB,MTOTV,NCHEK,NCDIS,NCRES, CONV 2 
NDOFN,NELEM,NEVAB,NNCDE,NPCIN,NTOTV, CONV 3 
REFOR,TOFOR,TDISP,TLOAD,TOLER) CONV 4 

C •••••••••••••••••••••••••••••••••••••••••••••••••• •••··················CONV 5 
C CONV 6 
C··. ESTABLISHES WHETHER A SOLUTION HAS CONVERGED WITH CONV 7 
c··. REFERENCE TO SOME DISPLACEMENT OR RESIDUAL FORCE NORM CONV 8 
C CONV 9 c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• CONV 10 

DIMENSION ADIDF(3) ,ASDIS(MTOTV) ,ELOAD(MELEM,MEVAB) ,LNODS(MELEM, 9) ,CONV 11 
NCDIS(4),NCRES(4),REFDF(3),REFOR(MTOTV),TDIDF(3), CONV 12 
TDISP(MTOTV), TLOAD(MELEM,MEVAB), TOFDF(3), TOFOR(MTOTV) CONV 13 

WRITE(6,606) lITER CONV 14 
606 FORMAT(///,' IN CONVER',10X,'ITERATION NUMBER',I3,/) CONV 15 

C·" COMPUTE ELEMENT RESIDUAL FORCES CONV 16 
DO 10 IELEM=1,NELEM CONV 17 
DO 10 IEVAB=l,NEVAB CONV 18 

10 ELOAD(IELEM,IEVAB)=TLOAD(IELEM,IEVAB)-ELOAD(IELEM,IEVAB) CONV 19 
C.·· SET CONVERGENCE CODE TO ZERO CONV 20 

NCHEK=O CONV 21 
C··. DISPLACEMENT CONVERGENCE CHECK CONV 22 

IF(IFDIS.EQ.O) GorO 1000 CONV 23 
c· •• COMPUTE TOTAL AND DIRECTIONAL NORMS OF DISPLACEMENTS CONV 24 

ADITO=O.O CONV 25 
TDITO=O.O CONV 26 
CAll. VZERO (NDOFN ,ADIDF) CONV 27 
CAll. VZERO ( NDOFN , TD IDF) CONV 28 
NPCSI=O CONV 29 
00;20 IPOIN=1,NPOIN CONV 30 
DO--a!O IDOFN=l,NDOFN CONV 31 
NPCSI=NPOSI+ 1 CONV 32 
ADIDF(IDOFN)=ADIDF(IDOFN)+ASDIS(NPOSI).ASDIS(NPOSI) CONV 33 

20 TDIDF(IDOFN)=TDIDF(IDOFN)+TDISP(NPOSI).TDISP(NPOSI) CONV 34 
DO 30 IDOFN=1,NDOFN CONV 35 
ADITO=ADITO+ADIDHlDOFN) CONV 36 
TDITO=TDITO+TDIDF( IDOFN) CONV 37 
ADIDF(IDOFN):SQRT(ADIDF( IDOFN» CONV 38 

30 TDIDF(IDOFN):SQRT(TDIDF(IDOFN» CONV 39 
ADITO=SQRT(ADITO) CONV 40 
TDITO=SQRT(TDITO) CONV 41 

C··· CHECK FOR CONVERGENCE AND PRINT ERRORS PER CENT CONV 42 
DO 40 IDOFN= 1 ,NDOFN CONV 43 
IF(TDIDF(IDOFN).EQ.O.O) GorO 40 CONV 44 
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TDIDFC IDOFN) = 1 00. * ADIDF(IDOFN )/TDIDFC IDOFN) 
IFC NCDISODOFN) . NE. O. AND. TDIDF ODOFN) .GT . TOLER) NCIIEK= 1 
IF(NCDISCIDOFN).EQ.O) TDIDFCIDOFN)=-TDIDFCIDOFN) 

40 CONTINUE 
IFCTDITO.EQ.O.O) GOTO 50 
TDITO=100.*ADITO/TDITO 
IFCNCDIS(4).NE.0.AND.TDITO.GT.TOLER) NCHEK=l 
IF(NCDISC4).EQ.0) TDITO"-TDITO 

50 CONTINUE 
WRITEC6,600) 
WRITEC6,601) CTDIDFCIDOfN),IDOFN=l,NDOFN) 

600 FORMAT(lX,'DISPLACEMENT CHANGE NORM',II) 
601 FORMAT(lX,5(El0.3,5X)) 

WRITE(6,602) 
602 FORMAT(5X, 'TOTAL') 

WRITEC6,603) TDITO 
603 FORMATC3X,El0.3) 

C*** RESIDUAL CONVERGENCE CHECK 
1000 IFCIFRES.EQ.O) GOTO 2000 

C*** ASSEMBLE TOTAL AND RESIDUAL FORCE VECTORS 
DO 1 ITOTV=l,NTOTV 
REFOR C ITOTV) =0. 0 
TOFORCITOTV)=O.O 
DO 60 IELEM=l,NELEM 
KEVAB=O 
DO 60 INODE=l,NNODE 
LOCNO=IABSCLNODSCIELEM,INODE)) 
DO 60 IDOFN=l,NDOFN 
KEVAB=KEVAB+l 
NPOSI=(LOCNO-l)*NDOFN+IDOFN 
TOFOR(NPOSI)=TOFORCNPOSI)+TLOADCIELEM,KEVAB) 

60 REFORCNPOSI)=REFORCNPOSI)+ELOADCIELEM,KEVAB) 
C*** COMPUTE TOTAL AND DIRECTIONAL NORMS OF RESIDUAL AND TOTAL FORCE 

REFTO=O.O 
TOFTO=O.O 
CALL VZERO C NDOFN, REFDF) 
CALL VZERO CNDOFN,TOFDF) 
NPOSI=O 
DO 70 IPOIN=l,NPOIN 
DO 70 IDOFN=l,NDOFN 
NPOSI=NPOSI+l 
REFDFCIDOFN)=REFDFCIDOFN)+REFORCNPOSI)*REFORCNPOSI) 

70 TOFDFCIDOFN)=TOFDFCIDOFN)+TOFORCNPOSI)*TOFORCNPOSI) 
DO 80 IDOFN=l,NDOFN 
REFTO=REFTO+REFDF(IDOFN) 
TOFTO=TOFTO+TOFDFCIDOFN) 
REFDFCIDOFN)=SQRTCREFDFCIDOFN)) 

80 TOFDFCIDOFN)=SQRTCTOFDFCIDOFN)) 
REFTO=SQRTCREFTO) 
TOFTO=SQRTCTOFTO) 

c*** CHECK FOR CONVERGENCE AND PRINT ERRORS PER CENT 
DO go IDOFN=l,NDOFN 
IF(TOFDF(IDOFN).EQ.O.O) GOTO 90 
TOFDFC IDOFii) =1 00. *REFDF( IDOFN )/TOFDFC IDOFN) 
IF(NCRES(IDOFN).NE.O.AND.TOFDFCIDOFN).GT.TOLER) NCHEK=l 
IF(NCRES(IDOFN).EQ.O) TOFDF(IDOFN)=-TOFDF(IDOFN) 

90 CONTINUE 
IF~FTO.EQ.O.O) GOTO 100 
TOFTO=100.*REFTO/TOFTO 
IF(NCRESC4).NE.0.AND.TOFTO.GT.TOLER) NCHEK=l 
IF(NCRESC4).EQ.0) TOFTO=-TOFTO 

100 CONTINUE 
WRITEC6,604) 
WRITEC6,601) (TOFDFCIDOFN),IDOFN=l,NDOFN) 

337 

CONY 45 
CONY 46 
CONY '17 
CONY 48 
CON V 49 
CON V 50 
CON V 51 
CON V 52 
CON V 53 
CONY 54 
CON V 55 
CONY 56 
CONY 57 
CONY 58 
CONY 59 
CON V 60 
CON V 61 
CON V 62 
CONY 63 
CON V 64 
CON V 65 
CON V 66 
CONY 67 
CONY 68 
CON V 69 
CONY 70 
CONY 71 
CONY 72 
CONY 73 
CONY 74 
CONY 75 
CONY 76 
CONY 77 
CONY 78 
CONY 79 
CON V 80 
CONY 81 
CONY 82 
CONY 83 
CONY 84 
CONY 85 
CONY 86 
CONY 87 
CONY 88 
CONY 89 
CONY 90 
CONY 91 
CONY 92 
CONY 93 

. CON V 94 
CONY 95 
CON V 96 
CONY 97 
CON V 98 
CONY 99 
CONY 100 
CON V 101 
CONY 102 
CON V 103 
CONY 104 
CONY 105 
CONY 106 
CONY 107 
CON V 108 
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WRITE(6,602) 
WRITE(6,603) TOFTO 

604 FORMAT(1X,'RESIDUAL NORM',!!) 
C... PRINT CONVERGENCE CODE 

2000 WRITE(6,605) NCHEK 
605 FORMAT(1X,'CONVERGENCE CODE',I4,!!) 

RETURN 
END 

9.5.4 Subroutine DIMMP 

CONV ~09 
CONV 110 
CONV 111 
CONV 112 
CONV 113 
CONV 114 
CONV 115 
CONV 116 

This subroutine sets up the dimensions which must agree with the size of 
the arrays in subroutine FEMP. 

SUBROUTINE DIMMP (MBUFA,MELEM,MEVAB,MFRON,MMATS,MPOIN, DIMP 
MSTIF,MTOTG,MTOTV,MVFIX,NDlME,NDOFN, DIMP 

. NPROP,NSTRE) DIMP 

1 
2 
3 
4 c ••••••••••• * •••••••• ****.**.** ••••••••••••••••• *****.********"'*""*'OIMP 

C DIM? 5 
6 
7 
8 
9 

C... SETS UP DYNAMIC DIMENSIONS - MUST AGREE WITH DIMENSIONS DIMP 
C... IN FEMP DIMP 
C DIMP 
c ••••••••••••••••••••••••••••••••••••••••••••••••••••• ***"***"""****OIMP 

MBUFA = 10 
HELEM = 25 
MFRON = 40 
MMATS = 10 
HPOIN = 80 
MSTIF= (MFRON·MFRON-MFRON)!2. O+MFRON 
MTOTG = MELEM.9 
NDOFN = 3 
MTOTV = MPOIN.NDOFN 
MVFIX = 40 
NDlME=2 
NPROP = 8 
NSTRE = 5 
MEVAB = NDOFN.9 
RETURN 
END 

9.5.5 Subroutine FLOWMP 

DIMP 10 
DIMP 11 
DIM? 12 
DIMP 13 
DIM? 14 
DIM? 15 
DIMP 16 
DIMP 17 
DIMP 18 
DIMP 19 
DIM? 20 
DIMP 21 
DIMP 22 
DIMP 23 
DIMP 24 
DIMP 25 

This subroutine determines the yield function derivatives [aFjaM"" 
aFjaMII, aFjaM"'II]T for nonlayered Mindlin plates of Von Mises or Tresca 
material. This routine is almost identical to the corresponding one given in 
Cha~ter 7 for plane stress, plane strain and axisymmetric problems. 

SUBROUTINE FLOWMP (ABETA,AVECT ,DEVIA,DMATX,DVECT ,HARDS, FLOW 1 
NCRIT,SINT3,STEFF,THETA,VARJ2) FLOW 2 

C·· •••••••••••••••••••••••••••••••••••••••••••• * ••••••• * •••••••••• * ••• *.FLOW 3 
C FLOW 4 
C··· DETERMINES YIELD FUNCTION DERIVATIVES FOR MINDLIN PLATES FLOW 5 
CU. 1 VON MISES FLOW 6 
C*-. 2 TRESCA FLOW 7 
C FLOW 8 c.· .......................•.......................... · ..... ** •••• * •••••• FLOW 9 
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C FLOW 10 
DIMENSION AVECTCS),DEVIAC4),DMATXC3,3),DVECTCS), FLOW 11 

VECA1(3),VECA2C3),VECA3C3) FLOW 12 
C FLOW 13 
C*** DETERMINE THE VECTOR DERIVATIVE OF F FOR VON-MISES FLOW 14 

SINTH=SINCTHETA) FLOW 15 
COSTH=COSCTHETA) FLOW 16 
ROOT3=1.73205080757 FLOW 17 

C FLOW 18 
C*** CALCULATE VECTOR A1 FLOW 19 
C FLOW 20 

VECA1(1)=0.333333333333 FLOW 21 
VECA1(2)=0.333333333333 FLOW 22 
VECA 1(3)=0.0 FLOW 23 

C FLOW 24 
C*** CALCULATE VECTOR A2 FLOW 25 
C FLOW 26 

DO 10 ISTRE=1,3 FLOW 27 
10 VECA2CISTRE)=DEVIACISTRE)/C2.0*STEFF) FLOW 28 

VECA2(3)=DEVIAC3)/STEFF FLOW 29 
C FLOW 30 
C*** CALCULATE VECTOR A3 FLOW 31 
C FLOW 32 

VECA3(1)=DEVIAC2)*DEVIAC4)+VARJ2/3.0 FLOW 33 
VECA3(2)=DEVIAC1)*DEVIAC4)+VARJ2/3.0 FLOW 34 
VECA3(3)=-2.0*DEVIAC3)*DEVIAC4) FLOW 35 
GO TO C1,2) NCRIT FLOW 36 

C FLOW 37 
c*** VON MISES FLOW 38 
C FLOW 39 

CONS1=0.0 FLOW 40 
CONS2=ROOT3 FLOW 41 
CONS3=0.0 FLOW 42 
GO TO 40 FLOW 43 

C FLOW 44 
C*** TRESCA FLOW 45 
C FLOW 46 

2 CONS1=0.0 FLOW 47 
ABTHE=ABSCTHETA*57.29577951308) FLOW 48 
IFCABTHE.LT.29.0) GO TO 20 FLOW 49 
CONS2=ROOT3 FLOW 50 
CONS3=0.0 FLOW 51 
GO TO 40 FLOW 52 

20 CONS2=2.0*CCOSTH+SINTH*SINT3/SQRTC1.0-SINT3*SINT3» FLOW 53 
CONS3=ROOT3*SINTHI C VARJ 2*SQRTC 1 . O-SINn*SINn) ) FLOW 54 

40 CONTINUE FLOW 55 
DO 50 ISTRE= 1 ,3 FLOW 56 

50 AVECTCISTRE)=CONS1*VECA1CISTRE)+CONS2*VECA2CISTRE)+CONS3* FLOW 57 
. VECA3 (ISTRE) FLOW 58 C FLOW 59 c*** DETER~IINE THE VECTOR D FLOW 60 C FLOW 61 
DENOM=HARDS FLOW 62 DO 120 ISTRE=1,3 FLOW 63 
DVECTC ISTRE) =0.0 FLOW 64 
DO 110 JSTRE=1,3 FLOW 65 

110 DVECT C ISTRE) =DVECT C ISTRE) +DHATX(ISTRE, JSTRE)' AVECT( JSTRE) FLOW 66 
120 DENOM=DE~AVECT(ISTRE)*DVECT(ISTRE) FLOW 67 . ABETA=l. NOM FLOW 68 RETURN FLOW 69 END FLOW 70 
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9.5.6 Subroutine GRADMP 
This subroutine evaluates displacement gradients 8w/8x, 8w/8y, 8 ()z/8x, 

8()z/8y, 8()1I/8x and 8()1I/8y. 

SUBROUTINE GRADMP (CARTD,DGRAD,ELDIS,NDOFN,NNODE) GRAD 1 
2 
3 
4 
5 

C"f""_'-'-"""-""-"-""'--*-----*---------'-'*****"'*'********GRAD 
C GRAD 
C*** FORM TOTAL DISPLACEMENTS GRADIENTS GRAD 
C GRAD 
c., •••• _ ••• ,-"-,·,,·_··_·_---,,,,-,_·_,_·,_····_·_-,-******************GRAD 6 

DIMENSION CARTD(2,9),DGRAD(6),ELDIS(3,9) GRAD 7 
CU* ZERO DGRAD GRAD 8 

CALL VZERO(6,DGRAD) GRAD 9 
Cu* FORM TOTAL DISPLACEMENTS GRADIENTS GRAD 10 

DO 10 INODE= 1 , NNODE GRAD 11 
DNIDX=CARTD(l,INODE) GRAD 12 
DNIDY=CARTD(2,INODE) GRAD 13 
DO 10 IDOFN=l, NDOFN GRAD 14 
IPOSN=NDOFN+IDOFN GRAD 15 
CONST=ELDIS(IDOFN,INODE) GRAD 16 
DGRAD(IDOFN)=DGRAD(IDOFN)+DNIDX*CONST GRAD 17 

10 DGRAD(IPOSN)=DGRAD(IPOSN)+DNIDY*CONST GRAD 18 
RETURN GRAD 19 
END GRAD 20 

9.5.7 Subroutine INVMP 
This subroutine evaluates the Mindlin plate bending moment invariants. 

It also evaluates the effective moment for the Tresca and Von Mises materials. 

SUBROUTINE INVMP (DEVIA,NCRIT,SINT3,STEFF,STEMP,THETA, INVR 1 
2 
3 
4 

VARJ2,YIELD) INVR 
C***********************************************************************INVR 
C 1m 
c*** CALCULATE MINDLIN PLATE STRESS RESULTANT INVARIANTS INVR 5 

6 C INVR 
C***********************************************************************INVR 7 

DIMENSION STEMP(5),DEVIA(4) 
SMEAN=(STEMP(1)+5TEMP(2»/3.0 
DEVIA(l)=STEMP(l)-SMEAN 
DEVIA(2)=STEMP(2)-SMEAN 
DEVIA(3)=STEMP(3) 
DEVIA(4)=-SMEAN 
VARJ2=DEVIA(3)*DEVIA(3)+O.5*(DEVIA(1)*DEVIA(1)+DEVIA(2)*DEVIA(2) 

. +DEVIA(4)*DEVIA(4» 
VARJ3=DEVIA(4)*(DEVIA(4)*DEVIA(4)-VARJ2) 
STEFF=SQRT(VARJ2) 
SINT3=-2.5980762113*VARJ3/(VARJ2*STEFF) 
THETA=ASIN(SINT3)/3.0 
GO TO (1,2) NCRIT 

C*** VON MISES 
1 YIELD=1.73205080757*STEFF 

RETURN 
Cu* TRESCA 

2 YIELD=2.0*COS(THETA)*STEFF 
RETURN 
END 

INVR 8 
INVR 9 
INVR 10 
INVR 11 
INVR 12 
INVR 13 
INVR 14 
INVR 15 
INVR 16 
INVR 17 
INVR 18 
INVR 19 
INVR 20 
INVR 21 
INVR 22 
INVR 23 
INVR 24 
INVR 25 
INVR 26 
INVR Z7 
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9.5.8 Subroutine MINDPB 
This subroutine simply reads some additional information required for 

controlling the convergence check and inserting additional constraints for 
the Heterosis element. 

SUBROUTINE MINDPB (IFDIS, IFFIX, IFRES, LNODS, MELEM,MTOTV, MIND 1 
NCDIS, NCRES,NELEM,NTYPE) MIND 2 

C.**II*I'*I******************,***********,***,**.,,*,*******************MIND 3 
C MIND 4 
C-.. READS ADDITIONAL DATA FOR MINDLIN PLATE ANALYSIS MIND 5 
C MIND 6 
C**I***-**--*-*****'******'******.***.*-*******.'."--******************MIND 7 

DIMENSION DERIV(2,g) ,IFFIX(MTOTV) , MIND 8 
LNODS(MELEM,9),NCDIS(4),NCRES(4),SHAPE(9) MIND 9 

C 
c· .. 
C 

READ DATA CONTROLLING CONVERGENCE CHECK 

10 READC5,900) IFDIS,CNCDISCI),1=1,4) 
. ,IFRES,CNCRESCI),I=1,4) 

900 FORMAT(5I1) 
WRITE(6,901) 1FDIS,CNCDIS(1),I=1,4) 

,IFRES,CNCRES(1),I=1,4) 
901 FORMAT(/,23H CONVERGENCE PARAMETERS,I, 

8H IFD1S =,12,5X,8H NCDIS =,411,1, 
8H IFRES =,I2,5X,8H NCRES =,411,1/) 

C... INSERT ADDITIONAL CONSTRAINT FOR HETEROSIS ELEMENT 
IF(NTYPE.NE.5) GO TO 30 
DO 20 IELEM=l,NELEM 
LNODE=LNODS(IELEM,g) 
NLOCA=LNODE*3-2 

20 IFFIXCNLOCA)=-l 
30 CONTINUE 

RETURN 
END 

9.5.9 Subroutine NODEXY 

MIND 10 
MIND 11 
MIND 12 
MIND 13 
MIND 14 
MIND 15 
MIND 16 
MIND 17 
MIND 18 
MIND 19 
MIND 20 
MIND 21 
MIND 22 
MIND 23 
MIND 24 
MIND 25 
MIND 26 
MIND 27 
MIND 28 
MIND 29 

This subroutine evaluates midside nodes for straight sided 8 and 9-node 
quadrilateral elements. In the original subroutine described in Section 6.4.1 
this routine also evaluated the coordinates of the central node. Here, as we 
are choosing a hierarchical formulation, the values at the central node and 
the departures from the interpolated Serendipity values are always taken as 
zero. 

Thus the revised subroutine NODEXY is almost identical to its namesake 
given earlier in Section 6.4.1 and is listed below. 

SUBROUTINE NODEXY (CooRD,LNODS,MELEM,MPOIN,NDIME,NELEM, NODE 1 
NNODE) NODE 2 c·· .. ··.,**_ •••••••.. __ .. , ... __ .• ___ . __ ,., •• ____ . __ ,_,******************NODE 3 

C . NODE 4 
c··· INTERPOLATES MIDSIDE NODE COORDINATES FOR 8-NODED ELEMENTS NODE 5 
c··· INTERPOLATES CENTRAL AND MIDSlDE NODE COORDINATES FOR NODE 6 
c·.. 9-NODE ELEMENTS PROVIDED THAT THE SIDES ARE STRAIGHT NODE 7 
C OO~ 8 
C··**.~'**'I'*I*********************************************************NODE 9 
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DIMENSION COORD(MPOIN,2),LNODS(MELEM,9) NODE 10 
IF(NNODE.EQ.4) GO TO 60 NODE 11 

C NODE 12 
C... LOOP OVER EACH ELEMENT NODE 13 

·C NODE 14 
00 30 IELEM=l,NELEM NODE 15 

C NODE 16 
C... LOOP OVER EACH ELEMENT EDGE NODE 17 
C NODE 18 

NNOD1=NNODE NODE 19 
IF(NNODE.EQ.8).NNOD1=9 NODE 20 
DO 20 INODE=1,NNOD1,2 NODE 21 
IF(INODE.EQ.9.AND.NNODE.EQ.8) GO TO 30 NODE 22 
IF(INODE.EQ.9) GO TO 50 NODE 23 

C NODE 24 
C... COMPUTE THE NODE NUMBER OF THE FIRST NODE NODE 25 
C NODE 26 

NODST=LNODS(IELEM,INODE) NODE 27 
IGASH=INODE+2 NODE 28 
IF(IGASH.GE.NNODE) IGASH=1 NODE 29 

C NODE 30 c·.. COMPUTE THE NODE NUMBER OF THE LAST NODE NODE 31 
C NODE 32 

NODFN=LNODS(IELEM,IGASH) NODE 33 
MIDPT=INODE+ 1 NODE 34 

C NODE 35 
C··· COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE NODE 36 
C NODE 37 

NODMD=LNODS(IELEM,MIDPT) NODE 38 
TOTAL=ABS(COORD(NODMD,l»+ABS(CooRD(NODMD,2» NODE 39 

C NODE 40 
C··· IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO NODE 41 
C INTERPOLATE BY A STRAIGHT LINE NODE 42 
C NODE 43 

IF(TOTAL.GT.O.O) GO TO 20 NODE 44 
KOUNT=1 NODE 45 

10 COORD(NODMD,KOUNT)=(COORD(NODST,KOUNT)+COORD(NODFN,KOUNT»/2.0 NODE 46 
KOUNT=KOUNT+ 1 NODE 47 
IF(KOUNT.EQ.2) GO TO 10 NODE 48 

20 CONTINUE NODE 49 
50 LNODE=LNODS(IELEM,INODE) NODE 50 
30 CONTINUE NODE 51 
60 CONTINUE NODE 52 

RETURN NODE 53 
END NODE 54 

9.5.10 Subroutine OUTMP 
This subroutine outputs nodal displacements and reactions and also the 

Gauss point stress resultants. 

SUBROUTINE OUTMP (EPSTN, lITER, MTOTG, MTOTV ,MVFIX, NELEM, OUTP 1 
NGAUS,NOFIX,NOUTP,NPOIN,NVFIX,STRSG, OUTP 2 

• TOISP, TREAC) OUTP 3 
c ••••••••••••• **** ••••• ** •••••••••••••••••••••• ************"'*"**'*'*'OUTP 4 
C OUW 5 
C... OUTPUT DISPLACEMENTS,REACTIONS AND GAUSS POINT STRESS OUTP 6 
Cu. RESULTANTS FOR EP MINDLIN PLATE ANALYSIS OUTP 7 
C OUTP 8 
c* ••••• ** •••• * •••• ** ••• ** •••• * •••• ***.*.*~ •• * •••• ***.* •••••••••••••••••• OUTP 9 
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DIMENSION EPSTN(MTOTG),GPCOD(2,9),NOFIX(MVFIX),NOUTP(2), 
STRSG(S,MTOTG) ,TDISP(MTOTV) ,TREAC(MVFIX,3) 

KOUTP=NOUTP( 1) 
IF(IITER.GT.1) KOUTP=NOUTP(2) 

C*** OUTPUT DISPLACEMENTS 
C 

IF(KOUTP.LT.1) GO TO 10 
WRITE(6,900) 

900 FORMAT(lHO,5X,13HDISPLACEMENTS) 
WRITE(6,950) 

950 FORMAT(lHO,6X,4HNODE,6X,5HDISP.,8X,7HXZ-ROT.,7X,7HYZ-ROT.) 
DO 20 IPOIN=l,NPOIN 
NGASH=IPOIN*3 
NGISH=NGASH-3+ 1 

20 WRITE(6,910) IPOIN,(TDISP(IGASH),IGASH=NGISH,NGASH) 
910 FORMAT(I10,3E14.6) 

10 CONTINUE 
C 
C.** OUTPUT REACTIONS 
C 

C 

!F(KOUTP.LT.2) GO TO 30 
WRITE(6,920) 

920 FORMAT(lHO,5X,9HREACTIONS) 
WRITE(6,960) 

960 FORMAT(lHO,6X,4HNODE,6X,5HFORCE,3X,9HXZ-MOMENT,5X,9HYZ-MOMENT) 
DO 40 IVFIX=l,NVFIX 

40 WRITE(6,910) NOFIX(IVFIX),(TREAC(IVFIX,IDOFN),IDOFN=l,3) 
30 CONTINUE 

C**· OUTPUT STRESSES 
C 

IF(KOUTP.LT.3) GO TO 50 
REWIND 3 
WRITE(6,970) 

970 FORMAT(lHO,5X,8HSTRESSES) 
WRITE(6,980) 

980 FORMAT(lHO,4HG.P.,2X,8HX-COORD.,2X,8HY-COORD.,3X,8HX-MOMENT,4X, 
.8HY-MOMENT,3x,9HXY-MOMENT,3X, 
• 13HEFF. PL. STRAIN) 

KGAUS=O 
DO 60 IELEM=l,NELEM 
READ(3)GPCOD 
KELGS=O 
WRITE(6,930)IELEM 

930 FORMAT(lHO,5X,13HELEMENT NO. =,15) 
DO 60 IGAUS=l,NGAUS 
DO 60 JGAUS=l,NGAUS 
KGAUS=KGAUS+1 
KELGS=KELGS+ 1 
WRITE(6,940)KELGS,(GPCOD(lDIME,KELGS),IDIME=l,2), 

.(STRSG(ISTRE,KGAUS),ISTRE=l ,3) ,EPSTN(KGAUS) 
940 FORMAT(I5,2F10.4,6E12.5) 
60 CONTINUE 
50 CONTINUE 

RETURN 
END 
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OUTP 10 
OUTP 11 
OUTP 12 
OUTP 13 
OUTP 14 
OUTP 15 
OUTP 16 
OUTP 17 
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9.5.11 Subroutine RESMP 
This subroutine evaluates the residual nodal forces. The structure of this 

routine is similar to that given in Chapter 7 for the other two dimensional 
elasto-plastic applications and it is illustrated in Fig. 9.3. 

SUBROUTINE RESMP (ASDIS, COORD, EFFST, ELOAD, EPSTN,LNODS, 
MATNO,MELEM,MMATS,MPOIN,MTOTG,MTOTV, 
NCRIT,NELEM,NEVAB,NGAUS,NNODE,PROPS, 
STRSG) 

RESP 
RESP 
RESP 
RESP 

1 
2 
3 
4 

C •••••••••••••• *******.*** •••• ****.****************·********************RESP 5 
C RESP 6 
C*** EVALUATES EQUIVALENT NODAL FORCES FOR THE STRESS RESULTANTS RESP 7 
c*** IN MINDLIN PLATES DURING EP ANALYSIS RESP 8 
C RESP 9 
c*****'*'*****'************-*-****'*'*-*""****'*'********"*'*********RESP 10 

C 

DIMENSION ASDIS(MTOTV),AVECT(5),CARTD(2,9), 
CooRD(MPOIN,2),DERIV(2,9),DESIG(S),DEVIA(4), 
DVECT(5), 

NTIME=1 

EFFST(MTOTG),ELCOD(2,9), 
ELDIS(3,9),ELOAD(MELEM,27),EPSTN(MTOTG),GPCOD(2,9), 
LNODS(MELEM,9),MATNO(MELEM),POSGP(4), 
PROPS(MMATS,8),SGTOT(5),SHAPE(9),SIGMA(5), 
STRES(5),STRSG(5,MTOTG),WEIGP(4), 
DFLEX(3,3),DSHER(2,2),BFLEI(3,3),BSHEI(2,3), 
DUMMY(3,3),FORCE(3),DGRAD(6) 

DO 10 IELEM=l,NELEM 
DO 10 IEVAB=l,NEVAB 

10 ELOAD(IELEM,IEVAB)=O.O 
KGAUS=O 
LGAUS=O 
DO 20 IELEM=l,NELEM 
LPROP=MATNO(IELEM) 

C*** COMPUTE COORDINATE AND INCREMENTAL DISPLACEMENTS OF THE 
C ELEMENT NODAL POINTS 
C 

DO 190 INODE =l,NNODE 
LNODE=IABS(LNODS(IELEM,INODE)) 
NPOSN=(LNODE-l)*3 
DO 30 IDOFN= 1 ,3 
NPOSN=NPOSN+ 1 

30 ELDIS(IDOFN,INODE)=ASDIS(NPOSN) 
DO 180 IDIME=l,2 

180 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) 
190 CONTINUE 

KGASP=O 
CALL HODPB (DFLEX,DUMMY,DSHER, LPROP,MMATS, PROPS, 

0, 1, 1) 
CALL GAUSSQ (NGAUS,POSGP,WEIGP) 
DO 40 IGAUS=l,NGAUS 
DO 40 JGAUS=l,NGAUS 
BRING=1.0 
KGAUS=KGAUS+l 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 
CALL SFR2 
KGASP=KGASP+ 1 
CALL JACOB2 

(DERIV,ETASP,EXISP,NNODE,SHAPE) 

(CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, 
KGASP,NNODE,SHAPE) 

RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RES? 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 
RESP 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34' 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
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DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
CALL GRADMP (CARTD, DGRAD, ELDIS, 3, NNODE) 
CALL STRMP (CARTD,DFLEX,DGRAD,DSHER,ELDIS,NNODE, 

SHAPE,STRES, 1, 0) 
PREYS=PROPS(LPROP,6)+EPSTN(KGAUS)*PROPS(LPROP,7) 
DO 150 ISTRE=1,3 
DESIG(ISTRE)=STRES(ISTRE) 

150 SIGMA(ISTRE)=STRSG(ISTRE,KGAUS)+STRES(ISTRE) 
CALL INVMP (DEVIA,NCRIT,SINT3,STEFF,SIGMA,THETA, 

VARJ2,YIELD) 
ES?RE=EFFST(KGAUS)-PREYS 
IF(ESPRE.GE.O.O) GO TO 50 
ESCUR=YIELD-PREYS 
IF(ESCUR.LE.O.O) GO TO 60 
RFACT=ESCUR/(YIELD-EFFST(KGAUS)) 
GO TO 70 

50 ESCUR=YIELD-EFFST(KGAUS) 
IF(ESCUR.LE.O.O) GO TO 60 
RFACT=1.0 

70 MSTE?=ESCUR*8.0/PRO?S(LPROP,6)+1.0 
ASTEP=MSTEP 
REDUC=1.0-RFACT 
DO 80 ISTRE= 1 ,3 
SGTOT(ISTRE)=STRSG(ISTRE,KGAUS)+REDUC*STRES(ISTRE) 

80 STRES(ISTRE)=RFACT*STRES(ISTRE)/ASTE? 
DO 90 ISTEP=l,MSTEP 
CALL INVMP 

HARDS=PROPS(LPROP,7) 
CALL FLOWMP 

AGASH=O.O 
DO 100 ISTRE=1,3 

(DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA, 
VARJ2,YIELD) 

(ABETA,AVECT,DEVIA,DFLEX,DVECT,HARDS, 
NCRIT,SINT3,STEFF,THETA,VARJ2) 

100 AGASH=AGASH+AVECT(ISTRE)*STRES(ISTRE) 
DLAMD=AGASH*ABETA 
IF(DLAMD.LT.O.O) DLAMD=O.O 
BGASH=O.O 
DO 110 ISTRE=1,3 
BGASH=BGASH+AVECT(ISTRE)*SGTOT(ISTRE) 

110 SGTOT(ISTRE)=SGTOT(ISTRE)+STRES(ISTRE)-DLAMD*DVECT(ISTRE) 
9D EPSTN(KGAUS)=EPSTN(KGAUS)+DLAMD*BGASH/YIELD 

DO 120 ISTRE=1,3 
120 DESIG(ISTRE)=SGTOT(ISTRE)-STRSG(ISTRE,KGAUS) 

CALL INVM? (DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA, 
VARJ2,YIELD) 

CURYS=?ROPS(LPROP,6)+E?STN(KGAUS)*?ROPS(LPRO?,7) 
IF(YIELD.GT.CURYS) BRING=CURYS/YIELD 

60 DO 130 ISTRE=1,3 
SGTOT(ISTRE)=BRING*(STRSG(ISTRE,KGAUS)+DESIG(ISTRE)) 

130 STRSG(ISTRE,KGAUS)=SGTOT(ISTRE) 
EFFST(KGAUS)=BRING*YIELD 

c··· CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELEMENT NODES 

DO 140 INODE=l,NNODE 
C··· ZERO FORCE VECTOR 

CALL VZERO 
CALL BMATPB 

(3 ,FORCE) 
(BFLEI,DUMMY,BSHEI,CARTD,INODE,SHAPE, 

0, 1, 0) 
FORCE(2)=(BFLEI(1,2)*SGTOT(1)+BFLEI(3,2)*SGTOT(3))*DAREA 

+FORCE(2) 
FORCE(3)=(BFLEI(2,3)*SGTOT(2)+BFLEI(3,3)*SGTOT(3))*DAREA 

+FORCE(3) 
IPOSN=(INODE-1)*3+1 
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RESP 56 
RESP 57 
RESP 58 
RESP 59 
RESP 60 
RESP 61 
RESP 62 
RESP 63 
RES? 64 
RES? 65 
RES? 66 
RES? 67 
RES? 68 
RES? 69 
RES? 70 
RESP 71 
RES? 72 
RES? 73 
RESP 74 
RES? 75 
RES? 76 
RES? 77 
RESP 78 
RES? 79 
RESP 80 
RES? 81 
RES? 82 
RES? 83 
RES? 84 
RES? 85 
RES? 86 
RES? 87 
RES? 88 
RES? 89 
RES? 90 
RES? 91 
RES? 92 
RES? 93 
RES? 94 
RES? 95 
RES? 96 
RES? 97 
RES? 98 
RES? 99 
RESP 100 
RES? 101 
RESP 102 
RES? 103 
RES? 104 
RESP 105 
RESP 106 
RESP 107 
RESP 108 
RES? 109 
RES? 110 
RES? 111 
RES? 112 
RES? 113 
RES? 114 
RESP 115 
RES? 116 
RESP 117 
RESP 118 
RESP 119 
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00 135 IDOFN=2,3 
IPOSN=IPOSN+1 

FINITE ELEMENTS IN PLASTICITY 

135 ELOAD(IELEM,IPOSN)=ELOAD(IELEM,IPOSN)+FORCE(IDOFN) 
140 CONTINUE 
40 CONTINUE 

C*** CALCULATE FORCES ASSOCIATED WITH SHEAR DEFORMATION 
C 

C 

NGAUH=NGAUS-1 
CALL GAUSSQ (NGAUH,POSGP,WEIGP) 

C*** ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 

KGASP=O 
00 300 IGAUS=1,NGAUH 
DO 300 JGAUS=1,NGAUM 
LGAUS=LGAUS+ 1 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 
CALL SFR2 
KGASP=KGASP+ 1 
CALL JACOB2 

(DERIV, ETASP, EXISP,NNODE,SHAPE) 

(CARTD,DERIV,DJACB,ELCOD,GPCOD,lELEM, 
KGASP, NNODE, SHAPE) 

DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
CALL GRADHP (CARTD,DGRAD,ELDIS, 3,NNODE) 
CALL STRHP (CARTD,DFLEX , DGRAD ,DSHER,ELDIS, NNODE , 

SHAPE,STRES, 0, 1) 
DO 310 ISTRE=4,5 
SGTOT(ISTRE) =STRSG(ISTRE ,LGAUS)+STRES(ISTRE) 

310 STRSG(ISTRE,LGAUS)=SGTOT(ISTRE) 
C 
C*** CALCULATE THE EQUIVALENT NODAL FORCES 
C 

DO 320 INODE=1,NNODE 
C*** ZERO FORCE VECTOR 

CALL VZERO(3,FORCE) 
CALL BMATPB (BFLEI,DUHHY,BSHEI,CARTD,INODE,SHAPE, 

0, 0, 1) 
FORCE(1)=(BSHEI(1,1)*SGTOT(4)+BSHEI(2,1)*SGTOT(5»*DAREA 

+FORCE( 1) 
FORCE(2)=(BSHEI(1,2)*SGTOT(4»*DAREA+FORCE(2) 
FORCE(3)=(BSHEI(2,3)*SGTOT(5»*DAREA+FORCE(3) 
IPOSN=(INODE-1)*3 
DO 315 IDOFN=1,3 
IPOSN:IPOSN+1 

315 ELOAD(IELEH,IPOSN)=ELOADCIELEH,IPOSN)+FORCE(IDOFN) 
320 CONTINUE 
300 CONTINUE 
20 CONTINUE 

RETURN 
END 

9.5.12 Subroutine SFR2 

RESP 120 
RESP 121 
RESP 122 
RESP 123 
RESP 124 
RESP 125 
RESP 126 
RESP 127 
RESP 128 
RESP 129 
RESP 130 
RESP 131 
RESP 132 
RESP 133 
RESP 134 
RESP 135 
RESP 136 
RESP 137 
RESP 138 
RESP 139 
RESP 140 
RESP 141 
RESP 142 
RESP 143 
RESP 144 
RESP 145 
RESP 146 
RESP 111'7 
RESP 148 
RESP 149 
RESP 150 
RESP 151 
RESP 152 
RESP 153 
RESP 154 
RESP 155 
RESP 156 
RESP 157 
RESP 158 
RESP 159 
RESP 160 
RESP 161 
RESP 162 
RESP 163 
RESP 164 
RESP 165 
RESP 166 
RESP 167 
RESP 168 
RESP 169 
RESP 170 

This subroutine evaluates the shape functions and their derivatives for 
4, 8 and 9-node quadrilateral isoparametric elements. 'l'he 9-node element is 
treated as a hierarchical element as described in Section 9.3.2. This enables 
the Heterosis element to be easily incorporated. 
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I STARlJ 

Set to zero ELOAD ( ) 

Extract local element material property set 
numher. displacements and coonJinates 

Call MODPB to evaluate D" D., 

Call GAUSSQ to evaluate n-point Gauss-
Legendre sampling positions and weights 

Call SFR2, JACOB2, GRADMP and STRMP to evaluate 
elastic stress increment dr1.r 

f- Calculate the effective stress necessary for 
Zc. yielding to occur 
~O 
~O 
~.J 
.J 
~ 

Calculate the total bending moments at the 
current Gauss points 

r.l'Jv; 
VlC. 
;:)0 
<0 
Q.J 

If the current bending moments are outside of 
the vield surface bring them back to the yield 
surface taking into account unloading if it has 

taken place 

0 
Fig, 9,3 Overall structure of subroutine RESMP, 
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A 

Evaluate [B, F a, x Gauss weights x det J 
and add into ELOAD ( . ). Use routines VZERO and 

BMATPB 

Call GAUSSQ to evaluate (n - 1) point Gauss-
Legendre sampling positions and weights 

Call SFR2. JACOB2, GRADMP and STRMP to evaluate 
elastic stress increment da. 

"'''' "'Il. 
::>0 
<0 "..J 

Evaluate [B. Fa, x Gauss weights xdet J 
and add into ELOAD ( • ). Use routines VZERO 

andBMATPB 

I RETURN I 
Fig. 9.3 Overall structure of subroutine RESMP (continued). 

Subroutine SFR2 is identical to its namesake given earlier in Section 6.4.3 
except that SFR2 72-118 are replaced by SFRH 67-73. 

IF(NNODE.EQ.8) RETURN 
c*** BUBBLE FUNCTION FOR HIERARCHICAL AND HETEROSIS ELEMENTS 

SHAPE(9)=(1.0-SS)*(1.0-TT) 
DERIV(1,9)=-S2*(1.0-TT) 
DERIV(2,9)=-T2*(1.0-SS) 
RETURN 
END 

9.5.13 Subroutine STIFMP 

SFR2 67 
SFRH 68 
SFRH 69 
SFRH 70 
SFRH 71 
SFRH 72 
SFRH 73 

This routine evaluates the stiffness matrix for the nonlayered elasto-plastic 
Mindlin plate elements. The overall structure is shown in Fig. 9.4. 
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I START I 

Rewind tapes I and 3 

Extract local element material property set number 
and coordinates 

Initialise array used to store element 
stiffness matrices 

Call GAUSSQ to evaluate n-point GaUSS-Legendre 
sampling positions and weights 

~c.. Call SFR2 and J ACOB2 to evaluate J.Ll O 
~O ( ) ilNle) aNle) 

~...J N- e I I and det 1(" , .--.--
J.Ll 

ilx ily 

Call MOOPB to evaluate DI 

Is this Yes 
VlVl the first load 
Vlc.. 

increment? ::JO 
<0 
O...J 

No 

Was this 
Gauss point plastic No 

in the last load 
increment? 

Yes 

A 
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A 

Call INVMP and FLOWMP to evaluate a' and dD and hence 
calculate D,p 

Call BMA TPB and SUBMP to add 
[B,,(')FD,Bfj(eJ detJ(') x Gauss weights into K(j(eJ 

Call GAUSSQ to evaluate (n-I)-point Gauss-Legendre 
sampling positions and weights 

Call SFR2 and JACOB2 to evaluate 
aN,(eJ aN,(') 

N,(eJ, _,_, -- and det J(eJ 
ox iJy 

"'''' "'''-
~O Call MODPB to evaluate D, 
<:0 
d..J 

Call BMATPB and SUBMP to add 
[B,,(')F D.Bsj(') det JxGauss weights into K'j(') 

Store stiffness matrix K(eJ and Gauss point 
coordinates on files I and 3 respectively 

I RETURN I 

Fig. 9.4 Overall .-ucture of subroutine STIFMP (continued). 
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SUBROUTINE STIFMP (CooRD,EPSTN,IINCS,lNODS,MATNO,MElEM, STIF 
MEVAB,MMATS,MPOIN,MTOTG,NCRIT,NElEM, STIF 

. N~,NGAUS,NNODE,PROPS,STRSG) STIF 
C*******'***********'**********'****************************************STIF 

1 
2 
3 
4 

C STIF 5 
6 
7 
8 

C'" EVAlUATE STIFFNESS MATRICES FOR NON-lAYERED STIF 
C'" ElASTO-PlASTIC MINDLIN PLATE ELEMENTS STIF 
C STIF 
C**I***I*I*I************'***********************************************STIF 9 

DIMENSION AVECT(5), STIF 10 
CARTD(2,9),COORD(MPOIN,2), STIF 11 
DERIV(2,9) ,DEVIA(4) ,DVECT(5) ,ELCOD(2,9), STIF 12 
EPSTN(MTOTG) ,ESTIF( 27 ,27) ,GPCOD( 2,9) ,LNODSUIELEM, 9) , STIF 13 
MATNO( fIELEM) ,POSGP( 4) ,PROPS( MMATS, 8) ,SHAPE (9) ,STRES( 5), STIF 14 
STRSG(5,MTOTG),WEIGP(4), STIF 15 
DFLEX(3,3),DSHER(2,2),BFLEI(3,3),BFLEJ(3,3), STIF 16 

REWIND 
REWIND 3 
KGAUS=O 

BSHEI(2,3),BSHEJ(2,3),DUMMY(3,3) STIF 17 
STIF 18 
STIF 19 
STIF 20 

C 
C'" 
C 

C 

LOOP OVER EACH ELEMENT 

DO 70 IELEM=l,NELEM 
LPROP=MATNO(IELEM) 

C'" EVAlUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

DO 10 INODE=l,NNODE 
LNODE=LNODS(IELEM,INODE) 
LNODE=IABS(LNODE) 
DO 10 lDIME=1,2 

10 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) 
C 
C'" INITIAlIZE THE ELEMENT STIFFNESS MATRIX 
C 

DO 20 IEVAB=1,NEVAB 
DO 20 JEVAB=1,NEVAB 

20 ESTIF(IEVAB,JEVAB)=O.O 
C 
CU. 
C 
C 

C 

EVAlUATE PART OF STIFFNESS MATRIX 
ASSOCIATED WITH BENDING DEFORMATION 

KGASP=L 

C'" ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 
C 
C·" SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

C 

CAlL GAUSSQ 

DO 50 IGAUS=l,NGAUS 
DO 50 JGAUS=l,NGAUS 
KGASP=KGASP+ 1 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 

(NGAUS,POSGP,WEIGP) 
/" 

CU. EVAlUATE THE SHAPE FUNCTIONS,ELEMENTAL AREA,ETC 
C 

CALL 
CAlL 

SFR2 
JACOS2 

(DERIV, ETASP, EXISP,NNODE ,SHAPE) 
(CARID,DERIV, DJACS I ELCOD,GPCOD, IELEr-l, 
KGASP,NNODE,SHAPEJ 

DAREA=DJACS*WEIGP(IGAUS)'WEIGP(JGAUS) 

STIF 21 
STIF 22 
STIF 23 
STIF 24 
STIF 25 
STIF 26 
STIF 27 
STIF 28 
STIF 29 
STIF 30 
STIF 31 

32 
33 
34 
35 
36 
37 
38 
39 
40 

STIF 
STIF 
STIF 
STIF 
STIF 
STIF 
STIF 
STIF 
STIF 
STIF 41 
STIF 42 
STIF 43 
STIF 44 
STIF 45 
STIF 46 
STIF 47 
STIF 48 
STIF 49 
STIF 50 
STIF 51 
STIF 52 
STIF 53 
STIF 54 
STIF 55 
STIF 56 
STIF 57 
STIF 58 
STIF 59 
STIF 60 
STIF 61 
STIF 62 
STIF 63 
STIF 64 
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C C'" EVALUATE THE B AND DB MATRICES 
C 

C 

(DFLEX ,DUMMY ,DSHER! LPROP , MMATS, PROPS, 
0, 1, O) 

CALL MODPB 

IF(IINCS.EQ.l) GO TO 80 
KGAUS=KGAUS+l 
IF(EPSTN(KGAUS).EQ.O.O) GO TO 80 
DO 90 ISTRE=1,3 

90 STRES(ISTRE)=STRSG(ISTRE,KGAUS) 
HARDS:PROPS(LPROP,7) 
CALL INVMP 

CALL FLCMMP 

DO 100 ISTRE=1,3 
DO 100 JSTRE=1,3 

(DEVIA,NCRIT,SINT3 ,STEFF,STRES ,THETA, 
VARJ2, YIELD) 

(ABETA,AVECT,DEVIA,DFLEX,DVECT,HARDS, 
NCRIT,SINT3,STEFF,THETA,VARJ2) 

100 DFLEX(ISTRE,JSTRE)=DFLEX(ISTRE,JSTRE)-ABETA'DVECT(ISTRE)' 
• DVECT(JSTRE) 

80 CONTINUE 

C'" CALCULATE THE ELEMENT STIFFNESSES 
C 

DO 30 INODE=l,NNODE 
CALL SHATPB (BFLEI ,DUMMY ,BSHEI ,CARTD ,INODE ,SHAPE , 

0, 1, 0) 
DO 30 JNODE=INODE,NNODE 
CALL SHATPB (BFLEJ ,DUMMY ,BSHEJ!CARTD ,JNODE ,SHAPE , 

0, 1, OJ 
30 CALL SUBMP (BFLEI,BFLEJ,DAREA,DFLEX,ESTIF,INODE, . 
50 CONTINUE 

JNODE, 3, 3, 3) 

C 
C'" EVALUATE PART OF STIFFNESS MATRIX 
C ASSOCIATED WITH SHEAR DEFORMATION 
C 

C 

KGASP=O 
NGAUM=NGAUS-l 

C'" ENTER LOOPS FOR AREA INTEGRATION 
C 
C 
C'" SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

C 

CALL GAUSSQ 
DO 51 IGAUS=l,NGAUM 
DO 51 JGAUS=l,NGAUM 
KGASP=KGASP+ 1 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 

(NGAUM,POSGP,WEIGP) --

C'" EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL AREA,ETC 
C 

C 

CALL SFR2 (DERIV ,ETASP ,EXISP,NNODE,SHAPE) 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, 

KGASP,NNODE,SHAPE) 
DAREA=DJACB*WEIGP(IGAUS)'WEIGP(JGAUS) 

Cit. EVALUATE THE B AND DB MATRICES 
C 

CALL MODPB (DFLEX,DUMMY ,DSHER,LPROP, MMATS, PROPS, 
C '0, 0, 1) 

C*" EVALUATE ELEMENT STIFFNESSES 

STIF 65 
STIF 66 
STIF 67 
STIF 68 
STIF 69 
STIF 70 
STIF 71 
STIF 72 
STIF 73 
STIF 74 
STIF 75 
STIF 76 
STIF 77 
STIF 78 
STIF 79 
STIF 80 
STIF 81 
STIF 82 
STIF 83 
STIF 84 
STIF 85 
STIF 86 
STIF 87 
STIF 88 
STIF 89 
STIF 90 
STIF 91 
STIF 92 
STIF 93 
STIF 94 
STIF 95 
STIF 96 
STIF 97 
STIF 98 
STIF 99 
STIF 100 
STIF 101 
STIF 102 
STIF 103 
STIF 104 
STIF 105 
STIF 106 
STIF 107 
STIF 108 
STIF 109 
STIF 110 
STIF 111 
STIF 112 
STIF 113 
STIF 114 
STIF 115 
STIF 116 
STIF 117 
STIF 118 
STIF 119 
STIF 120 
STIF 121 
STIF 122 
STIF 123 
STIF 124 
STIF 125 
STIFl2ti 
STIF 127 
STIF 128 
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C 
DO 31 INODE=l,NNODE 
CALL BHATPB (BFLEI ,DUMMY ,BSHEI,CARTD,INODE,SHAPE, 

0, 0, 1) 
DO 31 JNODE=INODE,NNODE 
CALL BHATPB (BFLEJ,DUMI~,BSHEJ,CARTD,JNODE,SHAPE, 

0, 0, 1) 
31 CALL SUBMP (BSHEI,BSHEJ,DAREA,DSHER,ESTIF,INODE, 

JNODE, 3, 2, 3) 
51 CONTINUE 

C 
C*** CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX 
C 

DO 60 IEVAB=l,NEVAB 
DO 60 JEVAB=IEVAB,NEVAB 

60 ESTIF(JEVAB,IEVAB)=ESTIF(IEVAB,JEVAB) 
c 
C*** STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C COORDINATES FOR EACH ELEMENT ON DISC FILE 
C 
C 

WRITE( 1) ESTIF 
WRITE(3) GPCOD 

70 CONTINUE 
RETURN 
END 

9.5.14 Subroutine STRMP 
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STIF 129 
STIF 130 
STIF 131 
STIF 132 
STIF 133 
STIF 134 
STIF 135 
STIF 136 
STIF 137 
STIF 138 
STIF 139 
STIF 140 
STIF 141 
STIF 142 
STIF 143 
STIF 144 
STIr 145 
STIF 146 
STIF 147 
STIF 148 
STIF 149 
STIF 150 
STIF 151 
STIF 152 
STIF 153 
STIF 154 

This subroutine evaluates the bending moments and shear forces for 
Mindlin plates. 

SUBROUTINE STRMP (CARTD,DFLEX,DGRAD,DSHER,ELDIS,NNODE, STRP 1 
2 
3 
4 

SHAPE,STRES,IFFLE,IFSHE) STRP 
C'.* •• '***I*************************************************************STRP 
C STR? 
C·** EVALUATES STRESS RESULTANTS FOR MINDLIN PLATE STRP 5 

6 
7 

C STRP 
c*·*********************************************************************STRP 

DIMENSION CARTD(2,9),DFLEX(3,3),DGRAD(6),DSHER(2,2), 
• ELDIS(3,9),SHAPE(9),STRES(S) 

c*** ZERO STRESS VECTOR 
CALL VZERO (5,STRES) 

c*·· EVALUATE ROTATIONS AT GAUSS POINT , IF NEEDED 
IF(IFSHE.EQ.O) GOTO 50 
XZROT=O.O 
YZROT=O.O 
DO 30 INODE=l,NNODE 
XZROT=XZROT+SHAPE(INODE) *ELDIS(2, INODE) 

30 YZROT:YZROT+SHA?E(INODE)*ELDIS(3,INODE) 
C-·- EVALUATE BENDING STRESS RESULTANTS 

50 IF(IFFLE.EQ.O) GOTO 60 
EFLXX:-DGRAD(2) 
EFLYY:-DGRAD(6) 
EFLXY:-(DGRAD(3)+DGRAD(5)) 
STRES(1):DFLEX(1,1)*EFLXX+DFLEX(1,2)*EFLYY 
STRES(2):DFLEX(2,1)*EFLXX+DFLEX(2,2)*EFLYY 
STRES(3)=DFLEX(3,3)*EFLXY 

STRP 8 
STRP 9 
STRP 10 
STRP 11 
STRP 12 
STRP 13 
STRP 14 
STRP 15 
STRP 16 
STRP 17 
STRP 18 
STRP 19 
STRP 20 
STRP 21 
STRP 22 
STRP 23 
STRP 24 
STRP 25 
STRP 26 
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c ••• EVALUATE SHEAR STRESS RESULTANTS STRP zr 
STRP 28 
STRP 29 
STRP 30 
STRP 31 
STRP 32 
STRP 33 
STRP 34 

60 IF(IFSHE.EQ.O) RETURN 
ESHXX=DGRAD(1)-XZROT 
ESHYY=DGRAD(4)-YZROT 
STRES(4)=DSHER(1,1)·ESHXX 
STRES(5)=DSHER(2,2)·ESHYY 
RETURN 
END 

9.5.15 Subroutine SUBMP 
This subroutine evaluates [B,]T D [Bj]det Ix Gauss weights and is used in 

the evaluation of the element stiffness matrices. 
SUBROUTINE SUBMP (BlMAT,BJMAT,DAREA,DMATX,ESTIF,INODE, SUBP 1 

. JNODE,NCOLI,NROIJ,NCOLJ) SUBP 2 
c*-*"'-*'.""'-'-'·.'-"'-'_·'·"-----"-'--'-""--**************'***SUBP 3 
C SU~ 4 
c... CARRY OUT MATRIX MULTIPLICATION SUBP 5 
C SUBP 6 
c •••• _---,··_·····_,··_····· __ ·_-*,_· __ ··_····",··_*·******************SUBP 7 

DIMENSION BIMAT(NROIJ,NCOLI) ,BJfMT(NROIJ,NCOLJ) , SUBP 8 
DMATX(NROIJ,NROIJ)IDBMAT(3,3), SUBP 9 
ESTIF(zr,zrJ,SBSTF\3,3) SUBP 10 

Cu. EVALUATE D.BJ SUBP 11 
DO 10 J=1,NCOLJ SUBP 12 
DO 10 I=1,NROIJ SUBP 13 
DBMAT(I,J)=O.O SUBP 14 
DO 10 K=1,NROIJ SUBP 15 

10 DBMAT(I,J)=DBMAT(I,J)+DMATX(I,K)*BJMAT(K,J) SUBP 16 
C· •• EVALUATE BIT*(D.BJ) SUBP 17 

DO 20 J=1,NCOLJ SUBP 18 
DO 20 I=1,NCOLI SUBP 19 
SBSTF(I,J)=O.O SUBP 20 
DO 20 K= 1 , NROIJ SUBP 21 

20 SBSTF(I,J)=SBSTF(I,J)+BIMAT(K,I).DBMAT(K,J) SUBP 22 
C*** ASSEMBLE SBSTF INTO ELEMENT STIFFNESS MATRIX SUBP 23 

IFROW=O SUBP 24 
JFCOL=O SUBP 25 
IFROW=(INODE-1J.3+IFROW SUBP 26 
JFCOL=(JNODE-1J*3+JFCOL SUBP zr 
DO 30 1= 1 ,NCOLI SUBP 28 
IRSUB:IFROW+I SUBP 29 
DO 30 J=1,NCOLJ SUBP 30 
JCSUB=JFCOL+J SUBP 31 

30 ESTIF(IRSUB,JCSUB)=ESTIF(IRSUB,JCSUB)+SBSTF(I,J)*DAREA SUBP 32 
RETURN SUBP 33 
END SUBP 34 

9.5.16 Subroutines VZERO and ZEROMP 
These routines simply set to zero the components of various vectors and 

arrays. 
SUBROUTINE VZERO (NCOMP,V!CTO) ZERO 1 

c········,*, ... " .......... _ ........... , ...... , .... , __ ****"'***********ZERO 2 
C ZERO 3 
c*·· ZEROES VECTOR VECTO ZERO 4 
C UOO 5 
C·········.········· ••••••••• ********** ••••••• **.*.*.***.** •••••••• **.**ZERO 6 

DIMENSION VECTO(NCOMP) ZERO 7 
DO 10 ICOMP= 1 , NCOMP ZERO 8 

10 VECTO(ICOMP)=O.O ZERO 9 
RETURN ZERO 10 
END ZERO 11 
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SUBROUTINE ZEROMP ( EFFST ,ELOAD , lPSTN ,MELEft, MEV AB, I{[OTG, ZER P 1 
MTOTV,MVFlX,NDOFN,NELEM,NEVAB,NGAUS, ZERP 2 
NTOTG,NTOTV,NVFIX,STRSG,TDISP,TFACT, ZERP 3 

• TLOAD, TREAC) ZERP 4 
c***********************************************************************ZERP 5 
C ZERP 6 
C*** ZERO EFFST,ELOAD,EPSTN,STRSG,TDISP,TFACT,TLOAD,TREAC ZERP 7 
C ZERP 8 

C*******************~***********.***************************************ZERP 9 
DIMENSION ELOAD(f!ELEI1,MEVAB) ,STRSG(5,MTOTG) ,TDlSP(MTOTV), ZERP 10 

TLOAD( MELEf! ,MEV AB) ,TREAe( fWFIX, 3) ,EPSTN(l-ITOTG) , ZERP 11 
EFFST (I-!TOTC) ZERP 12 

TFACT=O.O ZERP 13 
DO 30 IELEM=l,NELEM ZERP 14 
DO 30 lEVAB=1,NEVAB ZERP 15 
ELOAD (IELEM, lEV AB) =0.0 ZERP 16 

30 TLOAD(IELEM,IEVAB)=O.o ZERP 17 
DO 40 ITOTV=1, NTOTV ZERP 18 

40 TDISPCITOTV)=O.O ZERP 19 
DO 50 lVFIX=l,NVFIX ZERP 20 
DO 50 IDOFN=1,NDOFN ZERP 21 

50 TREACOVFIX,IDOFN)=O.O ZERP 22 
DO 60 ITOTC= 1 ,NTOTG ZERP 23 
EPSTN (ITOTG) =0.0 ZERP 24 
ITFST(ITOTG) =0.0 ZERP 25 
DO 60 1STR1=1,5 ZERP 26 

60 STRSGCISTR1,ITOTGl=0.0 ZERPp 27
28 RETURN ZER 

END ZERP 29 

9.6 Software for the layered approach 

9.6.1 Overall program structure . 
The overall program structure for the clasto-plastic Mindlin plate bending 

analysis program using the layered approach is given in Fig. 9.5. This program 
is named MINDLAY. 

The program can solve problems of the same size as those solved by 
program MINDLIN. A maximum of26 layers is allowed. 

All new routines are now documented and these include: FEAM, 
DEPMPA, LAYMPA, MDMPA, OUTMPA, RESMPA, STIMPA and 
STRMPA. The outer routines, which have been described earlier, include 
ALGOR, BMATPB, CHECKI, CHECK2, ECHO, FRONT, INCREM, 
INPUT, JACOB2 and NODEXY. 

The files which are used in the program are 5 (cardreader), 6 (lineprinter) 
and 1, 2, 3, 4, 8 (scratch files). 

9.6.2 Subroutine FEAM 
This routine organises the calling of the main routines in sequence. 
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I START I 

DIMMP 
Presets the variables associated with the dynamic 

dimensioning process 

INPUT 
Inputs data defining geometry, boundary conditions 

and material properties 

ZEROMP 
Sets to zero arrays required for accumulation of 

data 

MINDPB 
Inputs additional data required for Mindlin 

plate analysis 

LOADPB 
Reads loading data and evaluate the equivalent 

nodal forces for distributed loading 

INCREM 
Increments the applied load according to 

specified load factors 

ALGOR 
Sets indicator to identify the rype of solution algorithm, 

i.e., initial or tangential stiffness etc. 

A 

Fig. 9.5 Overall program structure of program MINDLA Y. 
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A 

'-
0. 0. Is it 0 0 0 0 necessary to 

No ....J ....i recalculate stiffness r z matrix with present Z 0 LI.J algorithm') 
:2: 1= 
LI.J <C 
e<: e<: 
u I.U 

~ t: Yes 
0 0 
<C <C 
0 C STlFMPA 
....J ....J 

Calculate clement stiffness m~triccs for layered 
,- ,- clasto-plastic Mindlin plate 

FRONT 
Solve the simultaneous equation system by the frontal 

method 

RESMPA 
Evaluate the residual force vector for the layered 

clasto-plastic Mindlin plate 

CONVMP 
Check whether solution has converged using a residual 

force or displacement norm 

OUTMPA 
Prints out the displacements. reactions and stre"es 
and stress resultants for the current load increment 

I END I 

Fig. 9.5 Overall program structure of program MINDLA Y (continued). 
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PROGRAM rEAM(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT, rEAM 1 
.TAPE1,TAPE2,TAPE3,TAPE4,TAPE8,TAPE9) rEAM 2 

c •• *-----*_ .... " .... _ .. __ ...... _-**._._----_._._.,-,-'****"""'**"'*FEAM 3 
C rEAM 4 
C*** ELASTO-PLASTIC ANALYSIS Or LAYERED MINDLIN PLATES USING rEAM 5 
c· .. 4-,8-, 9-NODED OR HETEROSIS ISOPARAMETRIC QUADRILATERALS rEAM 6 
C rEAM 7 
c ••••• ii •• , •••• ,----*---,.,-.---, .... __ ._ .. " .. , ....... "***********'****FEAM 8 

DIMENSION ASDIS(240),COORD(80,2),EffST(225),ELOAD(25,27), rEAM 9 
EPSTN(225) ,ESTIr(27 ,27) , rEAM 10 
EQRHS(10) ,EQUAT(40,10) ,rIXED(240) , rEAM 11 
IffIX(240) ,GLOAD(40) ,GSTIr(860) ,LNODS(25 ,9) ,LOCEL(27) , rEAM 12 
MATNO(25),NACVA(40),NAMEV(10),NCDIS(4),NCRES(4), rEAM 13 
NDEST(27) ,NDrRO(25) ,NOrIX(40),NOUTP(2) ,NPIVO(10), rEAM 14 
POSGP(4),PRESC(40,3),PROPS(10,8),RErOR(240), rEAM 15 
RLOAD(25 ,27) ,STRSG(5,225) ,TOrOR(240) , FEAM 16 
TDISP(240),TLOAD(25,27),TREAC(40,3),VECRV(40), FEAM 17 
WEIGP(4) rEAM 18 

C rEAM 19 
C.** PRESET VARIABLES ASSOCIATED WITH DYNAMIC DIMENSIONS FEAM 20 
C FEAM 21 

CALL DIMMP (MBUrA,MELEM,MEVAB,MFRON ,MMATS , MPOIN , rEAM 22 
MSTIr,MTOTG,MTOTV,MVFIX,NDIME,NDOrN, FEAM 23 
NPROP, NSTRE) FEAM 24 

C rEAM 25 
C.** CALL THE SUBROUTINE WHICH READS MOST OF THE PROBLEM DATA rEAM 26 
C FEAM 27 

CALL INPUT (COORD,IrrIX,LNODS,MATNO,MELEM,MEVAB, FEAM 28 
MFRON,MMATS,MPOIN,MTOTV,MVFIX,NALGO, FEAM 29 
NCRIT,NDFRO,NDIME,NDOrN,NELEM,NEVAB, FEAM 30 
NGAUS,NLAPS,NINCS,NMATS,NNODE,NOFIX, rEAM 31 
NPOIN,NPROP,NSTRE,NSTR1,NSWIT,NTOTG, FEAM 32 
NTOTV\NTYPE,NVfIX , POSGP, PRESC, PROPS, rEAM 33 
WEIGP FEAM 34 

C FEAM 35 
C*** INITIALIZE ARRAYS TO ZERO rEAM 36 
C rEAM 37 

CALL ZEROMP (ErrST,ELOAD,EPSTN,MELEM,MEVAB,MTOTG, rEAM 38 
I{J'OTV, MVFIX ,NDOrN ,NELEM , NEV AB, NGAUS , rEAM 39 
NTOTG,NTOTV,NVfIX,STRSG,TDISP,TrACT, rEAM 40 
TLOAD,TREAC) rEAM 41 

C rEAM 42 
C ... • rEAM 43 
C rEAM 44 

CALL MINDPB (IfDIS.IrrIX,IrRES,LNODS,MELEM,MTOTV, rEAM 45 
NCDIS,NCRES,NELEM,NTYPE) rEAM 46 

C rEAM 47 
C rEAM 48 
C rEAM 49 
c*** COMPUTE LOAD AFTER READING RELEVANT EXTRA DATA rEAM 50 
C rEAM 51 

CALL LOADPB (COORD ,LNODS,MATNO, MELEM,MMATS,MPOIN, rEAM 52 
NELEM,NEVAB,NGAUS,NNODE,NPOIN,PROPS, rEAM 53 
RLOAD) rEAM 54 

C FEA~l 55 
c*** LOOP OVER EACH INCREMENT rEAM 56 
C rEAM 57 

DO 70 IINCS=1,NINCS rEAM 58 
C rEAM 59 
c*** READ DATA rOR CURRENT INCREMENT rEAM 60 
C rEAM 61 

CALL INCREM (ELOAD,rIXED,IINCS,MELEM,MEVAB,MITER, rEAM 62 
MTOTV,MVFIX,NDOrN,NELEM,NEVAB,NOUTP, rEAM 63 
NOrIX , NTOTV, NVFIX , PRESC;RLOAD,Tf ACT, rEAM' 64 
TLOAD,TOLER) rEAM 65 
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C 
C" .. LOOP OVER EACH ITERATION 
C 

DO 90 IITER=l,MITER 
C 
C"*" CALL ROUTINE WHICH SELECTS SOLUTION 
C 

ALGORITHM VARIABLE KRESL 

FEAM 66 
FEAM 67 
FEAM 68 
FEAM 69 
FEAM 70 
FEAM 71 
fEAM 72 

CALL ALGOR (fJXED,IINCS,IITER ,KRESL,MTOTV, NALGO, fEAM 73 
NTOTV) fEAM 74 

C fEAM 75 
C**" CHECK WHETHER A NEW EVALUATION Of THE STIffNESS MATRICES IS NEEDED fEAM 76 
C fEAM n 

IF(KRESL.EQ.1) FEAM 78 
• CALl- STIMPA (COORD,EPSTN,IINCS,LNOD~,MATNo,MELEr'l, FEAM 79 

fIEVAB,MMATS,MPOIN ,MTOTG, NCRIT, NELH1, FEAM 80 

C 
C"** SOLVE EQUATIONS 
C 

NEVAB,NGAUS,NNODE,NLAPS,PROPS,STRSG) FEAM 81 
FEAM 82 
FEAfl 83 

CALL 

C 

FRONT (ASDIS,ELOAD,EQRHS,EQUAT,ESTIF,FIXED, 
IFFIX,IINCS,IITER,GLOAD,GSTIF,KRESL, 
LNODS, LOCEL, MBUFA, MELEI~ ,MEVAB, I~FRON , 
MSTIF,MTOTV,MVFIX,NACVA,NAMEV,NDEST, 
NDOFN,NELEM,NEVAB,NNODE,NOFIX,NPIVO, 
NPOIN,NTOTV,TDISP,TLOAD,TREAC,VECRV) 

e"** CALCULATE RESIDUAL FORCES 
e 

CALL 

C 

RESMPA (ASDIS,COORD,EFFST,ELOAD,EPSTN,LNODS, 
MATNO, MELEM, fIMATS, MPOIN, MTOTG, MTOTV, 
NCRIT ,NELEM ,NEV AB, NGAUS , NNODE , NLAPS, 
PROPS,STRSG) 

C"I* CHECK FOR CONVERGENCE 
C 

CALL 

C 

CONVMP (ASDIS,ELOAD,IITER,IFDIS,IFRES,LNODS, 
MELEM,MEVAB,MTOTV,NCHEK,NCDIS,NCRES, 
NDOFN,NELEM,NEVAB,NNODE,NPOIN,NTOTV, 
REfOR,TOFOR,TDISP,TLOAD,TOLER) 

CI*. OUTPUT RESULTS IF REQUIRED 

C 

C 

IF(JITER.EQ.l.AND.NOUTP(l).GT.O) 
. CALL OUTI~PA (EPSTN, IITER, MTOTG, MTOTV, MVfIX, NELEM, 

NGAUS,NLAPS,NOFIX,NOUTP,NPOIN,NVFIX, 
STRSG,TDISP,TREAC) 

C*** IF SOLUTION HAS CONVERGED STOP ITERATII~G AND OUTPUT RESULTS 
C 

IF(NCHEK.EQ.O) GO TO 100 
90 CONTINUE 

C 
cnl 
e 

IF(NALGO.EQ.2) GO TO 
STOP 

100 CALL 

70 CONTINUE 
; 20 CONTINUE 

10 CONTINUE 
- STOP 

END 

OUTMPA 

100 

(EPSTN,IITER,KTOTG,KTOTV,MVFIX,NELEM, 
NGAUS, NLAPS, NOFIX, NOUTP, NPOl:;, NVFIX, 
STRSG,TDISP,TREAC) 

FEAM 84 
FEAM 85 
FEAM 86 
FEAM 87 
FEAM 88 
fEAr-I 89 
FEAM 90 
FEAM 91 
fEAM 92 
FEAM 93 
FEAM 94 
fEAM 95 
FEAM 96 
FEAfl 97 
FEAfl 98 
FEAM 99 
FEAM 100 
FEAr~ 101 
FEAM 102 
FEAM 103 
FEAM 104 
FEAfl 105 
FEAM 106 
FEAM 107 
fEAfl 108 
FEAM 109 
FEAM 110 
FEAM 111 
FEAfl 112 
FEAM 113 
fEAM 114 
FEAM 115 
fEAM 116 
FEAM 117 
FEAM 118 
FEAM 119 
FEAM 120 
FEAM 121 
FEAM 122 
fEAM 123 
FEAM 124 
FEAM 125 
FEAM 126 
FEAM 127 
FEAM 128 
FEAM 129 
FEAM 130 
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9.6.3 Subroutine CHECK! (revised) 
In program MINDLA Y we remove card CEKI 25 from subroutine 

CHECK} because NLAPS (the number of layers) replaces NSTRE in sub
routine INPUT. The variable NSTRE is set in subroutine DIMMP (see 
Section 9.5.4). 

9.6.4 Subroutine DEPMP A 
This subroutine sets up the layered discretisation. 

SUBROUTINE DEPMPA (DEPTH ,LPROP ,MMATS, NLAYR,PROPS) DEPT 
C •••••••••••••••••••••••••••••• * •••••• * •• *.* ••••••• * •• ·****'***.********DEPT 

1 
2 
3 
4 
5 

C Dm 
Cit. SET UP LAYRED DISCRETIZATION DEPT 
C DEPT 
c················****·***···********************************************DEPT 6 

C 
C 

DIMENSION PROPS(MMATS,8),DEPTH(26) DEPT 7 

NLAYl =NLAYR+ 1 
ALAYR=NLAYR 
THICK=PROPS(LPROP,3) 
CONS1=THICK/ALAYR 
CONS2=-THICK/2.0 
KOUNT=O 
DO 10 lLAYR=l,NLAYl 
DEPTH(ILAYR)=CONS2+CONS1·KOUNT 

10 KOUNT=KOUNT+ 1 
RETURN 
END 

DEPT 8 
DEPT 9 
DEPT 10 
DEPT 11 
DEPT 12 
DEPT 13 
DEPT 14 
DEPT 15 
DEPT 16 
DEPT 17 
DEPT 18 
DEPT 19 
DEPT 20 

9.6.5 Subroutine LAYMPA 
~ A 

This subroutine evaluates Df and D. using the mid-ordinate rule. 

SUBROUTINE LAYMPA (DEPTH,DFLEF,DSHE~,EPSTN,IINCS,KGAUS, LAYR 
, LPROP ,MMATS, MTOTG, NCRIT ,NLAYR, PROPS, LAYR 

STRSG,JFFLE) LAYR 
C····_*"'** ••••• *'."**'**""***'****'****'*********"'**'************LAYR 

1 
2 
3 
4 

C LAYR 5 
6 
7 
8 

c··· CALCULATES THE D-MATRIX INTEGRATED OVER LAYR 
C'" THE DEPTH LAYR 
C LAYR 
c***·*···***************************************************************LAYR 9 

C 
C 

C 
Cu* 
C 

DIMENSION AVECT(3),DEPTH(26),DEVIA(4),DFLEF(3,3), LAYR 10 
DPLAN(3,3),DVECT(3), LAYR 11 
DSHER(2,2),DSHES(2,2),EPSTN(MTOTG),PROPS(MMATS,8), LAYR 12 
SGTOT(5) ,STRSG(5,MTOTG) LAYR 13 

IF(JFFLE.EQ.O) GO TO 100 
HARDS=PROPS(LPROP,7) 

ZERO D MATRIX FOR FLEXURE 

DO 20 ISTRE=1,3 
DO 20 JSTRE= 1 ,3 

LAYR 14 

20 DFLEF(ISTRE,JSTRE)=O.O 

LAYR 15 
LAYR 16 
LAYR 17 
LAYR 18 
LAYR 19 
LAYR 20 
LAYR 21 
LAYR 22 
LAYR 23 
LAYR 24 
LAYR 25 
LAYR 26 

C 
C'·· LOOP AROUND LAYERS 
C 
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DO 30 ILAYR=1,NLAYR 
KGAUS=KGAUS+1 
JLAYR=IUYR+ 1 

C*** EVALUATE Z-CooRDINATES FOR CURRENT LAYER 
C 

C 

DEPT1=DEPTH(IUYR) 
DEPT2=DEPTH(JLAYR) 
CONS3=(DEPT2+DEPT1)*(DEPT2**2-DEPT1**2)/4.0 

C*** EVALUATE ELASTO-PLASTIC D MATRIX FOR CURRENT LAYER 
C 

C 

CALL MDMPA(DPLAN,DSHER,LPROP,MMATS,PROPS,1,O) 
IF(IINCS.EQ.l)GO TO 40 
IF(EPSTN(KGAUS).EQ.O.O)GO TO 40 
DO 50 ISTRE=1,5 

50 SGTOT(ISTRE)=STRSG(ISTRE,KGAUS) 
CALL INVMP(DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA,VARJ2,YIELD) 
CALL FLOWMP(ABETA,AVECT,DEVIA,DPLAN,DVECT,HARDS,NCRIT,SINT3, 

, STEFF,THETA,VARJ2) 
DO 60 ISTRE=l,3 
DO 60 JSTRE=l,3 

60 DPUN(ISTRE,JSTREl=DPLAN(ISTRE,JSTRE)-ABETA*DVECT(ISTRE)* 
. DVECT<JSTRE) 

40 CONTINUE 

C*** SUM D MATRIX OVER ELEMENT DEPTH 
C 

C 

DO 70 ISTRE= 1 ,3 
DO 70 JSTRE=l,3 

70 DFLEF(ISTRE,JSTRE)=DFLEF(ISTRE,JSTREl+CONS3*DPUN(ISTRE,JSTRE) 
30 CONTINUE 

GO TO 200 

C*** ZERO D MATRIX FOR SHEAR 
C 

100 DO 80 ISTRE=l,2 
DO 80 JSTRE= 1 ,2 

80 DSHES(ISTRE,JSTRE)=O.O 
C 
C*** EVALUATE ELASTIC D MATRIX 
C 

C 
CALL MDMPA(DPUN,DSHER,LPROP,MMATS,PROPS,O,l) 

C*** LOOP AROUND LAYERS 
C 

C 

DO 90 IUYR=1,NLAYR 
JLAYR=ILAYR+1 

C*** EVALUATE Z-COORDINATES FOR CURRENT LAYER 
C 

c 

DEPT1=DEPTH(IUYR) 
DEPT2=DEPTH(JLAYR) 
CONS4=DEPT2_DEPT1 

C*** SUM D MATRIX OVER ELEMENT DEPTH 
C 

DO 110 ISTRE=1,2 
,DO 110 JSTRE=l,2 

110 DSHES(ISTRE,JSTRE)=DSHES(ISTRE,JSTRE)+CONS4*DSHER(ISTRE,JSTRE) 
90 CONTINUE 

200 CONTINUE 
RETURN 
END 
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LAYR 27 
LAYR 28 
LAYR 29 
UYR 30 
UYR 31 
UYR 32 
UYR 33 
LAYR 34 
UYR 35 
LAYR 36 
UYR 37 
LAYR 38 
UYR 39 
LAYR 40 
LAYR 41 
UYR 42 
UYR 43 
LAYR 44 
LAYR 45 
LAYR 46 
LAYR 47 
LAYR 48 
LAYR 49 
LAYR 50 
UYR 51 
UYR 52 
UYR 53 
LAYR 54 
LAYR 55 
LAYR 56 
UYR 57 
LAYR 58 
LAYR 59 
LAYR 60 
LAYR 61 
LAYR 62 
LAYR 63 
LAYR 64 
LAYR 65 
LAYR 66 
LAYR 67 
UYR 68 
LAYR 69 
UYR 70 
LAYR 71 
LAYR 72 
LAYR 73 
LAYR 74 
LAYR 75 
UYR 76 
LAYR 77 
LAYR 78 
LAYR 79 
LAYR 80 
LAYR 81 
UYR 82 
LAYR 83 
LAYR 84 
LAYR 85 
UYR 86 
LAYR 87 
UYR 88 
LAYR 89 
LAYR 90 
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LA YR IO If JFFLE is zero D/ is not evaluated. If it is one Da' is not 
evaluated. 

LAYR 15-17 Initializes D/. 
LAYR 21 Starts the summation loop to form DFLEF, i.e. 

n 

D, = )' !(zi+l+z;)(Zi+l2-Zt2)D/ . 
.:.-..( 

t~l 

LA YR 22 Increases the counter for Gauss points in each layer by 1. It is 
needed to use the effective plastic strain (EPSTN) stresses 
(STRSG) calculated in RESMPA. 

LAYR 27-29 Forms !(Zi+l +Zt)(Zt+l2_Zt2). 

LA YR 33-45 Calls MDMPA to get DPLAN and Dep' IS formed using 
INVMP and FLOWMP. 

LA YR 49-51 DFLEF is formed. 
LA YR 57-59 DSHES is initialised. 
LAYR 63 Calls MDMPA to form DSHER. 
LAYR 67-74 Starts thc summation loop and the integrating constant for 

DSHES is cvaluated, ;.c. 

LA YR 78-81 DSHES is formed. 

9.6.6 Subroutine MDMP A 
This subroutine evaluates D/ and Ds'. 

SUBROUTINE MDMPA (DPLAN,DSHER,LPROP,MMATS,PROPS, MODL 1 
. IFPLA, IFSHE) MODL 2 

c***********************************************************************MODL 3 
C MODL 4 
C.·* CALCULATES MATRIX OF ELASTIC RIGIDITIES FOR EACH LAYER MODL 5 
c**' OF MINDLIN PLATE MODL 6 
C OL 7 
c***.********************.*.********************************* ••• ********MODL B 

DIMENSION DPLAN(3,3l,DSHER(2,2l, MODL 9 
PROPS(~1MATS,8) MODL 10 

YOUNG=PROPS(LPROP,I) MODL 11 
POISS=PROPS(LPROP,2) MODL 12 
THICK=PROPS(LPROP,3l MODL 13 

C**, FORM DPLAN MODL 14 
IF(IFPLA.EQ.Ol GO TO 10 MODL 15 
00 1 IROWS=I, 3 MODL 16 
00 1 JCOLS= 1,3 MODL 17 

1 DPLAN(IROWS,JCOLSJ=O.O MODL 18 
CONST=YOUNG/(1.0-POISS*POISS) MODL 19 
DPLAN(I,I)=CONST MODL 20 
DPLAN(2,2):CONST MODL 21 
DPLAN(I,2)=CONST*POISS MODL .22 
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DPLAN(2,1)=CONST*POISS 
DPLAN(3,3)=CONST*(1.0-POISS)/2.0 

C*" FORM DSHER 
10 IF(IFSHE.EQ.O) RETURN 

DO 3 IROWS=1,2 
DO 3 JCOLS=1,2 

3 DSHER(IROWS,JCOLS)=O.O 
DSHER(1,1)=YOUNG/(2.4+2.4*POISS) 
DSHER(2,2)=YOUNG/(2.4+2.4*POISS) 
RETURN 
END 

9.6.7 Subroutine OUTMPA 
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MODL 23 
MODL 24 
MODL 25 
MODL 26 
MODL 27 
MODL 28 
MODL 29 
MODL 30 
MODL 31 
MODL 32 
110DL 33 

This subroutine outputs nodal displacements and reactions and also the 
Gauss point stress resultants and the stresses within each layer. It is very 
similar to subroutine OUTMP which was described in Section 9.5.7. State
ments OUTP 1-3 are replaced by OUTL 1-3 and statements OUTP 56-66 
are replaced by statements OUTL 56-67. 

SUBROUTINE OUTMPA (EPSTN,IITER,MTOTG,MTOTV,MVFIX,NELEM, OUTL 1 
2 
3 
4 
5 
6 
7 
8 

NGAUS,NLAPS, NOFIX,NOUTP,NPOIN,NVFIX, OUTL 
. STRSG,TDISP,TREAC) OUTL 

CI****II****************************************************************OUTL 
C OUTL 
c... OUTPUT DISPLACEMENTS,REACTIONS AND GAUSS POINT STRESSES OUTL 
c*·. IN EACH LAYER FOR EP MINDLIN PLATE ANALYSIS OUTL 
C OUTL 
C***********************************************************************OUTL 9 

C 

DIMENSION EPSTN(MTOTG),GPCOD(2,9),NOFIX(MVFIX),NOUTP(2), 
STRSG(5,MTOTG),TDISP(MTOTV),TREAC(MVFIX,3) 

KOUTP=NOUTP( 1 ) 
IF(IITER.GT.1) KOUTP=NOUTP(2) 

c··· OUTPUT DISPLACEMENTS 
e 

IF(KOUTP.LT.1) GO TO 10 
WRITE(6,900) 

900 FORMAT(lHO,5X,13HDISPLACEMENTS) 
WRITE(6,950) 

950 FORMAT(lHO,6X,4HNODE,6X,5HDISP.,8X,7HXZ-ROT.,7X,7HYZ-ROT.) 
DO 20 IPOIN=l,NPOIN 
NGASH=IPOIN*3 
NGISH=NGASH-3+ 1 

20 WRITE(6,910) IPOIN,(TDISP(IGASH),IGASH=NGISH,NGASH) 
910 FORMAT(I10,3E14.6) 

10 CONTINUE e 
e*·· OUTPUT REACTIONS 
e 

e 

IF(KOUTP.LT.2) GO TO 30 
WRITE(6,920) 

920 FORMAT(lHO,5X,9HREACTIONS) 
WRITE(6,960) 

960 FORMAT( 1 HO, 6X, 4HNODE, 6X, 5HFORCE, 3X, 9HXZ-110MENT, 5X, 9HYZ-MO~IENT) 
. DO 40 IVFIX=l,NVFIX 

40 WRITE(6, 91 0) NOFIX (IVFIX) , (TREAC (lVFIX, lOOFN) ,IDOFN= 1 ,3) 
30 CONTINUE 

c··· OUTPUT STRESSES 

OUTL 10 
OUTL 11 
OUTL 12 
OUTL 13 
OUTL 14 
OUTL 15 
OUTL 16 
OUTL 17 
OUTL 18 
OUTL 19 
OUTL 20 
OUTL 21 
OUTL 22 
OUTL 23 
OUTL 24 
OUTL 25 

26 
27 
28 

OUTL 
OUTL 
OUTL 
OUTL 29 
OUTL 30 
OUTL 31 
OUTL 32 
OUTL 33 
OUTL 34 
OUTL 35 
CUTL 36 
OUTL 37 
OUTL 38 
OUTl 39 
OUTl 40 
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C 
IF(KOUTP.LT.3) GO TO 50 
REWIND 3 
WRITE(6,970) 

970 FORMAT(1HO,5X,8HSTRESSES) 
WRITE(6,980) 

980 FORMAT(1HO,4HG.P.,2X,8HX-COORD.,2X,8HY-COORD.,3X,8HX-MOMENT,4X, 
.8HY-HOMENT,3X,9HXY-MOMENT,3X, 
• 13HEFF.PL.STRAIN) 
KGAUS=O 
DO 60 IELEM= 1 , NELEM 
READ <3 ) GPCOD 
KELGS=O 
WRITE(6,930)IELEM 

930 FORMAT(1HO,5X,13HELEMENT NO. =,15) 
DO 60 IGAUS=1,NGAUS 
DO 60 JGAUS=1,NGAUS 
KELGS=KELGS+ 1 
00 60 ILAYR= 1 , NLAPS 
KGAUS=KGAUS+ 1 
WRITE(6,940)KELGS,(GPCOD(IDIME,KELGS),IDIME=1,2), 

• (STRSG(ISTRE,KGAUS),ISTRE=1 ,3) ,EPSTN(KGAUS) 
940 FORMAT(I5,2F10.4,6E12.5) 
60 CONTINUE 
50 CONTINUE 

RETURN 
END 
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9.6.8 Subroutine RESMP A 
This routine evaluates the residual forces for the layered Mindlin plate. 

It is very similar to RESMP described in Section 9.5.10. 

SUBROUTINE RESMPA (ASDIS,COORD,EFFST,ELOAD,EPSTN,LNODS, RESL 1 
2 
3 
4 

MATNO, HELEM ,MMATS,MPOIN, MTOTG, MTOTV, RESL 
NCRIT,NELEM!NEVAB,NGAUS,NNODE,NLAPS, RESL 
PROPS,STRSG) RESL 

C·········.·· ••••••••••••••••••••••• *******.* ••• **** •• ****.** •••• *.* •••• RESL 5 
6 
7 
8 
9 

C RESL 
C·*· EVALUATES EQUIVALENT NODAL FORCES FOR THE STRESSES RESL 
C··· IN LAYERED MINDLIN PLATES DURING EP ANALYSIS RESL 
C RESL 
c·····*****.***** •• ** ••• ** ••••••• ***.********** •• ************ •••• ***** •• RESL 10 

DIMENSION ASDIS(MTOTV),AVECT(5),CARTD(2,9), 
COORD(MPOIN,2),DERIV(2,9),DESIG(5),DEVIA(4), 
DEPTH(26),DVECT(5), 

NTIME=1 

EFFST(MTOTG),ELCOD(2,9), 
ELDIS(3,9),ELOAD(HELEM,27) ,EPSTN(MTOTG) ,GPCOD(2,9) , 
LNODS(MELEM,9),MATNO(MELEM),POSGP(~, 
PROPS(MMATS,8),SGTOT(5),SHAPE(9),stIMA(5), 
STRES(5),STRSG(5,MTOTG),TOSPB(5),WEIGP(4), 
DPLAN(3,3),DSHER(2,2),BFLEI(3,3),BSHEI(2,3), 
DUMMY(3,3),FORCE(3),DGRAD(6) 

00 10 IELEM=1,NELEM 
DO 10 IEVAB=1,NEVAB 

10 ELOAD(IELEM,IEVAB)=O.O 
KGAUS=O 
LGAUS=O 
DO 20 IELEM= 1 ,NELEM 
LPROP=MATNO(IELEM) 

1 1 
12 
13 
14 
15 
16 
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C 
C*** COMPUTE COORDINATE AND INCREMENTAL DISPLACEMENTS OF THE 
C ELEMENT NODAL POINTS 
C 

DO 190 INODE =l,NNODE 
LNODE=IABS(LNODS(IELEM,INODE)) 
NPOSN=(LNODE-l)*3 
DO 30 mOFN=1,3 
NPOSN=NPOSN+l 

30 ELDIS(IDOFN,INODE)=ASDIS(NPOSN) 
DO 180 IDIME=1,2 

180 ELCOD(IDIME,INODE)=CooRD(LNODE,IDIME) 
190 CONTINUE 

KGASP=O 
CALL DEPMPA(DEPTH,LPROP,MMATS,NLAPS,PROPS) 
CALL MDMPA (DPLAN,DSHER,LPROP,MMATS,PROPS, 

1 , 1) 
CALL GAUSSQ (NGAUS, POSGP, WEIGP) 
DO 40 IGAUS=l,NGAUS 
DO 40 JGAUS=l,NGAUS 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 
CALL SFR2 
KGASP=KGASP+ 1 

(DERIV,ETASP,EXISP,NNODE,SHAPE) 

CALL JACOB2 (CARTD, DERIV, DJ ACB, ELCOD, GPCOD, IELEI1, 
KGASP,NNODE,SHAPE) 

DAREA=DJACS*WEIGP(IGAUS)*WEIGP(JGAUS) 
DO 400 ISTRE=1,3 

400 TOSPB(ISTRE)=O.O 
DO 410 lLAYR=l,NLAPS 
BRING=1.0 
KGAUS=KGAUS+l 
JLAYR=ILAYR+l 
DEPT1=DEPTH(ILAYR) 
DEPT2=DEPTH(JLAYR) 
CONST=0.5*(DEPT2+DEPT1) 
CALL GRADMP (CARTD,DGRAD,ELDIS, 3,NNODE) 
CALL STRMPA (CARTD,CONST,DPLAN,DGRAD,DSHER,ELDIS, 

NNODE , SHAPE, STRES, 1 , 0) 
PREYS=PROPS(LPROP,6)+EPSTN(KGAUS)*PROPS(LPROP,7) 
DO 150 ISTRE=1,3 
DESIG(ISTRE)=STRES(ISTRE) 

150 SIGMA(ISTRE)=STRSG(ISTRE,KGAUS)+STRES(ISTRE) 
CALL INVMP (DEVIA,NCRIT,SINT3,STEFF,SIGMA,THETA, 

VARJ2,YIELD) 
ESPRE=EFFST(KGAUS)-PREYS 
IF(ESPRE.GE.O.O) GO TO 50 
ESCUR=YIELD-PREYS 
IF(ESCUR.LE.O.O) GO TO 60 
RFACT=ESCUR/(YIELD-EFFST(KGAUS)) 
GO TO 70 

50 ESCUR=YIELD-EFFST(KGAUS) 
IF(ESCUR.LE.O.O) GO TO 60 
RFACT=1.0 

70 MSTEP=ESCUR*8.0/PROPS(LPROP,6)+1.0 
ASTEP=MSTEP 
REDUC=1.0-RFACT 
DO 80 ISTRE=1,3 
SGTOT(ISTRE)=STRSG(ISTRE,KGAUS)+REDUC*STRES(ISTRE) 

80 STRES(ISTRE)=RFACT*STRES(ISTRE)/ASTEP 
DO 90 ISTEP=l,MSTEP 
CALL INVMP 

HARDS=PROPS(LPROP,7) 

(DEVIA,NCRIT,SINT3,STEFF,SGTOT,THETA, 
VARJ2,YIELD) 

CALL FLOWMP (ABETA,AVECT,DEVIA,DPLAN,DVECT,HARDS, 

365 
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NCRIT,SINT3,STEff,THETA,VARJ2) 
AGASH:O.O 
DO 100 ISTRE:l,3 

100 AGASH:AGASH+AVECT(ISTRE)*STRES(ISTRE) 
DLAMD:AGASH*ABETA 
If(DLAMD.LT.O.O) DLAMD:O.O 
BGASH:O.O 
DO 110 ISTRE:l,3 
BGASH:BGASH+AVECT(ISTRE)*SGTOT(ISTRE) 

110 SGTOT(ISTRE):SGTOT(ISTRE)+STRES(ISTRE)-DLAMD*DVECT(ISTRE) 
90 EPSTN(KGAUS):EPSTN(KGAUS)+DLAMD*BGASH/YIELD 

DO 120 ISTRE:l,3 
120 DESIG(ISTRE):SGTOT(ISTRE)-STRSG(ISTRE,KGAUS) 

CALL INVMP (DEVIA,NCRIT,SINT3,STEff,SGTOT,THETA, 
VARJ2,YlELD) 

CURYS:PROPS(LPROP
I
6)+EPSTN(KGAUS)*PROPS(LPROP,7) 

If(YIELD.GT.CURYS BRING:CURYS/YIELD 
60 DO 130 ISTRE:l,3 

SGTOT(ISTRE):BRING*(STRSG(ISTRE,KGAUS)+DESIG(ISTRE» 
130 STRSG(ISTRE,KGAUS):SGTOT(ISTRE) 

EffST(KGAUS):BRING*YIELD 
CONSA:(DEPT2**2-DEPT1**2)12.0 
DO 440 ISTRE:l,3 

440 TOSPB(ISTRE):TOSPB(ISTRE)+SGTOT(ISTRE)*CONSA 
410 CONTINUE 

DO 430 ISTRE:l,3 
430 SGTOT(ISTRE):TOSPB(ISTRE) 

C 
C*** CALCULATE THE EQUIVALENT NODAL fORCES AND ASSOCIATE WITH THE 
C ELEMENT NODES 

DO 140 INODE:l,NNODE 
C**" ZERO fORCE VECTOR 

C 

CALL VZERO (3,fORCE) 
CALL BMATPB (BfLEI,DUMMY ,BSHEI l CARTD ,INODE ,SHAPE , 

0, 1, 0) 
fORCE(2):(BfLEI(1,2)*SGTOT(1)+BfLEI(3,2)*SGTOT(3»)*DAREA 

+fORCE(2) 
fORCE(3):(BfLEI(2,3)*SGTOT(2)+BfLEI(3,3)*SGTOT(3»*DAREA 

+fORCE(3) 
IPOSN:(INODE-l)*3+1 
DO 135 IDOfN:2,3 
IPOSN:IPOSN+l 

135 ELOAD(IELEM,IPOSN):ELOAD(IELEM,IPOSN)+fORCE(IDOfN) 
140 CONTINUE 
40 CONTINUE 

C*** CALCULATE fORCES ASSOCIATED WITH SHEAR DEfORMATION 
C 

C 

NGAUM:NGAUS-l 
CALL GAUSSQ (NGAUH,POSGP,WEIGP) 

C*** ENTER LOOPS fOR AREA NUMERICAL INTEGRATION 
C 

KGASP:O 
DO 300 IGAUS:l,NGAUM 
DO 300 JGAUS:l,NGAUM 
EXISP:POSGP(IGAUS) 
ETASP:POSGP(JGAUS) 
CALL SfR2 
KGASP:KGASP+l 

(DERIV,ETASP,EXISP,NNODE,SHAPE) 

CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, 
KGASP,NNODE,SHAPE) 

DAREA:DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
DO 610 ISTRE:4,5 

610 TOSPB(ISTRE):O.O 
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C 
C*** LOOP AROUND LAYRS 
C 
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DO 600 ILAYR=l,NLAPS 
LGAUS=LGAUS+ 1 
JLAYR=ILAYR+ 1 
DEPT1=DEPTH(ILAYR) 
DEPT2=DEPTH(JLAYR) 
CONST=1.0 
CALL GRADMP 
CALL STRMPA 

(CARTD,DGRAD,ELDIS, 3,NNODE) 
(CARTD,CONST,DPLAN,DGRAD,DSHER,ELDIS, 

NNODE, SHAPE, STRES, 0, 1 ) 
DO 310 ISTRE=4,5 
SGTOT(ISTRE)=STRSG(ISTRE,LGAUS)+STRES(ISTRE' 

310 STRSG(ISTRE,LGAUS)=SGTOT(ISTRE) 
CONSB=DEPT2-DEPT1 
DO 620 ISTRE=4,S 

620 TOSPB(ISTRE)=TOSPB(ISTRE)+SGTOT(ISTRE)*CONSB 
600 CONTINUE 

DO 605 ISTRE=4,5 
60S SGTOT(ISTRE)=TOSPB(ISTRE) 

C 
C**" CALCULATE THE EQUIVALENT NODAL FORCES 
C 

C**" 
DO 320 INODE=l,NNODE 

ZERO FORCE VECTOR 
CALL VZERO(3,FORCE) 
CALL BMATPB (BFLEI ,DUMMY ,BSHEI{CARTD,INODE,SHAPE, 

0, 0, 1 ) 
FORCE(1)=(BSHEI(1,1)*SGTOT(4)+BSHEI(2, l)*SGTOT(S))*DAREA 

+FORCE(l) 
FORCE(2)=(BSHEI(1,2)*SGTOT(4))*DAREA+FORCE(2) 
FORCE(3)=(BSHEI(2,3)*SGTOT(S))*DAREA+FORCE(3) 
IPOSN=(INODE-1)*3 
DO 31S IDOFN=1,3 
IPOSN=IPOSN+l 

315 ELOAD(IELEI~, IPOSN) =ELOAD( IELEM, IPOSN) +FORCE (IDOFN) 
320 CONTINUE 
300 CONTINUE 
20 CONTINUE 

RETURN 
END 

9.6.9 Subroutine STIFMP A 
This routine evaluates the stiffness matrices for layered elasto-plastic 

Mindlin plate elements. 

SUBROUTINE STIMPA (COORD ,EPSTN, IINCS,LNODS, MATNO, MELEM, STFL 
MEVAB,MMATS,MPOIN,MTOTG,NCRIT,NELEM, STFL 

. NEVAB,NGAUS,NNODE,NLAPS,PROPS,STRSG) STFL 
C***********************************************************************STFL 
C 
c*** EVALUATE STIFFNESS MATRICES FOR LAYREED ELASTO-PLASTIC 
c*** MINDLIN PLATE ELEflENTS 
C 

STFL 
STFL 
STFL 
STFL 

1 
2 
3 
4 
5 
6 
7 
8 

c***********************************************************************STFL 9 
DIMENSION CARTD(2,9) ,COORD(~IPOIN,2), STFL 10 

DERIV(2,9),DEPTH(26),ELCOD(2,9), STFL 11 
EPSTN (MTOTG) ,ESTIF ( Z7 , Z7 ) ,GPeOD ( 2, 9) , LNODS (i.IELEI'i, 9 ) , STFL 
MATNO (r~ELE~1), POSGP( 4) , PROPS(M~IATS, 8) , SHAPE (9) , STFL 
STRSG(S,IITOTG) ,IVEIGP(4), STFL 
DFLEX(3,3) ,DSHER(2,2) ,BFLEI(3,3) ,BFLEJ(3,3), STFL 

12 
13 
14 
15 
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C 

REWIND 1 
REWIND 3 
KGAUS=O 

BSHEI(2,3l,BSHEJ(2,3l,DUMMY(3,3l 

c... LOOP OVER EACH ELEMENT 
C 

C 

DO 70 IELEM= 1, NELEM 
LPROP=MATNO(IELEM) 

C... EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

DO 10 INODE=',NNODE 
LNODE=LNODS(IELEM,INODE) 
LNODE=IABS(LNODE) 
DO 10 IDlME=',2 

'0 ELCOD(IDlME,INODE)=COORD(LNODE,IDIME) 
C 
C*** INITIALIZE THE ELEMENT STIFFNESS MATRIX 
C 

C 

DO 20 lEV AB=" NEV AB 
DO 20 JEVAB=',NEVAB 

20 ESTIF(IEVAB,JEVAB)=O.O 
CALL DEPMPA(DEPTH,LPROP,MMATS,NLAPS,PROPS) 

C... EVALUATE PART OF STIFFNESS MATRIX 
C ASSOCIATED WITH BENDING DEFORMATION 
C 

KGASP=O 
C 
C**. ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 
C 
C.** SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

C 

CALL GAUSSQ 

DO 50 IGAUS=',NGAUS 
DO 50 JGAUS=',NGAUS 
KGASP=KGASP+' 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 

(NGAUS,POSGP,WEIGP) 

C·*· EVALUATE THE SHAPE FUNCTIONS,ELEMENTAL AREA,ETC 
C 

C 

CALL SFR2 (DERIV, ETASP, EXISP ,NNODE, SHAPE) 
CALL JACOB2 (CARTD,DERIV,DJACBIELCOD,GPCOD,IELEM, 

KGASP,NNODE,SHAPE 
DAREA=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 

C*·* EVALUATE THE B AND DB MATRICES 
C 

C 

CALL LAYMPA(DEPTH,DFLEX,DSHER,EPSTN,IINCS,KGAUS,LPROP, 
MMATS,MTOTG,NCRIT,NLAPS,PROPS,STRSG,1) 

C*·* CALCULATE THE ELEMENT STIFFNESSES 
C 

DO 30 INODE=1,NNODE 
CALL BMATPB (BFLEI ,DUMMY ,BSHEI,CARTD,INODE,SHAPE, 

0, 1, 0) 
DO 30 JNODE=INODE,NNODE 
CALL BMATPB (BFLEJ,DUMMY,BSHEJICARTD,JNODE,SHAPE, 

0, 1, 0 
30 CALL SUBMP (BFLEI,BFLEJ,DAREA,DFLEX,ESTIF,INODE, 

JNODE, 3, 3, 3) 
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50 CONTINUE 
C 
C'o- EVALUATE PART OF STIFFNESS MATRIX 
C ASSOCIATED WITH SHEAR DEFORflATION 
C 

C 

KGASP=O 
NGAUM=NGAUS-1 

con ENTER LOOPS FOR AREA INTEGRATION 
C 
C 
Co •• SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

CALL GAUSSQ (NGAUI1, POSGP, WEIGP) 
DO 51 IGAUS= 1, NGAUI1 
DO 51 JGAUS= 1 ,NGAUI'i 
KGASP=KGASP+1 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 

C 
CU- EVALUATE THE SHAPE FUNCTIONS,ELEHENTAL AREA,ETC 
C 

C 

(DERIV,ETASP,EXISP,NNODE,SHAPE) 
(CARTD, DERIV, DJ ACB I ELCOD, GPCOD, IELEl1, 

KGASP,NNODE,SHAPEJ 
DAREA=DJACB*HEIGP(IGAUS)*VlEIGP(JGAUS) 

CALL 
CALL 

SFR2 
JACOB2 

C*** EVALUATE THE B AND DB MATRICES 
C 

C 

CALL LAYMPA(DEPTH,DFLEX,DSHER,EPSTN,IINCS,KGAUS,LPROP, 
MMATS,MTOTG,NCRIT,NLAPS,PROPS,STRSG,O) 

C*,- EVALUATE ELEMENT STIFFNESSES 
C 

DO 31 INODE=l,NNODE 
CALL BMATPB (BFLEI,DUMHY,BSHEI,CARTD,INODE,SHAPE, 

0, 0, 1) 
DO 31 JNODE=INODE,NNODE 
CALL BMATPB (BFLEJ,DUMHY,BSHEJ,CARTD,JNODE,SHAPE, 

0, 0, 1) 
31 CALL SUBMP (BSHEI,BSHEJ,DAREA,DSHER,ESTIF,INODE, 

JNOOE, 3, 2, 3) 
51 CONTINUE 

C 
C*-* CONSTRUCT THE LOWER TRIANGLE OF THE STIFFNESS MATRIX 
C 

DO 60 IEVAB=l,NEVAB 
DO 60 JEVAB=IEVAB,NEVAB 

60 ESTIF(JEVAB,IEVAB)=ESTIF(IEVAB,JEVAB) 
C 
COO. STORE THE STIFFNESS MATRIX,STRESS MATRIX AND SAMPLING POINT 
C COORDINATES FOR EACH ELEMENT ON DISC FILE 
C 
C 

WRITE (1) ESTIF 
WRITE(3) GreOO 

70 CONTINUE 
RETURN 
END 

9.6.10 Subroutine STRMP A 
This subroutine evaluates the stresses within each layer. 
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SUBROUTINE STRMPA (CARTD,CONST,DFLEX,DGRAD,DSHER,ELDIS,NNODE, STRL 1 
. SHAPE, STRES, IFFLE, IFSHE) STRL 2 

C •••• *****************************··****·*************···************···STRL 3 
C STRL 4 
C... EVALUATES STRESSES FOR MINDLIN PLATE STRL 5 
C STRL 6 
C •••••••• ·································****·**********··***·*******··STRL 7 

DIMENSION CARTD(2,9),DFLEX(3,3),DGRAD(6) ,DSHER(2,2) , STRL 8 
. ELDIS(3,9),SHAPE(9),STRES(5) STRL 9 

C**. ZERO STRESS VECTOR STRL 10 
CALL VZERO (5,STRES) STRL 11 

Cu. EVALUATE ROTATIONS AT GAUSS POINT, IF NEEDED STRL 12 
IF(IFSHE.EQ.O) GOTO 50 STRL 13 
XZROT=O.O STRL 14 
YZROT=O.O STRL 15 
DO 30 INODE=1,NNODE STRL 16 
XZROT=XZROT+SHAPE(INODE)*ELDIS(2,INODE) STRL 17 

30 YZROT=YZROT+SHAPE(INODE)*ELDIS(3,INODE) STRL 18 
C* •• EVALUATE BENDING STRESS RESULTANTS STRL 19 

50 IF (IFFLE. EQ. 0) GOTO 60 STRL 20 
EFLXX=-DGRAD(2).CONST STRL 21 
EFLYY=-DGRAD(6)*CONST STRL 22 
EFLXY=-(DGRAD(3)+DGRAD(5»*CONST STRL 23 
STRES(1)=DFLEX(1,1)*EFLXX+DFLEX(1,2)*EFLYY STRL 24 
STRES(2)=DFLEX(2,1)*EFLXX+DFLEX(2,2)*EFLYY STRL 25 
STRES(3l:DFLEX(3 , 3)*EFLXY STRL 26 

c*·· EVALUATE SHEAR STRESS RESULTANTS STRL 27 
60 IF(IFSHE.EQ.O) RETURN STRL 28 

ESHXX=DGRAD(1)-XZROT STRL 29 
ESHYY=DGRAD(4)-YZROT STRL 30 
STRES(4)=DSHER( 1, 1)*ESHXX STRL 31 
STRES(5)=DSHER(2,2)*ESHYY STRL 32 
RETURN STRL 33 
END STRL 34 

9.7 Examples 
To test the program, the elasto-plastic analysis of a simply supported plate 

is performed and 9 noded and Heterosis elements are used. The geometry, 
material properties of the plate are shown in Fig. 9.6. 

L 

• 

'--~---+---~------' ----x 

L 

(L= 1.0, E= 10.92, .=0.3,1=0.01, q= 1.0, Go= 1600.0) 

Fig.9.6 Geometry and material properties of simply supported square plate. 
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Typical input for the nonlaycred approach is givcn in Appendix I V together 
with lineprinter output of results. Figures 9.7 and 9.8 show the load displace
ment curves for both layered and non layered approachcs. 

30 

25 

20 

15 

IO 

5 

30 

25 

0 

a:Y~ 
ex? 

0 4-node element 
, 8-node element 
0 9-node element 

__ heterosis element 

5 10 15 

Fig.9.7 Load displacement curves for nonlayered approach. 

10 

o , 
o 

4·node element 
8-node element 
9-node element 
heterosis element 

20 

wD 

MpU 

30 

Fig. 9.8 Load displacement curves for layered approach. 

20 

40 



372 FINITE ELEMENTS IN PLASTICITY 
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___ -00 
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Fig. 9.9 Infinite clamped plate strip under uniform lateral load q. 

9.8 Problems 
9.1 Consider the uniformly loaded, clamped plate shown in Fig. 9.9. Using 

programs MINDLIN and MINDLA Y find the collapse load for the 
plate which has the following properties: 
Elastic modulus E = 10000.0, Poisson's ratio v = 0.3, thickness 
t = 0.01, length L = 1.00 and yield stress ao = 1000.0. Check your 
solution using program PLANET. 

9.2 Use program MINDLIN to find the value of the uniformly distributed 
load intensity q at which yielding first occurs for rectangular, simply 
supported plates of aspect ratios 1.0, 1.2, 1.4, 1.6, 2.0 and 2.2. Assume 
a thickness/span ratio of 0.05 and locate also the position of first 
yielding. Compare your results with those of Turvey(9l for a Von Miscs 
material. 

9.3 Modify program MINDLA Y to allow for in-plane deformation of the 
plate mid-plane. Use a displacement pattern of the form 

u(x,y, z) = uo(x,y)-z!;lx(x,y) 

vex, y, z) = vo(x, y)-z8 y (x, y) 

(9.31) 

(9.32) 

in which Uo and Vo are the in-plane deflections of the plate mid-plane in 
the x and y directions respectively. 

9.4 Modify programs MINDLIN and MINDLA Y to allow for an elastic 
Winkler foundation of modulus K. The appropriate virtual work term is 

J,.! SwKwdQ 

in which Sw is the virtual lateral displacement. 
9.5 Solve the beam problem in Example 5.1 of Chapter 5 using programs 

MINDLIN and MINDLA Y. 
9.6 Develop a program for the nonlayered elastoplastic analysis of ax i

symmetric Mindlin plates using 2-node radial finite elements. The 
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virtual work expression for an annular plate of internal and external 

radii 1'0 and f'l respectively is given as 

0) Q j I'dI' 

(9.33) 

111 which the radial bending moment M r = - D [dO/dl' + v 0/1'] the 

circumferential bending moment Ale = -D[O/r+ vdOjdr] the shear 

force Q = [GI(dll'jdr - 0)]1l.2, 0 is the normal rot ation in the radial 

rz plane and \\' is the lateral displacement in the = direction. 
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Chapter 10 
Explicit transient dynamic analysis 

Written in collaboration with D. K. Paul and N. Bicanic 

10.1 Introduction 
Earlier, in Parts I and II, we considered static (or pseudostatic) appli

cations. However, many structures are subjected to time-varying loads such 
as impulse, !>last, impact or earthquake loading. Here in Part III we consider 
finite element based methods for dealing with such problems. 

Although a form of mode-superposition has been adopted in nonlinear 
transient dynamic stress analysis, (11 it is general practice to use a time 
stepping procedure. Such direct integration schemes may be broadly classified 
as either explicit or implicit methods. 

In the present chapter, we consider the very popular and easily im
plemented, explicit, central difference scheme. During each time step, rela
tively little computational effort is required since no formal matrix factor
isation is necessary. Unfortunately, the method is conditionally stable and 
very small time steps are often needed. 

In implicit schemes, a matrix factorisation is required but we can select an 
unconditionally stable implicit algorithm in which the time step length is 
governed by considerations of accuracy alone. In Chapter 11 we consider 
the Newmark family(2) of time stepping schemes. We then present a pro
gram for nonlinear transient dynamic stress analysis in which we may select 
any of the following algorithms: 

(i) an implicit solution 

(ii) an explicit solution 

(iii) a combined implicit/explicit solution 

The programs in Chapters 10 and 11 deal with plane stress, plane strain 
and axisymmetric applications using 4, 8 and 9-node, isoparametric quadri
laterals. Geometrically nonlinear behaviour is taken into account using a 
Total Lagrangian formulation. In Chapter 10 the material behaviour is 
~ssumed to be elasto-viscoplastic, whereas an elasto-plastic model is used in 
Chapter 11. Test examples are presented for both programs. 

377 
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10.2 Dynamic equilibrium equations 
For dynamic equilibrium of a body in motion we can use the Principle of 

Virtual Work to write the following equations at time station In irrespective 
of material behaviour 

J [SEn]TO'ndO- f}SUnJT[bn-pniin-cnrin]dO 
Q •• 

- f [SunJTtndI' = 0 
r, 

(10.1)* 

where SUn is the vector of virtual displacements, SEn is the vector of associated 
virtual strains, bn is the vector of applied body forces, tn is the vector of 
surface tractions, Un is the vector of stresses, pn is the mass density, Cn is the 
damping parameter ·and a dot refers to differentiation with respect to time. 
The domain of interest 0 has two boundaries: I' e on which boundary tractions 
tn are specified and 1'" on which displacements Un are specified. For plane 
stress, plane strain and axisymmetric problems all of these terms were 
defined in Chapter 6. 

Recall that in Chapter 6 we noted that, for a finite element representation, 
the displacements and strains and also their virtual counterparts are given by 
the relationships 

>II 

Un = .2: Ni[di]n, 

i=l 

m 

Su" = L Nt[Sdtl" 
;-1 

m 

SEn = L Bi[Sd!l" 
i=l 

(10.2) 

(10.3) 

where at time station In for ~de i, [dd,. is the vector of nodal displacements, 
[Sddn is the vector of virtfal nodal variables, N/ = Nd2 is the matrix of 
global shape functions and B; is the global strain-displacement matrix. t The 
total number of nodes is m. 

If (10.2) and (10.3) are substituted into (10.1), and if we note that the 
resulting equation is true for any set of virtual displacements [Sd]n then we 
obtain for each node i the equations . 

.• Note that a subscript n refers to a quantity sampled at time station t" and similarly 
a subscript n+ I refers to a quantity sampled at time station tn + M. 

t Here we assume that the strains are linear and hence B, is independent of time. 
Later we show how to cater for nonlinear strains in which S. is displacement (and hence 
time) dependent and it is written as [Bdn. 
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[pt)" - [flit]" + [fIl]" + [fDi]lI - [/Ttl" = 0 

where the internal resisting forces are 

[p;]n = j' [Bi]T O'n dn, 
!J 

the consistent forces for the applied body forces are 

Uildn = j' [NiF bn dn, 
!] 

the inertia forces are 

[JIt]n = j' [NiP' Pn[N), N 2, ... , NIII]dlJ 
f) . 

[ddn 

[d2]" 

379 

(10.4) 

(10.5) 

(10.6) 

(10.7) 

(N.B. [Mil]" is a submatrix of the mass matrix Mn) The damping forces are 

[fmln = r [Nd T cn[N), N 2 , ... , Nm]dn 
.. [J 

1J/. 

:> [Cij]n [tij]n 
~. 
j~l 

;- [eid l 

[eid 
(10.8) 

(N.B. [Cii]" is a submatrix of the damping matrix Cn) and the consistent 
forces for the traction boundary forces are 

[lTd" = r [N;Ftll dI'. (10.9) 
.. l'r 

If we use C(O) isoparametric finite element representations we can evaluate 
contributions to (10.4) separately from each element and then assemble 
them into the appropriate vectors in (10.4 J. As noted in Chapter 6 the dis
placements can be expressed in the usual way as 

• 
T' 

[/lId]" = "",' N;IP)[d;leI]1I 
...:........, 
i-I 

(10.10) 

where for local node i of element e, Ntle) = N/e) h is the local shape function 
matrix arid [d;le))" is the vector of nodal displacements. As described in 
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Chapter 6 we use 4, 8 and 9 noded isoparametric quadrilateral elements and 
therefore r = 4, 8 and 9 respectively for these cases. 

The strain displacement relationships are expressed as 

r 

[E(e)]n = L BI(e)[dl(e)]n 

t~1 

(10.11) 

in which Bt(e) is the local element strain matrix which has been defined for 
the various applications in Table 6.1. 

The discretised elemental volume is given as 

dWe) = hIe) det/(e)d~d'7 (10.12) 

in which det/(e) is the determinant of the Jacobian matrix and hIe) is defined 
in Chapter 6. 

Thus the element contributions to the terms in (lOA) may be evaluated 
using numerical integration based on Gauss-Legendre product rules. These 
contributions now ta~e the form 

(10.13) 

(10.14) 

[fi,(e)]n f::J:: [N(e)]T Pn(e)[NI (e),N2(e), ... ,Nr(e)]h(e) det lIe) d~d'7 [[~I ;e)]n] 

r ~~1 

= L [Mt/e)]n[dj(e)]n (10.15) 

1-1 

[fm(e)]n f::f:: [N(e)]T Cn(e)[NI (e),N2(e), ... ,Nr(e)]h(e) det lIe) d~d'7 [[~I ~e)]nl 
r [dr(e)]n 

= L [Cil(e)]n[d/e)]n (10.16) 

I-I 

(I0.17) 

where r e(·) (ifit exists) is that part ofr t which coincides with the boundary of 
element domain We). 
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We will assume for simplicity that the mass and damping matrices do not 
vary with time. 

10.3 Modelling of nonlinearities 

10.3.1 Introduction 
Dynamic loading of structures often causes excursions of stresses well into 

the inelastic range and the influence of geometry changes on the response is 
also significant in many cases. Therefore both material and geometric non
linear effects should be considered. 

Although material behaviour under dynamic loading is very complex and 
experimental information is scarce, for most structural materials, some 
general statements can be made. 

For example, it has frequently been demonstrated that the instantaneous 
yield stress is significantly influenced by the r~t~of straining. Also, the value 
of the elasticity modulus Eo is found to be dependent on the strain rate. For 
structural materials with limited ductility, such as concrete or rock-like 
materials, the rate of straining can completely change the material response 
from elasto-plastic behaviour under low rates to brittle elastic behaviour 
under high rates of straining. For many structural materials there is still an 
urgent need for a better understanding of the observed phenomena and 
underlying microscopic behaviour. However, in attempting to perform an 
analysis of a dynamically-loaded engineering structure, we must look for an 
idealized material model, where possibly some compromises have to be made. 
Furthermore, the model parameters should readily be measurable and easily 
obtained from reliable experimental data. 

For transient dynamic analysis, an elasto-viseoplastic model, as developed 
in earlier chapters, presents a very good approximation of the true behaviour 
for many structural materials. The predominant phenomenon of variable 
instantaneous yield stress is adeq uately modelled. 

In the following, we shall develop the algorithm for the elasto-viscoplastie 
transient dynamic analysis of plane stress, plane strain and axisymmetric 
problems. The computer program DYNPAK will be documented and 
explained and finally, some illustrative examples are given. 

10.3.2 Material model 
Here we adopt the elasto-viscoplastic material model developed in Chap

ter 8, where the constitutive relationship is given in the form 

(10.18) 

where D is the elasticity matrix, y is the fluidity parameter, F is the yield 
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function and En, [Ee]n and [Evp]n denote the total, elastic and viscoplastic 
strain rates at time station In. We also have the relationships 

and 

(In = D[Ee]n 

(<lJn(F» = 0 if yield has not occurred. 

= I if yield has occurred. 

Thus we can rewrite the internal resisting forces as 

(10.19) 

(10.20) 

Pn = {[B]TD{En-[Evp]n}dQ (10.21) 

The ~poral discretization of the equations which govern viscoplastic 
straining is also based on the assumption that the relationship 

of 
[Evp]n = y(<lJn(F»- (10.22) 

oUn 

is known only for discrete time stations !::.t apart. The simplest, Euler, 
integration scheme will here be employed, i.e., 

[Evp]n+1 = [Evp]n+[Evp]n!::.t. (10.23)* 

The stability limit for the time increment !::.t, which depends on the specific 
form of the viscoplastic potential employed in the flow rule, has already been 
discussed in earlier chapters. 

When we adopt the central difference scheme and the viscoplastic material 
model that we have just described, the algorithm at a particular time station 
In follows the sequence shown in Fig. 10.1. 

10.3.3 Geometric nonlinearity 
If we wish to cater for geometrically nonlinear elastic behaviour we can 

choose either a total or updated Lagrangian coordinate system. Here we 
choose a total Lagrangian coordinate system which coincides with the 
initial undeformed position of the body.(31 

It transpires that, with the central difference scheme, the only changes 
required to account for geometrically nonlinear effects are 

(i) The modification of the strain-displacement matrix B(dn ), 

and 

(ii) The evaluation of the strains using a deformation Jacobian matrix 
In(dn). 

• Note that in dynamic transient analysis, the time interval M is here assumed con· 
stant; whereas for viscoplastic applications in Chapter 8 it is variable. 
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[ ill rl{ [ ~l] . d"~l= M+ 2 C (ilt)2[-p(dn)-f-J,.l+2Mdn- M- 2 C dll-1) -

dn+1 

d" p(dn) = J [B(dn)]TundD 
!J 

[E/,p]u+l 
[E"1) 1" 

tn tn+!!.t 

En = [B(dn)]dn 

[Eel" = En - [Evp]n 

[Evp]nn = [Evpln + [tvp]n ~t 

Un = D[Eeln 

<p,,(F) >0 Yes 
[ tvpln 

(iF 
= r(<Pn(F»c-

(. fIn 

No 

[tvPl" = 0 

Fig. 10.1 Algorithm for elasto viscoplastic straining during a time step. 

We will now describe briefly the relevant background theory. All vectors 
and matrices are given explicitly for the plane stress, plane strain and axi
symmetric applications in Table 10.1. 

If the initial undeformed position of a particle of material is Xo and the 
total displacement vector at time station t" is lin then the coordinates of the 
particle are 

x" = XO+II1/ (10.24) 

In a total Lagrangian formulation we use Green's strains. The matrix of 
Green's strains is given as -



Variables 
Coordinates of particle 
in undeformed initial 
configuration x = Xo 

Displacements u .. 

Coordinates of particle in 
deformed configuration x .. 

Vector of Green's strains E .. 

Deformation Jacobian 
matrix 
InCu .. ) = [In]" 

Matrix of Green's strains 
E .. = H[In] .. T [In] .. -/} 

Linear strains [ELl" 

Table 10.1 Vectors and matrices used in a total Lagrangian formulation 

EX 

Yxv .. 

Plane stress/strain 

ax/ 

ay 

[xo, yo]T 

+ 
~(/aU,,)2 -- + 
2 ax 

~(aV,,)2 
2 ax 

+ ~(aU,,)2 + ~(aV,,)2 
2 ay 2 ay 

au" av" au.. au" av" av" -+-+--+-oy ax ax ay ox oy 

[ 

Exx 

EVX 

[
au .. 
ax' 

ay 
ay .. 
ay 

EXV ] 

EIIII " 

(OU" + OV,,)] T 
oy ox 

EZ 

Yr. 

" 

Axisymmetric 

fro, ZO]T 

+ ~( aw" )2 
2 ar 

+ 1 (aun ) 
2 

-- + 
2 OZ 

~( aW,,)2 
2 az 

au" aw.. au" au" aw" aw" -+-+--+--az ar ar az ar az 

[ 
[
au .. , 
or 

u" +~( U" )2 
r 2 r 

ar" or" 
ar az 

az" az" 
ar az 

"rr Erz ] 

"zr fizz n 

au.. aw .. 
-+--, OZ or 



Table 10.1 (Cont.) 

Variable Plane stress/strain Axisymmetric 

au" aWn 
0 0 0 

au" OUn or or 
0 0 

ax ax oUn aWn 
Nonlinear strains 0 0 0 m 

aUn aVn oz oz X 
[£tn)n = !,[Aoln On "tI 

0 0 r 
where [Aoln is ay oy OUn OWn aUn aWn ..... 

(j 
0 --l 

oUn oUn oUn OVn oz OZ or or -l 

oy oy ox ox 
~ 

Un ;I-
0 0 0 0 Z 

<:Il r -m 
AU" au" z 

0 0 -l 

au" OUn or or 0 
0 -< z ox ax OWn OWn ;I-

0 0 a:: 
aVn av" or or -0 n 
ax ax au" au" ;I-

and displacement 0 0 Z 
grad ients On aUn ()Un oz az ;I-

r 
0 -< 

ay ay OWn aWn <:Il -0 0 <:Il 

oVn oUn oz OZ 
0 

0)' oy J 
0 

Un 
0 0 

r 
Elastic Piola-KirchofT w 

[ ax, Txy)nT [ ar, ao)nT 00 

stresses Un = Dn £n 
ay, az, 'rrz, V> 
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where [J Dln is the deformation Jacobian matrix at time station t". 
The Green's strains can be written as 

(10.26) 

where [Edn are the linear strains given earlier in Chapter 6 and [ENLln, the 
nonlinear strain terms are given as 

(10.27) 

For a set of virtual displacements, the corresponding virtual Green's 
strains are given as 

(10.28) 

Thus the virtual work statement of (10.1) can be rewritten as 

f [SEnY O"n dQ - f [SUnF [bn - pUn -cunldQ 
!) !) 

-J [Su"Ytndr = 0 
T, 

(10.29) 

where (Tn are the Piola-Kirchhotf stresses. 
As mentioned earlier, all relevant terms are given in Table ID.l. 
If we adopt the fmite element discretization scheme described earlier, then 

the displacement gradients On are given in terms of the nodal displacements 
[dlln by the linear relation 

1Il 

8,. = )' Gi[di]" (10.30) 
~ 
I~l 

where Gt contains Cartesian shape function derivatives as indicated III 

Table 10.2 for the various applications. 
Similarly we have 

In 

SOn = .L Gj[Sddn. (10.31) 
i~l 

The linear strain-displacement relationship can be expressed as 

m 

[Ed" = 2: [BLlln[ddn (10.32) 

j~l 

where [BLl]n IS the linear strain displacement matrix introduced earlier. 



Table 10.2 The nonlinear strain displacement matrix evaluation in a total Lagrangian finite element formulation 

Variable 

Strain displacement 
matrix associated with 
node i 
[B;]" = [Buln + [Aoln Gi 

where Gt is 

Plane stress/strain 

oXn aNt oYn oNi 

ax ax ax ax 

oXn aNt °Yn ONi 

ay oy oy ay 

(Oxn aNi + oXn aNi) eYn DNi + 0Yn ONi) 
Dy Dx ox Dy Dy ox ax Dy 

oN; oNi 
0 0 

ax oy 

aNi aNi 
0 0 

ax ay 

Axisymmetric 

orn ONi oZn oNI 

or or or or 

orn ONi oZn oNI 

OZ dZ oz oz 

(Orn oNt + orn ON!) oZn oN! oZn oNt 
--+--

OZ or or OZ OZ or or OZ 

C; ) ~t 0 

aNt ONi ~I l 0 0 
or OZ 

0 
aNi 

0 
aNt 

0 
or oz 

l 
I 

t'I1 
X 
"0 
r ...... 
n ...... ..., 
..., 
~ 
Z 
VI ...... 
t'I1 z ..., 
0 
-< z » s: -n 
» z » 
r 
-< 
VI -VI 

' .... 
00 
--.J 
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Similarly, we have 
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m 

[SENLln = .2: [BNLtJn[Sddn 
i-I 

The components of the vector of Green's strains En can be written as 

m 

En = .2: [[BLtln + HBNLdn] [dtln 
i-I 

where the nonlinear strain-displacement matrix [BNLtln is given as 

[BNLtln = [AelnGt. 

(10.33) 

(10.34) 

(10.35) 

Furthermore it can be shown that the virtual strains can be expressed as 

(10.36) 

where 
[Bdn = [BLtln + [BNLlln 

is given in Table 10.2 for the various applications. 
If we substitute for SEn and Sdn in (10.29) and note that the result is true 

for arbitrary virtual displacements, then we obtain an expression which is 
identical to (10.4). In the present case we only need to remember that [Blln is 
_defilled by (10.36). 

We again note that contributions to (l0.4) from each element can be 
obtained separately and assembled appropriately. 

Note that we now may evaluate [Ptln as 

L [BilnT an dQ rather than L [BdT an dQ 

where [Biln is given by (10.36), 

10.4 Explicit time integration scheme 

10.4.1 Central difference approximation 
We can write the equations (10.4) in matrix form so that at time station In 

we have 
(10.37)* 

• Note that the body force term - M"Ug, due to seismic excitation, is included in the 
body forces which are taken into account in fn • Note also that M and C may be assembled 
from the element mass matrices M«) and damping matrices 0<). 
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where M and C are the global mass and damping matrices respectively, PII 
is the global vector of internal resisting nodal forces, j;, is the vector of 
consistent nodal forces for the applied body and surfaces traction forces 
grouped together, dn is the global vector of nodal accelerations and dll is the 
global vector of nodal velocities. 

So far, only spatial discretization has been introduced. We now employ a 
temporal discretization of the dynamic equilibrium equations by approxi
mating the accelerations and velocities using finite difference expressions. 

In particular we adopt a central difference approximation(2) so that the 
accelerations can be written as 

I 
dn ::::: (Ill = --{dn+1-2dll .J..dl1 -1} 

(~t)2 

and the velocities are written as 

1 
= --{d1l .. l -dn- l } 

2~t 

(10.38) 

(10.39) 

in which ~t is the time step or interval so that we are sampling the displace
ments at time stations tIl -~t, til and tn'-~t. If we substitute (10.38) and 
(10.39) into (10.37) we obtain 

f dlld -2d" -dll-l \ f dll+l-dll-l \ 
M\ (~tF f-"C\ Dt I-PII =/11 (10040) 

which can be rearranged to give 

dn+ l = [ 
~I 1-1 

M+-C 
2 J 

(10041) 

Thus we have 

(10042) 

In other words the displacements at time station t" .. , ~t are given explicitly 
in terms of the displacements at time stations t" and t 11 - ~I. 

If the mass matrix M and the damping matrix C are diagonal then the 
solution of (10041) becomes trivial and we have for plane stress and plane 
strain applications the following equations: 

(10043) 
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and 

( 
/J.t )-1 [ (dvt)n+1 = mU+TCjj (llt)2{ -(pvt)n+(fvt)n} 

+2mu(dvt)n-(mtt - ~t CH)(dvt)n-l] (10.44) 

in which at node i, dut and dVi are the u and v displacement components in 
the x and y directions,lut and IVi are the components of the applied nodal 
forces in the x and y directions, put and pvi are the internal resisting nodal 
forces in the x and y directions and mjj and Ctl are the diagonal terms of the 
mass and damping matrices. For axisymmetric problems replace v by w. 

From (10.43) and (10.44) we see that for each displacement degree of 
freedom at time t n + M we have a separate equation involving information 
regarding the degree of freedom at times tn and tn -/J.t. No matrix factor
isation or sophisticated equation solving is therefore necessary. 

10.4.2 Starting algorithm 
As we have seen the governing equilibrium equation at time station tn + llt 

in the central difference method involves information at the two previous 
time stations ttl and ttl - /J.t. A starting algorithm is therefore necessary and 
from the initial conditions the values d(O-/J.t) may be obtained. We have 
from (10.39) the condition that 

or 

. d(O+/J.t)-d(O-M) 
d(O) ~ v(O) = ------

2M 

d(O-M) = -2/J.tv(O)+d(O+M). 

(10.45) 

If this approximatio~substituted in (10.43) then we can write the expression 

( 
M )-1 [ (duth = mtt+Tctt (M)2{ -(Pui)O+(fut)o} 

+2mIl(dut)o-(mti- ~ Cii){ -2M(dut)o+dut)1} ] 

or 

where 

10.4.3 Damping 

B = I 
Cit /J.t 

2mu 

(10.46) 

Very limited information is available on damping in linear solid mech
anics problems and there is even less data available for damping in non
linear situations. It is therefore customary to assume that the damping 



EXPLICIT TRANSIENT DYNAMIC ANALYSIS WI 

matrix is proportional to the mass and stitfness matrix. This is known as 
Rayleigh damping and we have 

c = aM+f3K (10.47) 

In the central difference method we can make the approximation that 
f3 = 0 so that 

C= aM ( 10.48) 

or 

where 

in which ~,. and w, are the damping factor and circular frequency for the rtll 
mode. This modelling of damping is rather poor since f1 is fixed for all modes 
of vibration. Thus if we take r = I then the higher modes will be less damped 
whereas the opposite would be more desirable. This is the price we pay for an 
otherwise convenient and efficient solution. 

10.5 Critical time step 
In explicit and implicit time integration schemes the selection of an 

appropriate time step is crucially important. Small time steps are required 
for accurate and stable solutions whereas for reasons of economy we would 
prefer large time steps. The analysis of the stability and accuracy character
istics(21 allows us to decide on a suitable time step for the various time 
stepping schemes. On this basis for the conditionally stable, central ditTerence 
scheme, the stability considerations arc of prime importance and the time 
step length is limited by the expression 

2 
:::'1 ~ -- (10.49) 

where Wmax is the highest circular frequency of the finite element mesh. This 
severe time step limit, required for stability, ensures accuracy in practically 
all modes of vibration. Providing that Wmax represents the maximum non
linear frequency, (10.49) holds for nonlinear problems. The estimate of the 
critical time step for conditionally stable schemes apparently necessitates 
the solution of the eigenvalue problem for the whole system. This is not so. 
The bound on the highest eigenvalue can be simply obtained by the con
sideration of an individual element. This is established by an important 
theorem proposed by lrons(4) which proves that the highest system eigenvalue 
.!n!lst always be less than the highest eigenvalue of the individual elements. 
This allows a very easy estimate of critical time steps (by the above theorem) 
which will err on the safe side. To avoid the exaet evaluation of the highest 
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finite element mesh frequency approximate expressions are usually employed. 
The most common form for plane strain is 

(
p(1+ v)(1-2v) )1/2 

M ~ p.L -----
E(l-v) 

(10.50) 

where L is the smallest length between any two nodes and p. is a coefficient 
dependent on the type of element employed. (5) For problems in which many 
time steps are used it may be beneficial to calculate the exact highest linear 
frequency of the finite element mesh prior to the time stepping analysis. 

Recall that when an elasto-viscoplastic model is adopted care must be 
taken not to exceed the critical time step for the Euler scheme in evaluating 
the viscoplastic strains. (See Section 8.3). 

10.6 Program DYNPAK 

10.6.1 Overall structure of DYNPAK 
We now present program DYNPAK for the elasto-viscoplastic or geo

metrically nonlinear, transient dynamic analysis of plane stress, plane strain 
and axisymmetric problems. The basic structure of the program is shown in 
Fig. 10.2. Many of the subroutines used in DYNPAK have already been 
described in earlier chapters. 

The algorithm adopted has been presented schematically in Fig. 10.1. The 
program is written in a dynamically dimensioned form. Efficiency has some
times been sacrificed for clarity of presentation and the reader may consider 
ways of making the program more efficient when reviewing this chapter. 

Isoparametric 4, 8 andli.rnoded qUad~ila .1 elements are included in the 
program. A ~ecial mass lumping procedur (6) as been adopted and separate 
Gauss-Legendre rules may be adopted 10 t e evaluation of the stiffness and 
the lumped mass matrices. 

Impact and seismic loading can easily be specified. Material nonlinearity 
is based on elasto-viscoplastic models with Von Mises, Tresca, Mohr
Coulomb or Drucker-Prager yield criteria with isotropic hardening. A total 
Lagrangian formulation is used to allow for the geometric nonlinear behav
iour. 

Subroutines GAUSSQ, SFR2 and JACOB2 have already been dealt with 
and only the remaining routines will be listed and described. 

10.6.2 Master routine DYNP AI( 

The master routine organises the calling of the main routines as outlined 
in Fig. 10.2. In subroutine CONTOL the variables required for dynamic 
dimensioning are read and a check is made on the maximum available 
dimensions. Note that the values given in the DIMENSION statement in 
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CONTOL I 

rl NODXYRJ 

INPUTD t-
Y GAUSSQ I 

I INTIME I 

r-- PREVOS I 
::..: 
< p.. rl MODPS I Z 
>-
Cl I 0:: ILOADPLf(tjl I SFR2 
~ 

!ii 
< 

Y JACOB2 I rl MODPS I 
~ rl GAUSSQ I Y SFR2 I 
-

I LUMASS SFR2 I H JACOB2 I 

Y JACOB2 I H JACOBD I 

J RESVPL 
H BMATPS I 
H LINEAR I 

I 
,----{ FUNCTS H INVAR I 

I EXPLIT l FUNCTA I H FLOWVP I 
p.. -l FUNCTA I p..~ H YIELDF J Of-o 

0'" 
'--- ....I Z J RESVPL p(tjl 

00 
Cl f-o. 

I OUTDYN I 
I 

Fig. 10.2 Flow diagram for program DYNPAK. 
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DYNPAK should agree with the values specified in CONTOL. Subroutines 
INPUTD, INTIME and PREVOS read the mesh data, the time integration 
data and data for the previous state of the structure. Subroutines LUMASS 
and LOADPL generate the lumped mass and applied force vectors respect
ively. FIXITY deals with fixed boundary nodes. In the time step do loop, 
EXPLIT performs the direct time integration and RESVPL calculates 

t [BJnTa"dQ 

when an elasto-viscoplastic material model is adopted. 
In this version of DYNPAK it should be noted that the maximum dimen

sions imply that we can solve problems with no more than 50 elements, 
200 nodal points, 50 fixed boundary nodes and 600 acceleration ordinates. 

Of course, larger problems can be accommodated by increasing the values 
in CONTOL and also the appropriate dimensions in the DIMENSION 
statement in the main routine DYNPAK. 

PROGRAM DYNPAK (INPUT ,TAPE5=INPUT ,TAPE4,TAPE10,TAPE12,TAPE3, DYNK 1 
• OUTPUT,TAPE6=OUTPUT TAPE7 TAPEll TAPE13) DYNK 2 

C****************************************~*****'******~*****************DYNK 3 
C DYNK 4 
C DYNAMIC TRANSIENT ELASTO - VISCOPLASTIC PROGRAM DYNK 5 
C DYNK 6 
C***********************************************************************DYNK 7 

DIMENSION ACCEH( 600) ,ACCEV( 600) ,COORD(200,2) ,DISPL( 400) ,DYNK 8 
FORCE( 400) ,IFPRE(2,200) ,LNODS(50 ,9) ,MATNO( 50) ,DYNK 9 
INTGR( 50) ,NPRQD( 10) ,NGRQS( 10) ,POSGP( 4) ,DYNK 10 
PROPS ( 10,13) ,RESID( 400) ,RLOAD(50,18) ,STRIN(4,450) ,DYNK 11 
STRSG(4,450) ,TOISP( 400) ,TEMPE( 100) ,VELOC( 400) ,DYNK 12 
VISTN(4,450) ,VIVEL(5,450) ,WEIGP( 4) ,YMASS( 400) DYNK 13 

C DYNK 14 
CALL CONTOL (~IDOFN ,NELEM ,NMATS ,NPOIN DYNK 15 

C DYNK 16 
CALL INPUTO (COORD ,IFPRE ,LNODS ,MATNO ,NCON~l ,NCRIT , DYNK 17 

NDIME ,NDOFN ,NELEM ,NGAUM ,NGAUS ,NLAPS , DYNK 18 
NMATS ,NNODE ,NPOIN ,NPREV ,NSTRE ,NTYPE , DYNK 19 
POSGP ,PROPS ,WEIGP ) DYNK 20 

C DYNK 21 
CALL INTIME (AALFA ,ACCEH ,ACCEV ,AFACT ,AZERO ,BEETA , DYNK 22 

BZERO ,DELTA ,DTIME ,DTEND ,GAAMA ,IFIXD , DYNK 23 . IFUNC ,INTGR ,KSTEP ,MITER ,NDOFN ,NELEM , DYNK 24 
NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD ,NREQD , DYNK 25 
NREQS ,NSTEP ,OMEGA ,TDISP ,TOLER ,VELOC , DYNK 26 
IPRED ) DYNK 27 

C DYNK 28 
CALL PREVOS (FORCE INDOFN ,NELEM ,NGAUS ,NPOIN ,NPREV , DYNK 29 

STRIN DYNK 30 
C DYNK 31 

CALL LOADPL (COORD ,FORCE ,LNODS ,MATNO ,NDIME ,NDOFN , DYNK 32 
NELEM ,NGAUS ,NMATS ,NNODE ,NPOIN ,NSTRE , DYNK 33 
NTYPE ,POSGP ,PROPS ,RLOAD ,STRIN ,TEMPE, DYNK 34 
WEIGP ) DYNK 35 

C DYNK 36 
CALL LUMASS (COORD ,INTGR ,LNODS ,MATNO ,NCONM ,NDlME , DYNK 37 

NDOFN ,NELEM ,NGAUM ,NMATS ,NNODE ,NPOIN , DYNK 38 
NTYPE ,PROPS ,YMASS ) DYNK 39 
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C DYNK ~O 

CALL FIXITY (If PRE ,NDOfN ,NPOIN ,YMASS DYNK ~1 

C DYNK ~2 

If(NPREV.NE.O) DYNK ~3 
.CALL RESVPL (COORD ,DTIME ,LNODS ,MATNO ,NCRIT, NDIME , DYNK 4~ 

NDOfN ,NELEM ,NGAUS , NLAPS ,NNODE ,NMATS , DYNK 45 
NPOIN ,NSTRE ,NTYPE ,POSGP ,PROPS ,RESID , DYNK ~6 
RLOAD ,STRIN ,STRSG ,TDISP ,VISTN ,VIVEL , DYNK 47 
WEIGP ) DYNK 48 

C DYNK 49 
DO 500 ISTEP=l,NSTEP DYNK 50 

C DYNK 51 
CALL EXPLIT (ACCEH ,ACCEV ,AfACT ,AZERO ,AALfA ,BZERO , DYNK 52 

DTIME ,DTEND ,fORCE , IfIXD ,If PRE ,IfUNC , DYNK 53 
ISTEP ,NDOfN ,NPOIN ,Dr1EGA ,RESID ,TDISP , DYNK 5~ 
VELOC , YMASS ) DYNK 55 

C DYNK 56 
CALL RESVPL (COORD ,DTIME ,LNODS ,MATNO ,NCRIT ,NDIME , DYNK 57 

NDOfN ,NELEM ,NGAUS ,NLAPS ,NNODE ,NMATS , DYNK 58 
NPOIN ,NSTRE ,NTYPE ,POSGP ,PROPS ,RESID , DYNK 59 
RLOAD ,STRIN ,STRSG ,TDISP ,VIsn ,VIVEL , DYNK 60 
WEIGP ) DYNK 61 

C DYNK 62 
CALL OUTDYN (DISPL ,DTIME ,ISTEP ,NDOfN ,NELEM ,NGAUS , DYNK 63 

NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD \NREQD , DYNK 6~ 
NREQS ,NTYPE , STRSG ,TDISP ,VIVEL DYNK 65 

C DYNK 66 
500 CONTINUE DYNK 67 

STOP DYNK 68 
END DYNK 69 

10.6.3 Subroutine BLARGE 
This subroutine evaluates the strain-displacement matrix for geometrically 

nonlinear displacements using the deformation Jacobian matrix [J D]". Note 
that for small displacement analysis we pre-set NLAPS = O. 

SUBROUTINE BLARGE (BMATX ,CARTD ,DJACM ,DLCOD ,GPCOD ,KGASP, BLAR 1 
. NLAPS ,NNODE ,NTYPE ,SHAPE) BLAR 2 

c*****************************'**************.***********1*1********* BLAH 3 
C BLAR 4 
c*** LARGE DISPLACEMENT B MATRIX BLAR 5 
C ~ 6 
C'*fl***'****I*****'**********,*.******.**.*******'******fl********" BLAR 7 

DIMENSION BMATX(4,18) ,CARTD(2,9) ,DJACM(2,2) ,DLCOD(2,9) , BLAR 8 
GPCOD( 2, 9), SHAPE( 9) BLAR 9 

NGASH=O BLAR 10 
DO 10 INODE= 1 , NNODE BLAR 11 
MGASH=NGASH+ 1 BLAR 12 
NGASH=MGASH+1 BLAR 13 
BMATX(l,MGASH)=CARTD(l,INODE)*DJACM(l,l) BLAR 14 
BMATX(1,NGASH)=CARTD(1,INODE)*DJACM(2,1) BLAR 15 
BMATX(2,MGASH)=CARTD(2,INODE)*DJACM(1,2) BLAR 16 
BMATX(2,NGASH)=CARTD(2,INODE)*DJACM(2,2) BLAR 17 
BMATX(3,MGASH)=CARTD(2,INODE)*DJACM(1,1)+CARTD(1,INODE)*DJACM(1,2)BLAR 18 
BMATX(3,NGASH)=CARTD(1,INODE)*DJACM(2,2)+CARTD(2,INODE)*DJACM(2,1)BLAR 19 

10 CONTINUE BLAR 20 
If( NTYPE. NE. 3) RETURN BLAR 21 
FMULT=l. BLAR 22 
If(NLAPS.LT.2) GO TO 40 BLAR 23 
fMULT=O.O BLAR 24 
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DO 20 JNODE=l,NNODE 
20 FMULT=FMULT+DLCOD(l,JNODE)*SHAPE(JNODE) 

FMULT=FMULT/GPCOD(l,KGASP) 
40 NGASH=O 

DO 30 INODE=l,NNODE 
MGASH=NGASH+ 1 
NGASH =MGASH+ 1 
BHATX(4,MGASH)=SHAPE(lNODE)*FMULT/GPCOD(1,KGASP) 

30 BMATX(4,NGASH)=0.0 
RETURN 
END 

BLAR 25 
BLAR 26 
BLAR 27 
BLAR 28 
BLAR 29 
BLAR 30 
BLAR 31 
BLAR 32 
BLAR 33 
BLAR 34 
BLAR 35 

BLAR 10-20 Evaluate the complete strain matrix for plane stress/strain 
problems and the first three rows of the strain matrix for axi
symmetric problems. 

BLAR 21-33 Evaluate the remainder of the strain matrix for axisymmetric 
problems, if applicable. 

10.6.4 Subroutine CONTOL 
The purpose of this subroutine is to set the values of variables for the 

dynamic dimensions which are used elsewhere in the program. If any change 
in the DIMENSION statement in the master routine is made, then a corre
sponding change in this subroutine should also be made. 

SUBROUTINE CONTOL (NDOFN ,NELEM ,NMATS ,NPOIN ) 
C •••••••••• _-_ ••• _._ ••• __ •••••••••••••••••••••• _-**.*-f __ *_Affff.f. 

C 
c*** READ CONTROL DATA AND CHECK FOR DIMENSIONS 
C 
c················· __ ·_·*--**_·_*········---------_····* .. *-•••• -••• 

READ(5,110) NPOIN,NELEM,NDOFN,NMATS 
IF(NELEM.GT. 50) GO TO 200 
IF(NPOIN.GT.200) GO TO 200 
IF(NMATS.GT. 10) GO TO 200 
GO TO 210 

200 WRITE(6,120) 
STOP 

120 FORMAT(/'SET DIMENSION EXCEEDED - CONTOL CHECK 'I) 
110 FORMAT( 1615) 
210 CONTINUE 

RETURN 
END 

10.6.5 Subroutine EXPLIT 

CONT 1 
CONT 2 
CONT 3 
CONT 4 
CONT 5 
CONT 6 
CONT 7 
CONT 8 
CONT 9 
CONT 10 
CONT 11 
CONT 12 
CONT 13 
CONT 14 
CONT 15 
CONT 16 
CONT 17 
CONT 18 

This subroutine performs the direct time integration using expressions 
(10.43) and (10.44) to evaluate the nodal displacements at every time step. 
Special provisions are made for the first time step. 

SUBROUTINE EXPLIT (ACCEH ,ACCEV ,AFACT 
DTIME ,DTEND ,FORCE 
ISTEP ,NDOFN ,NPOIN 
VELOC ,YMASS ) 

,AZERO 
,IFIXD 
,OMEGA 

,AALFA 
,IFPRE 
,RESID 

,BZERO , 
,IFUNC , 
,TOISP , 

c··············_· ....... __ .................... _._-_ ... *_.* •••• _._._.-
C 
C *** TIME STEPPING ROUTINE 
C 
c-_·····_·_·_·_···_····-·_· __ ·_···· __ ········_·_···-·· ... * ••• _._ •• _ •• 

EXPL 
EXPL 
EXPL 
EXPL 
EXPL 
EXPL 
EXPL 
EXPL 
EXPL 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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DIMENSION YMASS( 1 ) , ACCEH( 1) , TDlSP( 1 ) ,RESIO( 1) , 
FORCE(1),ACCEV(1),VELOC(1),IFPRE(2,1) 

CFACT=1.0+O.5*AALFA*DTIME 
CFACT=l.ICFACT 
CONS 1 =2. *CFACT 
RCONS=1.ICONS1 
CONS2=CONS1-1 
CONS3=DTIME*DTIME*CFACT 
CONS4=-2.0*CONS2*DTHlE 
IF(ISTEP.GT.1) CONS4=CONS2 
NPOSN=O 
FACTS=FUNCTS (AZERO, BZERO, DTEND, DTIME, IFUNC, ISTEP, 011EGA) 
FACTH=FUNCTA (ACCEH,AFACT,DTEND,DTIME,IFUNC,ISTEP) 
FACTV=FUNCTA (ACCEV,AFACT,DTEND,DTIME,IFUNC,ISTEP) 
DO 500 IPOIN=l,NPOIN 
DO 510 IDOFN=l,NDOFN 
FACTT=O.O 
IF(IFUNC.NE.O) GO TO 200 
IF(IFIXD.EQ.0.AND.IDOFN.EQ.1) FACTT=FACTH 
IF(IFIXD.EQ.0.AND.IDOFN.EQ.2) FACTT=FACTV 
IF(IFIXD.EQ.1.AND.IDOFN.EQ.2) FACTT=FACTV 
IF(IFIXD.EQ.2.AND.IDOFN.EQ.1) FACTT=FACTH 
IF(IFPRECIDOFN,IPOIN).EQ.O) GO TO 200 
FACTT=O.O 
FACTS=1.0 

200 CONTINUE 
NPOSN=NPOSN+1 
DCURR=TDISP(NPOSN) 
RESID(NPOSN)=RESID(NPOSN)-FORCE(NPOSN)*FACTS 
TDISP( NPOSN) =-RESIO( NPOSN) *CONS3/YMASS( NPOSN) 

.-FACTT*CONS3+DCURR*CONS1-VELOC(NPOSN)*CONS4 
IFCISTEP.EQ.ll TDISP(NPOSN)=TDISP(NPOSN)*RCONS 
VELOC(NPOSN)=DCURR 

510 CONTINUE 
500 CONTINUE 

RETURN 

)97 

EXPL 10 
EXPL 11 
EXPL 12 
EXPL 13 
EXPL 14 
EXPL 15 
EXPL 16 
EXPL 17 
EXPL 18 
EXPL 19 
EXPL 20 
EXPL 21 
EXPL 22 
EXPL 23 
EXPL 24 
EXPL 25 
EXPL 26 
EXPL 27 
EXPL 28 
EXPL 29 
EXPL 30 
EXPL 31 
EXPL 32 
EXPL 33 
EXPL 34 
EXPL 35 
EXPL 36 
EXPL 37 
EXPL 38 
EXPL 39 
EXPL 40 
EXPL 41 
EXPL 42 
EXPL 43 
EXPL 44 
EXPL 45 
EXPL 46 END 

EXPL 12-19 Evaluate the various time integration constants. After the first 

EXPL 21 

EXPL 22-23 

EXPL 24-31 

EXPL 32-35 
EXPL 36-40 
EXPL 41 
EXPL 42 

time step modify variable CONS4. 
Evaluate the value of the time varying Heavisidc or harmonic 
function for a particular time step. 
Evaluate the acceleration ordinates (FACTH for horizontal 
and FACTV for vertical acceleration respectively) at a par
ticula r time step. 
The seismic force is only applied for particular degrees of 
freedom. For IFIXD = 1 only vertical, IFIXD = 2 only 
horizontal or radial and IFIXD = 0 both components of the 
acceleration are considered. 
Assign appropriate values for restrained boundary nodes. 
Evaluate displacements. 
For the first time step modify the displacement. 
Store the current displacements for the next time step. 

10.6.6 Subroutine FIXITY 
This subroutine deals with the restrained degrees of freedom (boundary 

points). The diagonal mass vector, XMASS, is modified-for restrained 
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degrees of freedom. The component of the XMASS vector is set to a large 
value such as I.E30, which artificially makes the displacement zero. 

SUBROUTINE FIXITY (IFPRE ,NDOFN ,NPOIN ,YMASS ) 
c •••••••••• , •• _---*_ .......... ,-, ... *_., •••• _ •• _.*._*-* __ 1 ____ ",----

C 
C .... DEALS WITH FIXED BOUNDARY NODES 
C c-,*·_··,···_··,·_*,··,-,,-,,-,-_··_-*--,_··_---_· __ ·-*._*-".,-_._--

DIMENSION IFPRE(2,l) ,YMASS(l) 
NTOTV=NDOFN'NPOIN 
IPOSN=O 
DO 500 IPOIN=l,NPOIN 
DO 500 IDOFN=l,NDOFN 
IPOSN :IPOSN+ 1 

500 IF(IFPRE(IDOFN,IPOIN).EQ.l) YMASS(IPOSN)= 1.E30 
WRITE(6,900) 

900 FORMAT(/5X,19HNODAL LUMPED MASSES/) 
WRITE(6,910) (ITOTV,YMASS(ITOTV),ITOTV=l,NTOTV) 

910 FORMAT(6(lX,I5,E13.5» 
RETURN 
END 

10.6.7 Subroutine FLOWVP 
This routine evaluates the visco plastic strain rate. 

SUBROUTINE FLOWVP (AVECT ,KGAUS ,LPROP ,NCRIT ,NMATS ,PROPS, 
• STEFF VIVEL YIELD) 

C •••••••••••••••••••• ··.*·.****'.·.··*~*·····*·***·*·,'*, ••• *',." •• * 
C 
C···· CALCULATES VISCOPLASTIC STRAIN RATE 
C 
c··············_····,·_,· ....... **,·,-_·_,···,,·,--,··*,-*-.-.-,_._,-

DIMENSION AVECT(4) ,PROPS(NMATS,l) ,VIVEL(5,1) 
IF(STEFF.EQ.O.O) GO TO 90 
NSTR1=4 
TOLOR=O.Ol 
FDATM=PROPS(LPROP, 6) 
HARDS=PROPS(LPROP, 7) 
FRICT=PROPS(LPROP, 8) 
GAMMA=PROPS(LPROP, 9) 
DELTA=PROPS(LPROP,10) 
NFLOW=PROPS(LPROP,ll) 
FRICT =FRICT'O • 017453292 
IF(NCRIT.EQ.3) FDATM=FDATM'~(FRICT) 
IF(NCRIT.EQ.4) FDATM=6.0'FD 'COS(FRICT)/ 

.(1.73205080757·(3.0-SIN(FRI ») 
IF(HARDS.GT.O.) FDATM=FDATM+VIVEL(5,KGAUS)'HARDS 
IF(FDATM.LT.0.001) FDATM=1.0 
FCURR=YIELD-FDATM 
FNORM=FCURRlFDATM 
IF(FNORM.LT.TOLOR) GO TO 90 
IF( NFLOW. EQ. 1) GO TO 50 
CHULT=GAHMA·(EXP(DELTA·FNORM)-1.0) 
GO TO 60 

50 CHULT=GAHMA'(FNORM"DELTA) 
60 CONTINUE 

DO 70 ISTR1=I,NSTRl 
70 AVECT(ISTR1)=CMULT'AVECT(ISTR1) 

DO 80 ISTR1=I,NSTRl 
80 VIVEL(ISTR1,KGAUS)=AVECT(ISTR1) 

RETURN 
90 DO 100 ISTR1=1,NSTRl 

100 VIVEL(ISTR1,KGAUS)=0. 
RETURN 
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10.6.8 Function FUNCTA 
This function interpolates the accelerogram data for a particular time step. 

AFACT is the ratio of the accelerogram record time step length to the compu
tational time step length. 

FUNCTION FUNCTA (ACCER,AFACT,DTEND,DTIME,IFUNC,JSTEP) 
C.*I**."'I*' ••••• **.**.**.*,._**.**.** •• _***********-1"111*11111'** 
C 
c*** ACCELEROGRAM INTERPOLATION 
C 
C"III'I*III*******'**'*****'*'*'**"'***'*'*'**"""1"111*'*1*1*" 

DIMENSION ACCER(l) 
IF(IFUNC.NE.O) RETURN 
FUNCTA=O.O 
IF(JSTEP.EQ.O.OR.FLOAT(JSTEP)*DTIME.GT.DTEND) RETURN 
XGASH=(FLOAT(JSTEP)-1.0)/AFACT+l.0 
MGASH=XGASH 
NGASH=MGASH+ 1 
XGASH=XGASH-FLOAT(MGASH) 
FUNCTA=ACCER(MGASH)*(1.0-XGASH)+XGASH*ACCER(NGASH) 
RETURN 
END 

10.6.9 Function FUNCTS 

FUNA 1 
FUN A 2 
FUNA 3 
FUNA 4 
FUNA 5 
FUNA 6 
FUNA 7 
FUNA 8 
FUNA 9 
FUNA 10 
FUNA 11 
FUNA 12 
FUNA 13 
FUNA 14 
FUNA 15 
FUNA 16 
FUNA 17 

This function sets the value of the time varying function for a particular 
time step. Heaviside functions (f(t) = 1.0 H(t» or harmonic functions, 
(J(t) = a - b sin wt) can be specified. 

FUNCTION FUNCTS (AZERO,BZERO,DTEND,DTIME,IFUNC,JSTEP,OMEGA) 
C •• 'I*.*I**I •• *.*********-*******.***_.*******-*-****-1**11'*'**11'" 
C 
C*** HEAVISIDE AND HARMONIC TIME FUNCTION 
C 
c._***.******-*.*--**-******_._*-*--*******-**.*._.*-*f"II'*'I**I*" 

IF(IFUNC.EQ.O) RETURN 
FUNCTS=O.O 
IF(JSTEP.EQ.O.OR.FLOAT(JSTEP)*DTIME.GT.DTEND) RETURN 
IF(lFUNC.EQ.l) FUNCTS = 1.0 
IF(IFUNC.EQ.2) ARGUM=OMEGA*JSTEP*DTIME 
IF(IFUNC.EQ.2) FUNCTS = AZERO + BZERO*SIN(ARGUM) 
RETURN 
END 

10.6.10 Subroutine INPUTD 

FUNS 1 
FUNS 2 
FUNS 3 
FUNS 4 
FUNS 5 
FUNS 6 
FUNS 7 
FUNS 8 
FUNS 9 
FUNS 10 
FUNS 11 
FUNS 12 
FUNS 13 
FUNS 14 

This subroutine reads and writes most of the control parameters, nodal 
point coordinates, element connectivities, boundary conditions ~nd material 
properties. It also writes the geometric data onto file 13 for deformation 
plotting. A similar routine was described in Chapter 6. 

SUBROUTINE INPUTD (COORD ,IFPRE ,LNODS ,1-1ATNO 
NDIME ,NDOFN ,NELEM ,NGAUM 
NMATS ,NNODE ,NPOIN ,NPREV 
POSGP ,PROPS ,WEIGP ) 

,NCONM 
,NGAUS 
,NSTRE 

,NCRIT , 
,NLAPS , 
,NTYPE , 

C"********I __ *_*._-*--******.***********.****.***************.****** 
C 
C*** DYNP~ INPUT ROUTINE 
C 
c******** •• *.*.****.* •••• _.**.***-***.***-* ••• *************1**11*.*** 

DIMENSION COORD(NPOIN,1) ,IFPRE(NDOFN,1) ,WEIGP( 1) ,MATNO( 1) , 

NPUT 1 
NPUT 2 
NPUT 3 
NPUT 4 
NPUT 5 
NPUT 6 
NPUT 7 
NPUT 8 
NPUT 9 
NPUT 10 
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READ(5,913) TITLE 
913 FORMAT(10A4) 

WRlTE(6,914) TITLE 
914 FORMAT(II,5X,10A4) 

C 
C •• * READ THE FIRST DATA CARD, 
C 

AND ECHO IT IMMEDIATELY. 

READ (5,900) NVFIX,NTYPE,NNODE,NPROP,NGAUS,NDIME,NSTRE,NCRIT, 
NPREV,NCONM,NLAPS,NGAUM,NRADS 

·WRITE(6,901) NPOIN, NELEM ,NVFIX , NTYPE,NNODE,NDOFN,NMATS , NPROP , 
NGAUS , NDIME ,NSTRE ,NCRIT,NPREV,NCONM,NLAPS, NGAUM , 

• NRADS 
901 FORMAT (/5X,18HCONTROL PARAMETERSI 

15X,8H NPOIN =,I10,5X,BH NELEM =,I10,5X,8H NVFIX =,1101 
15X,BH NTYPE =,I10,5X,BH NNODE =,I10,5X,8H NDOFN =,1101 
15X,BH NMATS =,Il0,5X,8H NPROP =,I10,5X,8H NGAUS =,1101 
15X,BH NDIME =,Il0,5X,BH NSTRE =,I10,5X,BH NCRIT =,1101 
15X,BH NPREV =,I10,5X,8H NCONfl =,I10,5X,BH NLAPS =,1101 

• 15X,8H NGAUM =,Il0,5X,BH NRADS =,110/) 
900 FORMAT ( 1615) 

C 
C ••• READ THE ELEMENT NODAL CONNECTIONS, AND THE PROPERTY NUMBERS. 
C 

NPUT 12 
NPUT 13 
NPUT 1q 
NPUT 15 
NPUT 16 
NPUT 17 
NPUT 18 
NPUT 19 
NPUT 20 
NPUT 21 
NPUT 22 
NPUT 23 
NPUT 24 
NPUT 25 
NPUT 26 
NPUT Z7 
NPUT 28 
NPUT 29 
NPUT 30 
NPUT 31 
NPUT 32 
NPUT 33 
NPUT 3q 

WRITE (6,902) NPUT 35 
902 FORMAT(115X,8H ELEMENT,3X,BHPROPERTY,6X,12HNODE NUMBERS) NPUT 36 

DO 530 IELEM=1,NELEM NPUT 37 
READ (5,900) NUMEL,MATNO(NUMEL),(LNODS(NUMEL,INODE),INODE=1,NNODE)NPUT 38 
WRITE(13,915 ) NUMEL,(LNODS(NUMEL,INODE),INODE=1,NNODE) NPUT 39 

530 WRITE(6,903) NUMEL,MATNO(NUMEL),(LNODS(NUMEL,INODE),INODE=1,NNODE)NPUT 40 
903 FORMAT(6X,I5,I9,6X,10IS) NPUT 41 
915 FORMAT ( 1615) NPUT 42 

C NM ~ 
C·** ZERO ALL THE NODAL COORDINATES, PRIOR TO READING SOME OF THEM. NPUT 4q 
C NPUT 45 

DO 500 IPOIN=1,NPOIN NPUT 46 
DO 500 IDIME=1, NDlME NPUT 47 

500 CooRD(IPOIN,IDIME)=O." NPUT 48 
C NPUT 49 
C*** READ SOME NODAL COORDINATES, FINISHING WITH THE LAST NODE OF ALL. NPUT 50 
C NPUT 51 

904 FORMAT(115X,5H NODE,9X,1HX,9X,1HY,5X) NPUT 52 
200 READ (5,905) IPOIN,(CooRD(IPOIN,IDIME),IDIME=1,NDIME) NPUT 53 

WRITE(6,906) IPOIN,(CooRDCIPOIN,IDIME),IDIME=',NDIME) NPUT 54 
905 FORMAT(I5,6F10.5) NPUT 55 

IF (IPOIN.NE.NPOIN) GO TO 200 NPUT 56 
C 
C*** INTERPOLATE COORDINATES OF MID-SIDE NODES 
C 

C 
CALL NODXYR (COORD,LNODS,NELEM,NNODE,NPOIN,NRADS,NTYPE) 

WRITE (6,904) 
WRITE(13,916 ) (IPOIN,(COORD(IPOIN,IDIME),IDIME=',NDIME), 

• IPOIN=l,NPOIN) 
916 FORMAT(I5,2G15.6) 

WRITE( 6, 906) (IPOIN,(COORD(IPOIN,IDlME),IDlME=l,NDIME), 
.IPOIN=l,NPOIN) 

906 FORMAT(5X,I5,2F10.3) 
C 
C··· READ THE FIXED VALUES. 
C 

WRITE(6,907) 
907 FORMAT(I/5X,5H NODE,2X,4HCODE) 

DO 540 IPOIN=l,NPOIN 
DO 540 IDOFN=',NDOFN 

NPUT 57 
NPUT 58 
NPUT 59 
NPUT 60 
NPUT 61 
NPUT 62 
NPUT 63 
NPUT 64 
NPUT 65 
NPUT 66 
NPUT 67 
NPUT 68 
NPUT 69 
NPUT 70 
NPUT 71 
NPUT 72 
NPUT 73 
NPUT 74 
NPUT 75 
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540 IFPRE(IDOFN,IPOIN)=O 
DO 550 IVFIX;l,NVFIX 

550 READ (5,908) IPOIN,(IFPRE(IDOFN,IPOIN),IDOFN=l,NDOFN) 
DO 560 IPOIN=l,NPOIN 

560 WRITE(6,909) IPOIN,(IFPRE(IDOFN,IPOIN),IDOFN;l,NDOFN) 
908 FORMAT(lX,I4,3X,2Il) 
909 FORMAT(6X,I5,3X,2Il) 

401 

C*** R~ THE AVAILABLE SELECTION OF ELEMENT PROPERTIES. 
C 

NPUT 76 
NPUT 77 
NPUT 78 
NPUT 79 
NPUT 80 
NPUT 81 
NPUT 82 
NPUT 83 
NPUT 84 
NPUT 85 
NPUT 86 
NPUT 87 
NPUT 88 
NPUT 89 
NPUT 90 
NPUT 91 
NPUT 92 
NPUT 93 
NPUT 94 
NPUT 95 
NPUT 96 
NPUT 97 
NPUT 98 
NPUT 99 
NPUT 100 
NPUT 101 
NPUT 102 
NPUT 103 
NPUT 104 
NPUT 105 
NPUT 106 

WRITE(6,910) 
910 FORMAT(115X,19HMATERIAL PROPERTIES) 

DO 520 IMATS;l,NMATS 
READ(5,900) NUMAT 
READ (5,917) (PROPS(NUMAT,IPROP),IPROP=l,NPROP) 
WRITE(6,911) NUMAT 

911 FORMAT(/5X,11HMATERIAL NO,I5) 
520 WRITE(6,912) (PROPS(NUMAT,IPROP),IPROP=l,NPROP) 
912 FORMAT(/5X,13HYOUNG MODULUS,G12.4/5X,13HPOISSON RATIO,G12.41 

5X,13HTHICKNESS ,G12.4/5X,13HMASS DENSITY ,G12.41 
5X,13HALPHA TEMPR ,G12.4/5X,13HREFERENCE FO ,G12.41 
5X,13HHARDENING PAR,G12.4/5X,13HFRICT ANGLE ,G12.4/ 
5X,13HFLUIDITY PAR ,G12.4/5X,13HEXP DELTA ,G12.4/ 
5X,13HNFLOW CODE ,G12.4) 

917 FORMAT(8El0.4) 
C 
C._' SET UP GAUSSIAN INTEGRATION CONSTANTS 
C 

CALL GAUSSQ (NGAUS,POSGP,WEIGP) 
RETURN 
END 

10.6.11 Subroutine INTIME 
This routine reads and writes all data required for time integration and 

plotting stress and displacement histories. 

SUBROUTINE INTIME (AALFA ,ACCEH ,ACCEV ,AFACT ,AZERO ,BEETA , TIME 1 
BZERO ,DELTA ,DTIME ,DTEND ,GAAMA ,IFIXD , TIME 2 
IFUNC ,INTGR ,KSTEP ,MITER ,NDOFN ,NELEM , TIME 3 
NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD ,NREQD , TIME 4 
NREQS INSTEP ,OMEGA ,TDISP ,TOLER ,VELOC , TIME 5 

• IPRED ) TIME 6 
C········***·*********.*······**··***********.·***.**.""*""'***'*"'TIME 7 
C TIME 8 
C I. INITIAL VALUES AND TIME INTEGRATION DATA TIME 9 
C TIME 10 c.·**.· ••. * •••• **.***.******.***.**.** •• ****.******* •• ******************TlME 

DIMENSION TDISPO) ,ACCEH( 1) ,NPRQD( 1) ,INTGR( 1) , TIME 
VELOC( 1) ,ACCEV( 1) ,NGRQS( 1) TIME 

READ TIME STEPPING AND SELECTIVE OUTPUT PARAMETERS 

READ (5,902) NSTEP,NOUTD,NOUTP,NREQD,NREQS,NACCE,IFUNC, 
IFIXD,MITER,KSTEP,IPRED 

READ (5,190) DTIME,DTEND,DTREC,AALFA,BEETA,DELTA,GAAMA, 
AZERO,BZERO,OMEGA,TOLER 

WRlTE(6,950) NSTEP,NOUTD,NOUTP,NREQD,NREQS,NACCE,IFUNC, 
IFIXD,MITER,KSTEP,IPRED 

WRITE(6,960) DTlHE,DTEND,DTREC,AALFA,BEETA,DELTA,GAAMA, 
• AZERO,BZERO,OMEGA,TOLER 

950 FORMAT(/5X,'TlHE STEPPING PARAMETERS'/ 
/5X,'NSTEP=',I5,12X,'NOUTD=',I5,12X,'NOUTP=',I5,1 
/5X,'NREQD=',I5,12X,'NREQS=',I5,12X,'NACCE=',I5,/ 
/5X, 'IFUNe=' ,I5,12X, 'IFIXD=' ,I5,12X, 'MITER=' ,15,/ 
/5X, 'KSfEP=' ,I5,12X, 'IPRED=' ,15) 

TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 
TIME 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 



402 FINITE ELEMENTS IN PLASTICITY 

C 

960 FORMAT(/5X,'DTIME=',G12.4,5X,'DTEND=',G12.4,5X,'DTREC=',G12.4,1 
15X,'AALfA=',G12.4,5X, 'BEETA=',G12.4,5X,'DELTA=',G12.4,1 
15X,'GAAMA=',G12.4,5X,'AZERO=',G12.415X,'BZERO=',G12.4,1 
15X, 'OMEGA=' ,G12.4,5X, 'TOLER=' ,G12.4) 

C*.. SELECTED NODES AND GAUSS POINTS FOR OUTPUT 
C 

C 

READ(5,902) (NPRQD(IREQD),IREQD=l,NREQD) 
READ(5J 902) (NGRQS(IREQS),IREQS=l,NREQS) 
WRITE(o,909) 

909 FORHAT(115X,41H SELECTIVE OUTPUT REQUESTED FOR FOLLOWING) 
WRITE(6,910) (NPRQD(IREQD),IREQD=l,NREQD) 

910 FORHAT(/,5X,6H NODES,10I5) 
WRITE(6,911) (NGRQS(IREQS),IREQS=l,NREQS) 

911 FORMAT(5X,6H G.P. ,1015) 
902 FORMAT(1615) 
190 FORMAT(8Fl0.4) 

C.** READ THE INDICATOR FOR EXPLICIT OR IMPLICIT ELEMENT 
C 

READ (5,902) (INTGR(IELEM),IELEM=l,NELEM) 
WRITE(6,930) 
WRITE(6,902) (INTGR(IELEM),IELEM=l,NELEM) 

930 FORMAT(/5X, , TYPE OF ELEMENT, IMPLICIT=1,EXPLICIT=2 'I) 
C 
C.** INITIAL DISPLACEMENTS 
C 

C 

JPOIN=O 
DO 500 IPOIN=l,NPOIN 
DO 500 IDOFN=l,NDOFN 
JPOIN=JPOIN+ 1 
TO ISP( J POIN):O . 

500 VELOC(JPOIN)=O. 
WRITECli,903) 

200 READ( 5,904) NGASH, XGASH, YGASH 
NPOSN=(NGASH-l)*NDOFN+l 
TOISP(NPOSN)=XGASH 
NPOSN=NPOSN+1 
TOISP(NPOSN)=YGASH 
WRITE(6,905) NGASH,XGASH,YGASH 
IF(NGASH.NE.NPOIN) GO TO 200 

C*** INITIAL VELOCITIES 
C 

C 

WRITE (6 , 906) 
210 READ(5,904) NGASH,XGASH,YGASH 

NPOSN=(NGASH-l)*NDOFN+l 
VELOC(NPOSN)=XGASH 
NPOSN=NPOSN+l 
VELOC(NPOSN)=YGASH 
WRITE (6 , 905 ) NGASH, XGASH , YGASH 
IF(NGASH.NE.NPOIN) GO TO 210 

904 FORMAT(I5,2Fl0.5) 
903 FORHAT(115X,5H NODE,2X,16H INITIAL X-DISP.,2X, 

.16H INITIAL Y-DISP./) 
905 FORHAT(Il0,2E18.5) 
906 FORHAT(115X,5H NODE,2X,16H INITIAL X-VELO.,2X, 

• 16H INITIAL Y-VELO.I) 
IF (IFUNC.NE.O) GO TO 250 

c*" READ ACCELEROGRAM DATA ,X-DIREC FROM TAPE 7,Y-DIREC FROM TAPE 12 
C 

AFACT=DTREC/DTIME 
IF(IFIXD-l) 220,230,240 

220 READ (7,907)(ACCEH(I),I=1,NACCE) 

TIME 30 
TIME 31 
TIME 32 
TIME 33 
TIME 34 
TIME 35 
TIME 36 
TIME 37 
TIME 38 
TIME 39 
TIME 40 
TIME 41 
TIME 42 
TIME 43 
TIME 44 
TIME 45 
TIME 46 
TIME 47 
TIME 48 
TIME 49 
TIME 50 
TIME 51 
TIME 52 
TIME 53 
TIME 54 
TIME 55 
TIME 56 
TIME 57 
TIME 58 
TIME 59 
TIME 60 
TIME 61 
TIME 62 
TIME 63 
TIME 64 
TIME 65 
TIME 66 
TIME 67 
TIME 68 
TIME 69 
TIME 70 
TIME 71 
TIME 72 
HME 73 
TIME 74 
TIME 75 
TIME 76 
TIME 77 
TIME 78 
TIME 79 
TIME 80 
TIME 81 
TIME 82 
TIME 83 
TIME 84 
TIME 85 
TIME 86 
TIME 87 
TIME 88 
TIME 89 
TIME 90 
TIME 91 
TIME 92 
TIME 93 
TIME 94 
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WRITE(6,912) DTREC 
WRITE(6,907)(ACCEH(I),I=1,NACCE) 
READ(12,907)(ACCEV(I),I=1,NACCE) 
WRITE(6,913) DTREC 
WRITE(6,907)(ACCEV(I),I=1,NACCE) 
GO TO 250 

230 READ(12,907)(ACCEV(I),I=1,NACCE) 
WRITE(6,913) DTREC 
WRITE(6,907)(ACCEV(I),I=1,NACCE) 
GO TO 250 

240 READ(7,907) (ACCEH(I),I=1,NACCE) 
WRITE(6,912) 
WRITE(6,907)(ACCEH(I),I=1,NACCE) 

907 FORMAT(7F10.3) 
912 FORMAT(/5X,'HORIZONTAL ACCELERATION ORDINATES AT',F9.4,2X,'SEC'/) 
913 FORMAT(/5X,'VERTICAL ACCELERATION ORDINATES AT',F9.4,2X, 'SEC'/) 
250 CONTINUE 

RETURN 
END 

403 

TIME 95 
TIME 96 
TIME 97 
TIME 98 
TIME 99 
TIME 100 
TIME 101 
TIME 102 
TIME 103 
TIME 1011 
TIME 105 
TIME 106 
TIME 107 
TIME 108 
TIME 109 
TIME 110 
TIME 111 
TIME 112 
TIME 113 

TIME 14--33 
TIME 34-46 

Read and write most of the control time integration data. 
Read the selective nodal points and integration points for 
displacement and stress history. 

TIME 54--70 
TIME 71-87 
TIME 89--111 

Read initial displacement. 
Read initial velocities. 
Read appropriate acceleration data. 

10.6.12 Subroutine INV AR 
This routine calculates the stress invariants and yield values for the various 

yield criteria. The choice of yield criterion is governed by the parameter 
NCRIT. A similar routine was described in Section 7.8.3. 

SUBROUTINE INVAR (DEVIA ,LPROP ,NCRIT ,NMATS ,PROPS ,SINT3 , 
• STEFF ,STEMP THETA VARJ2 YIELD) 

C •••••••••••••••••••••••••••••••••••••••• ,· ••••• , •••• ·._ ••••••••••••• 
C 
cn STRESS INVARIANTS 
C 

c············ ...• · ... ·····.·····.····.············,,·· ... ,',.,.".," 
DIMENSION DEVIA(II) ,PROPS(NMATS,1) ,STEMP(4) 

c 
C··· INVARIANTS 
C 

ROOT3=1.73205080757 
SMEAN=(STEMP(1)+STEMP(2)+STEMP(II»/3.0 
DEVIA(1)=STEMP(1)-SMEAN 
DEVIA(2)=STEMP(2)-SMEAN 
DEVIA(3)=STEMP(3) 
DEVIA(II)=STEMP(4)-5MEAN 
VARJ2=DEVIA(3)'DEVIA(3)+O.5·(DEVIA(1)·DEVIA(1)+ 

• DEVIA(2)'DEVIA(2)+DEVIA(4)'DEVIA(4) 
VARJ3=DEVIA(II)'(DEVIA(II)'DEVIA(4)-VARJ2) 
STEFF=SQRT(VARJ2) 
IF (VARJ2.EQ.0.0.OR.STEFF .EQ.O.O) GO TO 5 
SINT3=-2.5980762113·VARJ3/(VARJ2·STEFF) 
GO TO 6 

5 SOO3=0.0 
6 CONTINUE 

IF(SINT3.LT.-1.0) SINT3=-1.0 

INVR 1 
INVR 2 
INVR 3 
INVR II 
INVR 5 
INVR 6 
INVR 7 
INVR 8 
INVR 9 
INVR 10 
INVR 11 
INVR 12 
INVR 13 
INVR 14 
INVR 15 
INVR 16 
INVR 17 
INVR 18 
INVR 19 
INVR 20 
INVR 21 
INVR 22 
INVR 23 
INVR 24 
INVR 25 
INVR 26 
INVR zr 
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IF(SINT3.GT. 1.0) SINT3: 1.0 
THETA=ASIN(SINT3)/3.0 
GO TO (1,2,3,4) NCR IT 

CU- TRESCA 
1 YIELD=2.0*COS(THETA)*STEFF 

RETURN 
C*** VON MISES 

2 YIELD=ROOT3*STEFF 
RETURN 

C*_. MOHR-COULOMB 
3 PHlRA=PROPS(LPROP, 8)*0. 017453292 

SNPHI:SIN(PHIRA) 
YIELD:SMEAN*SNPHI+STEFF*(COS(THETA)-SIN(THETA)*SNPHI/ROOT3) 
RETURN 

C*** DRUCKER-PRAGER 
4 PHIRA=PROPS(LPROP,8)*0.017453292 

SNPHI=SIN(PHIRA) 
YIELD:6.0*SMEAN*SNPHI/(ROOT3*(3.0-SNPHI»+STEFF 
RETURN 
END 

10.6.13 Subroutine JACOBD 

INVR 28 
INVR 29 
INVR 30 
INVR 31 
INVR 32 
INVR 33 
INVR 34 
INVR 35 
INVR 36 
INVR 37 
INVR 38 
INVR 39 
INVR 40 
INVR 41 
INVR 42 
INVR 43 
INVR 44 
INVR 45 
INVR 46 
INVR 47 

This subroutine evaluates the deformation Jacobian matrix [ID]" for a 
particular sampling point within an element. 

SUBROUTINE JACOBO (CARTD ,DLCOD ,DJACM ,NDIME ,NLAPS ,NNODE ) 
c-*····_·_··········_*-_·····_··_*_·········*····*··_·._-_.* ........ . 
C 
C*** DEFORMATION JACOBIAN 
C C·_····4._ •••••• _.-._. __ •• _ •••••• ---*-*_._. __ . __ .-._.-.. -.. _.*_._ ... -

DIMENSION CARTD(2,9) ,DLCOD(2,9) ,DJACM(2,2) 
IF(NLAPS.GT.1) GO TO 10 

C 
C*" fOR SMALL DISPLACEMENT 
C 

C 

DJACM( 1, 1l=1.0 
DJACM(2,2):1.0 
DJACM(1,2)=0.0 
DJACM(2,1l=0.0 
RETURN 

c**. FOR LARGE DISPLACEMENT 
C 

10 CONTINUE 
DO 20 IDIME:1, NDIME 
DO 20 JDlME=1,NDIME 
DJACM(IDlME,JDlME):O.O 
DO 20 INODE=1,NNODE 
DJACM(IDIME,JDlME):DJACM(IDIME,JDIME) 

.+DLCOD(IDIME,INODE)*CARTD(JDlME,INODE) 
20 CONTINUE 

RETURN 
END 

10.6.14 Subroutine LINGNL 

JACD 1 
JACD 2 
JACD 3 
JACD 4 
JACD 5 
JACD 6 
JACD 7 
JACD 8 
JACD 9 
JACD 10 
JACD 11 
JACD 12 
JACD 13 
JACD 14 
JACD 15 
JACD 16 
JACD 17 
JACD 18 
JACD 19 
JACD 20 
JACD 21 
JACD 22 
JACD 23 
JACD 24 
JACD 25 
JACD 26 
JACD 27 
JACD 28 
JACD 29 

This routine calculates the total elastic strain and corresponding elastic 
stresses at a particular integration point. In this calculation the strains are 
evaluated using the deformation Jacobian matrix if geometric nonlinear 
behaviour is to be taken into account. 
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SUBROUTINE LINGNL (CARTD ,DJACM ,DMATX ,ELDIS ,GPCOD ,KGASP , 
KGAUS ,NDOFN ,NLAPS ,NNODE ,NSTRE INTYPE , 

. POISS ,SHAPE ,STRAN ,STRES ,STRIN 
C-*·······_-_· __ ··,_·_,····,,·,,··,·,-,···,_··········._,*-_._., ..... 
C 
C*** ELASTIC STRAIN AND STRESSES 
C 
C--*-,-_·_-,_·_,·····,---"',·,_·,"'-,·,_·,,·,·,·····*'-* .. " .. ,_ ... 

C 

DIMENSION CARTD(2,9) ,STRAN(4) ,DMATX(4,4) ,STRIN(4,l) , 
ELDIS(2,9) ,STRES(4) ,DJACM(2,2) ,AGASH(2,2) , 
GPCOD(2,9) ,SHAPE(9) 

C*** CALCULATE STRAINS FROM DEFORMATION JACOBIAN 
C 

C 

IF(NLAPS.LT.2) GO TO 15 
STRAN(1)=0.5*(DJACM(1,1)*DJACM(1,l)+DJACM(2,l)*DJACM(2,1)-1.) 
STRAN( 2):0. 5*(DJACM( 1, 2) *DJACM('1,2)+DJACM( 2,2) *DJACM( 2,2) -1 . ) 
STRAN(3)=DJACM(1,l)*DJACM(l,2)+DJACM(2,1)*DJACM(2,2) 

C *** FOR SMALL DISPLACEMENTS 
C 

C 

GO TO 25 
15 CONTINUE 

DO 10 IDOFN=1,NDOFN 
DO 10 JDOFN=1,NDOFN 
BGASH=O.O 
DO 20 INODE=1,NNODE 

20 BGASH=BGASH+CARTD(JDOFN,INODE)*ELDIS(IDOFN,INODE) 
10 AGASH(IDOFN,JDOFN)=BGASH 

STRAN(1)=AGASH(1,1) 
STRAN(2)=AGASH(2,2) 
STRAN(3)=AGASH(l,2)+AGASH(2,1) 

25 CONTINUE 
IF(NTYPE.LT.3) GO TO 90 
STRAN(4)=0.0 
DO 70 INODE=l,NNODE 

70 STRAN(4)=STRAN(4)+ELDIS(1 ,INODE)*SHAPE(INODE)/GPCOD(l ,KG ASP) 
EXTRA=O.O 
DO 80 INODE=l,NNODE 

80 EXTRA=EXTRA+ELDIS(l,INODE)*SHAPE(INODE)/GPCOD(l,KGASP) 
STRAN(4)=STRAN(4)+O.5*EXTRA*EXTRA 

90 DO 50 ISTRE=l,4 
STRAN(ISTRE)=STRAN(ISTRE)-STRIN(ISTRE,KGAUS) 

50 CONTINUE 

c*** AND THE CORRESPONDING STRESSES 
C 

DO 30 ISTRE=1,NSTRE 
STRES(ISTRE) =0.0 
DO 30 JSTRE=1,NSTRE 

30 STRES(ISTRE)=STRES(ISTRE)+DMATX(ISTRE,JSTRE)*STRAN(JSTRE) 
IF(NTYPE.EQ.1) STRES(4l=0.0 
IF(NTYPE.EQ.2) STRES(4)=POISS*(STRES(1)+STRES(2» 
RETURN 
END 

10.6.15 Subroutine LOADPL 
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LINR 1 
LINR 2 
LINR 3 
LINR 4 
LINR 5 
LINR 6 
LINR 7 
LINR 8 
LINR 9 
LINR 10 
LINR 11 
LINR 12 
LINR 13 
LINR 14 
LINR 15 
LINR 16 
LINR 17 
LINR 18 
LINR 19 
LINR 20 
LINR 21 
LINR 22 
LINR 23 
LINR 24 
LINR 25 
LINR 26 
LINR 27 
LINR 28 
LINR 29 
LINR 30 
LINR 31 
LINR 32 
LINR 33 
LINR 34 
LINR 35 
LINR 36 
LINR 37 
LINR 38 
LINR 39 
LINR 40 
LINR 41 
LINR 42 
LINR 43 
LINR 44 
LINR 45 
LINR 46 
LINR 47 
LINR 48 
LINR 49 
LINR 50 
LINR 51 
LINR 52 
LINR 53 
LINR 54 
LINR 55 

This routine reads load data and evaluates the consistent nodal forces 
associated with thermal loading. A similar routine was described in Section 
6.4.5. The a,dditions which are included here have been discussed in detail 
in the authors' earlier text Finite Element Programming.(7l 
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SUBROUTINE LOADPL (COORD ,FORCE ,LNODS ,MATNO 
NELEM , NGAUS , NMATS , NNODE 
NTYPE , POSGP ,PROPS ,RLOAD 
WEIGP ) 

,NDlME 
, NPOIN 
,STRIN 

,NDOFN , 
,NSTRE , 
,TEMPE, 

C··············································*···**· .............. . 
C 
C'" STANDARD LOAD ROUTINE 
C 
C····················"···,·,·,··,,,···············,·, ........... , .. . 

DIMENSION COORD(NPOIN,1) ,GPCOD(2,9) ,POSGP(1) ,STRAN(4) , 
LNODS(NELEM,1) ,CARTD(2,9) ,WEIGP(1) ,STRES(4) , 
PROPS(NMATS,1) ,DERIV(2,9) ,TEMPE(1) , NOPRS(3) , 
RLOAD(NELEM,1) ,ELCOD(2,9) ,MATNO(1) ,DGASH(2) , 
STRIN( 4, 1) ,PRESS(3,2) ,SHAPE(9) ,PGASH(2) , 
DMATX( 4, 4) , TITLE ( 10) ,POINT(2) , FORCE ( 1) 

TWOPI=6.283185307179586 
NEVAB=NNODE'NDOFN 
DO 10 IELEM=1,NELEM 
DO 10 IEVAB=1,NEVAB 

10 RLOAD(IELEM,IEVAB)=O.O 
READ(5,901) TITLE 

901 FORMAT (10A4) 
WRITE(6,903) TITLE 

903 FORMAT(/5X,17HLOAD CASE TITLE -,10A4) 
C 
C'" READ DATA CONTROLLING LOADING TYPES TO BE INPUTTED 
C 

READ (5,919) IPLOD,IGRAV,IEDGE,ITEMP 
WRITE(6,990) 

990 FORMAT(/5X,21HLOAD INPUT PARAMETERS) 
WRITE(b,991) IPLOD,IGRAV,IEDGE,ITEMP 

991 FORMAT(/5X,l2HPOINT LOADS ,I5/5X,12HGRAVITY 
. 5X,12HEDGE LOAD ,I5/5X,12HTEMPERATURE 

919 FORMAT(1615) 
C 
C'" READ NODAL POINT LOADS 
C 

C 

IF(IPLOD.EQ.O) GO TO 500 
WRITE(6,998) 

998 FORMAT(/5X,5H NODE,10H PX,10H PY/) 
20 READ (5,931) LODPT,(POINT(IDOFN),IDOFN=1,NDOFN) 

WRlTE(6,933) LODPT,(POINT(IDOFN),IDOFN=l,NDOFN) 
933 FORMAT(5X,I5,2G10.3) 
931 FORMAT(I5,2Fl0.3) 

C'" ASSOCIATE THE NODAL POINT LOADS WITH AN ELEMENT 
C 

C 

DO 30 IELEM=1,NELEM 
DO 30 INODE=1,NNODE 
NLOCA=lABS(LNODS(IELEM,INODE» 

30 IF (LODPT .EQ.NLOCA) GO TO 40 
40 DO 50 IDOFN=1,NDOFN 

NGASH=(INODE-l)INDOFN+IDOFN 
50 RLOAD(IELEM,NGASH)=POINT(IDOFN) 

IF (LODPT .LT .NPOIN) GO TO 20 
500 CONTINUE 

IF(IGRAV.EQ.O) GO TO bOO 

C'" READ GRAVITY ANGLE AND GRAVITATIONAL CONSTANT 
C 

,151 
,15) 

LOAD 1 
LOAD 2 
LOAD 3 
LOAD 4 
LOAD 5 
LOAD 6 
LOAD 7 
LOAD 8 
LOAD 9 
LOAD 10 
LOAD 11 
LOAD 12 
LOAD 13 
LOAD 14 
LOAD 15 
LOAD 16 
LOAD 17 
LOAD 18 
LOAD 19 
LOAD 20 
LOAD 21 
LOAD 22 
LOAD 23 
LOAD 24 
LOAD 25 
LOAD 26 
LOAD 27 
LOAD 28 
LOAD 29 
LOAD 30 
LOAD 31 
LOAD 32 
LOAD 33 
LOAD 34 
LOAD 35 
LOAD 36 
LOAD 37 
LOAD 38 
LOAD 39 
LOAD 40 
LOAD 41 
LOAD 42 
LOAD 43 
LOAD 44 
LOAD 45 
LOAD 46 
LOAD 47 
LOAD 48 
LOAD 49 
LOAD 50 
LOAD 51 
LOAD 52 
LOAD 53 
LOAD 54 
LOAD 55 
LOAD 56 
LOAD 57 
LOAD 58 
LOAD 59 
LOAD 60 

READ(5,906) THETA,GRAVY LOAD 61 
906 FORMAT(2F10.3) LOAD 62 

WRITE (6 ,911) THETA,GRAVY LOAD 63 
911 FORMAT(1HO,16H GRAVITY ANGLE =,F10.3,19H GRAVITY CONSTANT =,F10.3)LOAD 64 



C 

C 
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THETA:THETA/57.295779514 

DO 90 IELEM: 1 , NELEM 

cttt SET UP PRELIMINARY CONSTANTS 
C 

C 

LPROP:MATNO(IELEM) 
THICK:PROPS(LPROP,3) 
DENSE:PROPS(LPROP,4) 
IF(DENSE.EQ.O.O) GO TO 90 
GXCOM:DENSEtGRAVY*SIN(THETA) 
GYCOM:-DENSE*GRAVY*COS(THETA) 

ct.. COMPUTE COORDINATES OF THE ELEMENT NODAL POINTS 
C 

c 

DO 60 INODE:l,NNODE 
LNODE:IABS(LNODS(IELEM,INODE)) 
DO 60 IDIME:1,NDIME 

60 ELCOD(IDIME,INODE):CooRD(LNODE,IDIME) 

C'" ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 

C 

KGASP:O 
DO 80 IGAUS:1,NGAUS 
DO 80 JGAUS:l,NGAUS 
KGASP:KGASP+ 1 
EXISP:POSGP(IGAUS) 
ETASP:POSGP(JGAUS) 

ct.. COMPUTE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS AND ELEMENTAL 
C VOLUME 
C 

CALL SFR2 (DERIV, NNODE, SHAPE, EXISP,ETASP) 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD,IELEM, 

KGASP,NNODE,SHAPE) 
DVOLU:DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
IF(NTYPE.EQ.1) DVOLU:DVOLU*THICK 
IF(NTYPE.EQ.3) DVOLU:DVOLU*rwOPI*GPCOD(1,KGASP) 

C 
ct.. CALCULATE LOADS AND ASSOCIATE WITH ELEMENT NODAL POINTS 
C 

DO 70 INODE:1,NNODE 
NGASH:(INODE-1)*NDOFN+1 
MGASH:(INODE-1)*NDOFN+2 
RLOAD(IELEM,NGASH):RLOAD(IELEM,NGASH)+GXCOM*SHAPE(INODE)*DVOLU 

70 RLOAD(IELEM,MGASH):RLOAD(IELEM,MGASH)+GYCOM*SHAPE(INODE)*DVOLU 
80 CONTINUE 
90 CONTINUE 

600 CONTINUE 
IF(IEDGE.EQ.O) GO TO 700 

C 
ct.. DISTRIBUTED EDGE LOADS SECTION 
c 

c 

READ(5,932) NEDGE 
932 FORMAT(I5) 

WRITE(6,912) NEDGE 
912 FORMAT(1HO,5X,21HNO. OF LOADED EDGES :,15) 

WRITE(6,915) 
915 FORMAT(1HO,5X,38HLIST OF LOADED EDGES AND APPLIED LOADS) 

NODEG:3 
NCODE=NNODE 
IF(NNODE.EQ.4) NODEG:2 
IFCNNODE.EQ.9) NCODE=8 
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LOAD 65 
LOAD 66 
LOAD 67 
LOAD 68 
LOAD 69 
LOAD 70 
LOAD 71 
LOAD 72 
LOAD 73 
LOAD 74 
LOAD 75 
LOAD 76 
LOAD 77 
LOAD 78 
LOAD 79 
LOAD 80 
LOAD 81 
LOAD 82 
LOAD 83 
LOAD 84 
LOAD 85 
LOAD 86 
LOAD 87 
LOAD 88 
LOAD 89 
LOAD 90 
LOAD 91 
LOAD 92 
LOAD 93 
LOAD 94 
LOAD 95 
LOAD 96 
LOAD 97 
LOAD 98 
LOAD 99 
LOAD 100 
LOAD 101 
LOAD 102 
LOAD 103 
LOAD 104 
LOAD 105 
LOAD 106 
LOAD 107 
LOAD 108 
LOAD 109 
LOAD 110 
LOAD 111 
LOAD 112 
LOAD 113 
LOAD 114 
LOAD 115 
LOAD 116 
LOAD 117 
LOAD 118 
LOAD 119 
LOAD 120 
LOAD 121 
LOAD 122 
LOAD 123 
LOAD 124 
LOAD 125 
LOAD 126 
LOAD 127 
LOAD 128 
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c... LOOP OVER EACH LOADED EDGE 
C 

DO 160 IEDGE=1,NEDGE 
C C... READ DATA LOCATING THE LOADED EDGE AND APPLIED LOAD 
C 

C 

READ (5,902) NEASS,(NOPRS(IODEG),IODEG=1,NODEG) 
902 fORMAT(4I5) 

WRITE(6,913) NEASS,(NOPRS(IODEG),IODEG=1,NODEG) 
913 fORMAT(Il0,5X,3I5) 

READ (5,914) «PRESS(IODEG,IDOfN),IODEG=1,NODEG),IDOfN=1,NDOfN) 
WRITE(6,914) «PRESS(IODEG,IDOfN),IODEG=1,NODEG),IDOfN=1,NDOFN) 

914 FORMAT(6F10.3) 
ETASP=-1.0 

C*·· CALCULATE THE COORDINATES OF THE NODES Of THE ELEMENT EDGE 
C 

DO lOa IODEG=1,NODEG 
LNODE=NOPRS(IODEG) 
DO laO IDlME=1,NDIME 

100 ELCOD(IDIME,IODEG)=COORD(LNODE,IDIME) 
C 
c*·* ENTER LOOP fOR LINEAR NUMERICAL INTEGRATION 

DO 150 IGAUS=1,NGAUS 
EXISP=POSGP(IGAUS) 

C 
C·** EVALUATE THE SHAPE FUNCTIONS AT THE SAMPLING POINTS 
C 

CALL SfR2 (DERIV,NNODE,SHAPE,EXISP,ETASP) 
C 
C*** CALCULATE COMPONENTS Of THE EQUIVALENT NODAL LOADS 
C 

DO 110 IDOfN=1,NDOFN 
PGASH(IDOfN) =0.0 
DGASH(IDOfN) =0.0 
DO 110 IODEG=1,NODEG 
PGASH(IDOFN)=PGASH(IDOfN)+PRESS(IODEG,IDOfN)*SHAPE( IODEG) 

110 DGASH(IDOFN)=DGASH(IDOFN)+ELCOD(IDOFN,IODEG)*DERIV(1,IODEG) 
DVOLU=WEIGP(IGAUS) 
PXCOM=DGASH(1)*PGASH(2)-DGASH(2)*PGASH(1) 
PYCOM=DGASH(1)*PGASH(1)+DGASH(2)*PGASH(2) 
IF(NTYPE.NE.3) GO TO 115 
RADlfS=O.O 
DO 125 IODEG=1,NODEG 

125 RADUS=RADUS+SHAPE(IODEG)*ELCOD(1,IODEG) 
DVOLU=DVOLU*TWOPI*RADUS 

115 CONTINUE 
C 
c*n ASSOCIATE THE EQUIVALENT NODAL EDGE LOADS WITH AN ELEMENT 
C 

DO 120 INODE=1,NNODE 
NLOCA=IABS(LNODS(NEASS,INODE)) 

120 If(NLOCA.EQ.NOPRS(1)) GO TO 130 
130 JNODE=INODE+NODEG-1 

KOUNT=O 
DO 140 KNODE=INODE,JNODE 
KOUNT =KOUNT + 1 
NGASH=(KNODE-l)*NDOFN+l 
MGASH=(KNODE-l)·NDOFN+2 
If(KNODE.GT.NCODE) NGASH=1 
If(KNODE.GT.NCODE) MGASH=2 
RLOAD(NEASS , NGASH) =RLOAD(NEASS ,NGASH) +SHAPE(KOUNT) *PXCOM*DVOLU 

140 RLOAD(NEASS,MGASH)=RLOAD(NEASS,MGASH)+SHAPE(KOUNT)*PYCOM.DVOLU 
150 CONTINUE 
160 CONTINUE 

LOAD 129 
LOAD 130 
LOAD 131 
LOAD 132 
LOAD 133 
LOAD 134 
WAD 135 
LOAD 136 
LOAD 137 
LOAD 138 
LOAD 139 
LOAD 140 
LOAD 141 
LOAD 142 
LOAD 143 
LOAD 144 
LOAD 145 
LOAD 146 
LOAD 147 
LOAD 148 
LOAD 149 
LOAD 150 
LOAD 151 
LOAD 152 
LOAD 153 
LOAD 154 
LOAD 155 
LOAD 156 
LOAD 157 
LOAD 158 
LOAD 159 
LOAD 160 
LOAD 161 
LOAD 162 
LOAD 163 
LOAD 164 
LOAD 165 
LOAD 166 
LOAD 167 
LOAD 168 
LOAD 169 
LOAD 170 
LOAD 171 
LOAD 172 
LOAD 173 
LOAD 174 
LOAD 175 
LOAD 176 
LOAD 177 
LOAD 178 
LOAD 179 
LOAD 180 
LOAD 181 
LOAD 182 
LOAD 183 
LOAD 184 
LOAD 185 
LOAD 186 
LOAD 187 
LOAD 188 
LOAD 189 
LOAD 190 
LOAD 191 
LOAD 192 
LOAD 193 
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700 CONTINUE 
IF(ITEMP.EQ.O) GO TO 800 

C 
C •• - INITIALIZE AND INPUT THE NODAL TEMPERATURES 
C 

C 

DO 170 IPOIN=l,NPOIN 
170 TEMPE(IPOIN)=O.O 

WRITE(6,917) 
917 FORMAT(lHO,5X,29HPRESCRIBED NODAL TEMPERATURES) 
180 READ (5,916) NODPT,TEMPE(NODPT) 

WRITE(6,916) NODPT,TEMPE(NODPT) 
916 FORMAT(I5,Fl0.3) 

IF(NODPT.LT.NPOIN) GO TO 180 
KGAST=O 
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C... LOOP OVER EACH ELEMENT 
C 

LOAD 194 
LOAD 195 
LOAD 196 
LOAD 197 
LOAD 198 
LOAD 199 
LOAD 200 
LOAD 201 
LOAD 202 
LOAD 203 
LOAD 204 
LOAD 205 
LOAD 206 
LOAD 207 
LOAD 208 
LOAD 209 
LOAD 210 

DO 280 IELEM=l,NELEM LOAD 211 
LPROP=MATNO(IELEM) LOAD 212 
DO 200 INODE= 1 , NNODE LOAD 213 
LNODE=IABS(LNODS(IELEM,INODE» LOAD 214 

C LOAD 215 
e* •• IDENTIFY THE COORDINATES AND TEMPERATURE OF EACH ELEMENT NODE POINTLOAD 216 
C LOAD 217 

DO 190 IDIME=l,NDIME LOAD 218 
190 ELCOD(IDIME,INODE)=CooRD(LNODE,IDIME) LOAD 219 
200 ELCOD(2,INODE)=TEMPE(LNODE) LOAD 220 

C LOAD 221 
e*" SET UP MATERIAL PROPERTIES LOAD 222 
C LOAD 223 

CALL MODPS (DMATX,LPROP,NMATS,NSTRE,NTYPE,PROPS) LOAD 22~ 
YOUNG=PROPS(LPROP,l) LOAD 225 
POISS=PROPS(LPROP,2) LOAD 226 
THICK=PROPS(LPROP,3) LOAD 227 
ALPHA=PROPS(LPROP,5) LOAD 228 

C C... ENTER LOOPS FOR AREA NUMERICAL INTEGRATION 
C 

LOAD 229 
LOAD 230 
LOAD 231 

KGASP=O LOAD 232 
DO 270 IGAUS=l,NGAUS LOAD 233 
DO 270 JGAUS= 1 ,NGAUS LOAD 234 
KGAST:KGAST+l LOAD 235 
KGASP=KGASP+l LOAD 236 
EXISP=POSGP(IGAUS) LOAD 237 
ETASP=POSGP(JGAUS) LOAD 238 

C LOAD 239 e*.. EVALUATE THE SHAPE FUNCTIONS AND TEMPERATURE AT THE SAMPLING POINTSLOAD 240 
C ,ELEMENTAL VOLUME AND CARTESIAN DERIVATIVES LOAD 241 
C LOAD 2~2 

CALL SFR2 (DERIV,NNODE ,SHAPE ,EXISP,ETASP) LOAD 243 
CALL JACOB2 (CARTD,DERIV,DJACB{ELCOD,GPCOD,IELEM, LOAD 244 

• KGASP,NNODE,SHAPEI LOAD 245 
THERM=O.O LOAD 246 
DO 210 INODE=l,NNODE LOAD 247 

210 THERM=THERM+ELCOD(2,INODE)*SHAPE(INODE) LOAD 248 
DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) LOAD 249 
IF(NTYPE.EQ.l) DVOLU=DVOLU*THICK LOAD 250 

C 
IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(l,KGASP) LOAD 251 

e*.. EVALUATE THE INITIAL THERMAL STRAINS 
C 

LOAD 252 
LOAD 253 
LOAD 254 
LOAD 255 
LOAD 256 
LOAD 257 
LOAD 258 

EIGEN=THERM-ALPHA 
IF( NTY PE. EQ. 2) GO TO 220 
STRAN( 1 J"=-EIGEN 
STRAN(2)=-EIGEN 
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C 

STRAN(3):O.O 
GO TO 230 

220 STRAN(1):-(1.0+POISS)*EIGEN 
STRAN(2):-(1.0+POISS)*EIGEN 
STRAN (3):0 • 0 

C*** AND THE CORRESPONDING INITIAL STRESSES 
C 

C 

230 DO 250 ISTRE:1,NSTRE 
STRES(ISTRE):O.O 
DO 240 JSTRE:1,NSTRE 

240 STRES(ISTRE):STRES(ISTRE)+DMATX(ISTRE,JSTRE)*STRAN(JSTRE) 
250 STRIN(ISTRE,KGAST):STRES(ISTRE) 

IF(NTYPE.EQ.2) STRIN(4,KGAST):-YOUNG*EIGEN 
IF(NTYPE.EQ.1) STRIN(4,KGAST):0.0 

C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELEMENT NODES 
C 

EXTRA:O.O 
DO 260 INODE:1,NNODE 
IF(NTYPE.EQ.3) EXTRA:DVOLU*SHAPE(INODE)*STRES(4)/GPCOD(1,KGASP) 
NGASH:(INODE-1)*NDOFN+1 
MGASH:(INODE-1)*NDOFN+2 
RLOAD(IELEM,NGASH):RLOAD(IELEM,NGASH)+EXTRA 

. -(CARTD(1,INODE)*STRES(1)+CARTD(2,INODE)*STRES(3))*DVOLU 
260 RLOAD(IELEM,MGASH):RLOAD(IELEM,MGASH) 

. -(CARTD(1,INODE)*STRES(3)+CARTD(2,INODE)*STRES(2))*DVOLU 
zrO CONTINUE 
280 CONTINUE 
800 CONTINUE 

C WRITE(6,907) 
C 907 FORMAT(1HO,5X,36H TOTAL NODAL FORCES FOR EACH ELEMENT) 
C DO 290 IELEM: 1 , NELEM 
C 290 WRITE(6,905) IELEM,(RLOAD(IELEM,IEVAB),IEVAB:l,NEVAB) 
C 905 FORMAT(lX,I4,5X,BE12.4/(10X,BE12.4) 

DO 5 IELEM:1,NELEM 
KEVAB:O 
DO 5 INODE:1,NNODE 
LNODE:LNODS(IELEM,INODE) 
NPOSN:(LNODE-1)*NDOFN 
DO 5 IDOFN:1,NDOFN 
KEVABotKEVAB+ 1 
NPOSN:NPOSN+ 1 
FORCE(NPOSN):FORCE(NPOSN)+RLOAD(IELEM,KEVAB) 

5 CONTINUE 
RETURN 
END 

10.6.16 Subroutine LUMASS 

LOAD 259 
LOAD 260 
LOAD 261 
LOAD 262 
LOAD 263 
LOAD 264 
LOAD 265 
LOAD 266 
LOAD 267 
LOAD 26& 
LOAD 269 
LOAD zrO 
LOAD 271 
LOAD 272 
LOAD 273 
LOAD 274 
LOAD 275 
LOAD 276 
LOAD zr7 
LOAD 278 
LOAD 279 
LOAD 280 
LOAD 281 
LOAD 282 
LOAD 283 
LOAD 284 
LOAD 285 
LOAD 286 
LOAD 287 
LOAD 288 
LOAD 289 
LOAD 290 
LOAD 291 
LOAD 292 
LOAD 293 
LOAD 294 
LOAD 295 
LOAD 296 
LOAD 297 
LOAD 298 
LOAD 299 
LOAD 300 
LOAD 301 
LOAD 302 
LOAD 303 
LOAD 304 
LOAD 305 
LOAD 306 

This subroutine evaluates the lumped mass vector and consistent mass 
matrix for the finite element mesh. IfINTGR(I) = 1, it generates the consistent 
mass matrix and if INTGR(I) =2, it generates a special lumped mass vector. 
In the special mass lumping scheme which is employed, the diagonal terms of 
the consistent mass matrix are scaled to preserve the total mass. The element 
consistent mass matrices are written on tape 3. The consistent mass matrix 
is not used in DYNPAK. 

This subroutine also reads concentrated masses and assembles them into 
the global diagonal mass vector. 
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SUSROUTINE LUMASS (COORD ,INTGR ,LNODS ,MATNO ,NCONM ,NDIME , 
NDOFN ,NELEM ,NGAUM tNMATS ,NNODE ,NPOIN , 
NTYPE ,PROPS ,YMASS J 

C·················,--_·····,,·,,·,-,·····,-,···,,···_-............ . 
C 
C III CALCULATES LUMPED MASS FOR 4 , 8 AND 9 NODED ELEMENT 
C 

C·······················,---,····_······,,···,····_---., .......... . 

C 

DIMENSION CooRD(NPOIN,1) ,ELCOD(2,9) ,DIAGM(9) ,POSGP(4) , 
LNODS(NELEM,1) ,CARTD(2,9) ,SHAPE(9) ,WEIGP(4) , 
PROPS(NMATS,1) ,GPCOD(2,9) ,MATNO(1) ,YMASS(1) , 
EMASS( 171) ,DERIV(2,9) ,INTGR(1) 

REWIND 3 
TWOPI=6.283185307179586 
NEVAB=NNODEINDOFN 
NTOTV=NPOININDOFN 
DO 500 ITOTV = 1 , NTOTV 

500 YMASS(ITOTV)=O.O 
CALL GAUSSQ (NGAUM , POSGP , WEIGP ) 
DO 100 IELEM=1,NELEM 
DO 5 IEVAB=1, 171 

5 EMASS(IEVAS)=O.O 
IMASS=INTGR(IELEM) 
KGASP=O 
TAREA=O.O 
LPROP=MATNO(IELEM) 
THICK=PROPS(LPROP,3) 
RHOEL=PROPS(LPROPL4) 
DO 10 INODE=1,NNOuE 
DIAGM(INODE)=O.O 
LNODE=LNODS(IELEM,INODE) 
DO 10 IDIME= 1 , NDIME 
ELCOD(IDIME,INODE)=CooRD(LNODE,IDIME) 

10 CONTINUE 
DO 70 IGAUS=1,NGAUM 
EXISP=POSGP(IGAUS) 
DO 70 JGAUS=1,NGAUM 
KGASP=KGASP+ 1 
ETASP=POSGP(JGAUS) 
CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP) 
CALL JACOS2 (~ijJD,DERIV,p~CS,ELCOD,gPCOD,IELEM, 

KGAS~,NNODE,SHAPE) 
DVOLU=DJACSIWEIGP(IGAUS)·WEIGP(JGAUS) 
IF(NTYPE.EQ.1) DVOLU=DVOLUITHICK 
IF(NTYPE.EQ.3) DVOLU=DVOLUITWOPIIGPCOD(1,KGASP) 
IF(IMASS.EQ.1J GO TO 210 
DO 20 INODE=1,NNODE 
SHAPI=SHAPE(INODE) 

20 DIAGM(INODE)=DIAGM(INODE)+SHAPIISHAPI*DVOLU 
TAREA=TAREA+DVOLU 

210 IF(IMASS.EQ.2) GO TO 70 
DVOLU=DVOLU*RHOEL 
IEVAS=1 
KOUNT=NEVAS 
DO 30 INODE=1,NNODE 
SHAPI=SHAPE(INODE) 
DO 60 JNODE=INODE NNODE 
DMASS=DVOLUISHAPI'SHAPE(JNODE) 
EMASS(IEVAS)=EMASS(IEVAS)+DMASS 
JEVAB=IEVAS+KOUNT 
EMASS( JEV AB) =EMASS( JEV AS) +DMASS 

60 IEVAB=IEVAB+2 
KOUNT =I(OUNT-2 
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MASS 26 
MASS 27 
MASS 28 
MASS 29 
MASS 30 
MASS 31 
MASS 32 
MASS 33 
MASS 34 
MASS 35 
MASS 36 
MASS 37 
MASS 38 
MASS 39 
MASS 40 
MASS 41 
MASS 42 
MASS 43 
MASS 44 
MASS 45 
MASS 46 
MASS 47 
MASS 48 
MASS 49 
MASS 50 
MASS 51 
MASS 52 
MASS 53 
MASS 54 
MASS 55 
MASS 56 
MASS 57 
MASS 58 
MASS 59 
MASS 60 
MASS 61 
MASS 62 
MASS 63 
MASS 64 
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C 

lEV AB=J EV AB+ 1 
30 CONTINUE 
70 CONTINUE 

C*** WRITES CONSISTENT MASS MATRIX ON TAPE 3 
C 

IF(IMASS.EQ.2) GO TO 200 
WRITE(3) £MASS 

C WRITE(6,90) (£MASS(I),I=1,171) 
200 IF(IMASS.EQ.l) GO TO 100 

C 
C *** GENERATES LUMPED MASS MATRIX PROPORTIONAL TO DIAGONAL 
C 

SUMAS~O. 

DO 40 INODE=l,NNODE 
40 SUMAS~SUMAS+DIAGM(INODE) 

TAREA~TAREA*RHOEL 
SUMAS~TAREA/SUMAS 
DO 50 INODE=l,NNODE 
LNODE~LNODS(IELEM,INODE) 
IPOSN~(LNODE-l)*NDOFN 
DO 50 IDOFN=l,NDOFN 
IPOSN=lPOSN+ 1 
YMASS(IPOSN)=YMASS(IPOSN)+DIAGM(INODE)*SUMAS 

50 CONTINUE 
90 FORMAT(2X,9E12.3) 

100 CONTINUE 
C 
C CONCENTRATED MASSES 
C 

IF(NCONM.EQ.O) RETURN 
WRITE(6,900) 
DO 520 ICONM=l,NCONM 
READ(5,910) IPOIN,XCMAS,YCMAS 

900 FORMAT(5X,19HCONCENTRATED MASSES) 
WRITE(6,910) IPOIN,XCMAS,YCMAS 
NPOSN=(IPOIN-l)*NDOFN+l 
YMASS(NPOSN)=YMASS(NPOSN)+XCMAS 
NPOSN=NPOSN+ 1 
YMASS(NPOSN)=YMASS(NPOSN)+YCMAS 

520 CONTINUE 
C WRITE(6,90) (YMASS(I),I=l,NTOTV) 

910 FORMAT(~,2F10.3) 
RETURN 
END 

MASS 65 
MASS 66 
MASS 67 
MASS 68 
MASS 69 
MASS 70 
MASS 71 
MASS 72 
MASS 73 
MASS 74 
MASS 75 
MASS 76 
MASS 77 
MASS 78 
MASS 79 
MASS 80 
MASS 81 
MASS 82 
MASS 83 
MASS 84 
MASS 85 
MASS 86 
MASS 87 
MASS 88 
MASS 89 
MASS 90 
MASS 91 
MASS 92 
MASS 93 
MASS 94 
MASS 95 
MASS 96 
MASS 97 
MASS 98 
MASS 99 
MASS 100 
MASS 101 
MASS 102 
MASS 103 
MASS 104 
MASS 105 
MASS 106 
MASS 107 
MASS 108 
MASS 109 

MASS 24 Sets indicator for mass matrix evaluation. INTGR(I) = 1 
for the consistent mass matrix and INTGR(I) = 2 fOf the 
special lumped mass vectof. 

MASS 35-52 

MASS 53--63 
MASS 72 
MASS 78-80 

. MASS 81 

Evaluate the diagonal element of the consistent mass matrix 
DIAGM. 
Evaluates the element consistent mass matrix. 
Writes element consistent mass matrix on tape 3. 
Evaluates ELMAS, the sum of the diagonal elements . 
Determines the total element mass from the element volume 
TAREA and mass density RHOEL. 
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MASS 83-89 Scales the diagonal terms using the factor T AREA/ELMAS 
to preserve element mass and assembles the result into 
diagonal mass vector YMASS. 

MASS 95-107 Reads the concentrated masses and assembles them into 
YMASS. 

10.6.17 Subroutine MODPS 
This subroutine evaluates the elasticity matrix and has been described 

earlier in Chapter 6. The only changes involved are given below. 

SUBROUTINE MOOPS (DMATX ,LPROP ,NMATS ,NSTRE ,NTYPE ,PROPS ) MODP 1 
c-**·················································· ............... MODP 2 
C MODP 3 
C" ELASTICITY D MATRIX MODP 4 
C MODP 5 
c·····················································.*** ........... MODP 6 

DIMENSION DMATX(4,4),PROPS(NMATS,1) MODP 7 

10.6.18 Subroutine NODXYR 
It calculates (r, z) coordinates from (R, 8) coordinates for axisymmetric 

problems. If coordinates of midsidenodes are not read, it evaluates them by linear 
interpolation. An almost identical subroutine was described in Chapter 6. 

SUBROUTINE NODXYR (CooRD,LNODS,NELEM,NNODE,NPOIN,NRADS,NTYPE) 
c···*········································_,······· .............. . 
C 
C--- INTERPOLATION OF MIDSIDE AND CENTER NODES 
C c ..... ,_t ••••••••••••••• _--, •• ,_ ••••• "." ••••••••• ,---*_.4****-.---' 

DIMENSION COORD(NPOIN,l),LNODS(NELEM,l) 
C 

IF(NTYPE.NE.3.0R.NRADS.EQ.0) GO TO 40 
C 
C._- CHANGE POLAR COORDINATES TtrCARTISIAN 

DO 50 IPOIN=l,NPOIN 
RADDI=COORD(IPOIN,l) 
THETA=COORD(IPOIN 2) 
THETA=0.017453292'THETA 
COORD(IPOIN,1)=RADDI-SIN(THETA) 

50 COORD(IPOIN,2)=RADDI-COS(THETA) 
C 

C 
40 IF(NNODE.EQ.4) RETURN 

LNODE = NNODE - 1 
DO 30 IELEM= 1 ,NELEM 

C··· LOOP OVER EACH ELEMENT EDGE 
DO 20 INODE=1,NNODE,2 
IF(INODE.EQ.9) GO TO 20 

C". COMPUTE WE NODE NUMBER OF THE FIRST NODE 
NODST=LNODS(IELEM,INODE) 
IGASH=INODE+2 
IF(IGASH.GT.LNODE) IGASH=1 

C·" COMPUTE THE NODE NUMBER OF THE LAST NODE 
NODFN=LNODS(IELEM,IGASH) 
MIDPT:INODE+ 1 

NODX 
NODX 2 
NODX 3 
NODX 4 
NODX 5 
NODX 6 
NODX 7 
NODX 8 
NODX 9 
NODX 10 
NODX 11 
NODX 12 
NODX 13 
NODX 14 
NODX 15 
NODX 16 
NODX 17 
NODX 18 
NODX 19 
NODX 20 
NODX 21 
NODX 22 
NODX 23 
NODX 24 
NODX 25 
NODX 26 
NODX 27 
NODX 28 
NODX 29 
NODX 30 
NODX 31 
NODX 32 
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c... COMPUTE THE NODE NUMBER OF THE INTERMEDIATE NODE 
NODMD=LNODS(IELEM,MIDPT) 
TOTAL=ABS(CooRD(NODMD,1))+ABS(CooRD(NODMD,2)) 

NODX 33 
NODX 34 
NODX 35 
NODX 36 
NODX 37 
NODX 38 
NODX 39 
NODX 40 
NODX 41 
NODX 42 
NODX 43 
NODX 44 
NODX 45 
NODX 46 

C .. " IF THE COORDINATES OF THE INTERMEDIATE NODE ARE BOTH ZERO 
C INTERPOLATE BY A STRAIGHT LINE 

IF(TOTAL.GT.O.O) GO TO 20 
KOUNT=l 

10 COORD(NODMD,KOUNT)=(CooRD(NODST,KOUNT)+cooRD(NODFN,KOUNT))/2.0 
KOUNT=KOUNT+l 
IF(KOUNT .EQ.2) GO TO 10 

20 CONTINUE 
30 CONTINUE 

RETURN 
END 

10.6.19 Subroutine OUIDYN 
This routine writes out most of the output on the line printer and on 

various tapes for plotting purposes. It outputs the displacements and stresses 
every NOUTP steps. I t also writes the displacement and stress histories of 
specified nodal and integration points at every NOUTP steps. The complete 
state of displacements is also written on tape 13 for a deformation plot. The 
complete state of the stresses is written on tape 4. The principal stresses and 
their directions are also calculated and output. 

SUBROUTINE OUTDYN (DISPL ,DTIME ,ISTEP ,NDOFN ,NELEM ,NGAUS, OUTP 1 
NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD \NREQD, OUTP 2 

. NREQS , NITPE , STRSG , TDISP , VIVEL OUTP 3 
C •••••••••• "" •• """ •• ".* •••••••• * •• """ •• """""."....................... OUTP 4 
C ouw S 
C.. OUTPUT ROUTINE OUTP 6 
C ouw 7 
c·"" ••••••••••••••••••••••••••••• " ••• " •• "." •••••••••• " ••• ""."........ OUTP 8 

DIMENSION STRSG(4,1) ,DISPL(l) ,NPRQD(l) ,STRSP(3) , OUTP 9 
VIVEL(S,l) ,TDISP(l) ,NGRQS(l) OUTP 10 

NSTR 1 =4 OUTP 11 
KSTEP:IsTEP OUTP 12 
HGAUS=NELEM"NGAUS.NGAUS OUTP 13 
IF(ISTEP.EQ.l) WRITE(10,925) OUTP 14 
TTIME=TTIME+DTIME OUTP 15 

C OUTP 16 
C... WRITES DISPLACEMENT HISTORY AT REQUESTED NODAL POINTS ON TAPE 10 OUTP 17 
c"" AND STRESS HISTORY AT REQUESTED GAUSS POINTS AT EVERY NOUTD STEPSOUTP 18 
C OUTP 19 

KOUNT =0 OUTP 20 
KOUTD=(ISTEP/NOUTD).NOUTD OUTP 21 
IF(KOUTD.NE.ISTEP) GO TO 510 OUTP 22 
DO 500 IPOIN=l,NPOIN OUTP 23 
DO 500 IREQD=l,NREQD OUTP 24 
IF(IPOIN.NE.NPRQD(IREQD)) GO TO 500 OUTP 25 
NPOSN=(IPOIN-ll.NDOFN+ 1 OUTP 26 
NPOSM=NPOSN+ 1 OUTP 27 
KOUNT=KOUNT+ 1 OUTP 28 
DISPL(KOUNT)=TDISP(NPOSN) OUTP 29 
KOUNT=KOUNT+ 1 OUTP 30 
DISPL(KOUNT)=TDISP(NPOSM) OUTP 31 

500 CONTINUE OUTP 32 
WRITE(10,960) (DISPL(IKOUN),IKOUN=l,KOUNT),TTlME OUTP 33 
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DO 520 IGAUS=1,MGAUS 
DO 520 IREQS=1,NREQS 
IF(IGAUS.NE.NGRQS(IREQS» GO TO 520 
WRITE(11,950) (STRSG(ISTR1,IGAUS),ISTR1=1,NSTR1) 

520 CONTINUE 
510 KOUTD=(KSTEP/NOUTP).NOUTP 

IF(KOUTD.NE.KSTEP) RETURN 
XTIME=FLOAT(KSTEP)·DTIME 
WRITE(6,604) KSTEP,XTIME 

415 

OUTP 34 
OUTP 35 
OUTP 36 
OUTP 37 
OUTP 38 
OUTP 39 
OUTP 40 
OUTP 41 
OUTP 42 

604 FORMAT(//5X,28H DISPLACEMENTS AT TIME STEP 
C 

,I10,5X,5HTIME ,E20.11)OUTP 43 
OUTP 44 
OUTP 45 
OUTP 46 
OUTP 47 
OUTP 48 
OUTP 49 
OUTP 50 
OUTP 51 
OUTP 52 
OUTP 53 
OUTP 54 
OUTP 55 
OUTP 56 

C... REARRANGE DISPLACEMENT VECTOR 
C 

NODEI=O 
DO 550 IPOIN=1,NPOIN 
DO 550 IDOFN=1,NDOFN 
NODEI=NODEI+1 
DISPL(NODEI)=TDISP(NODEI) 

550 CONTINUE 
C C... OUTPUT DISPLACEMENTS 
C 

C 

925 FORMAT(5X,' DISPLACEMENTS ,) 
WRITE(6,990) 

990 FORMAT(/3(1X,'NNODE',3X,'X-DISP',6X,'Y-DISP',3X)/) 
DO 560 IPOIN=1,NPOIN,3 
NGASI=NDOFN*IPOIN-l 
NGASJ=NGASI+NDOFN 
NGASK=NGASJ+NDOFN 
MGASI=NGASI+ 1 
MGASJ=NGASJ+ 1 
MGASK=NGASK+ 1 
JPOIN=IPOIN+l 
KPOIN=JPOIN+ 1 

C *.* WRITES DISPLACEMENTS 
C 

ON TAPE 13 FOR DEFORMATION PLOT 

WRITE(13,910) IPOIN ,(DISPL(IGASI),IGASI=NGASI,MGASI) 
IF(JPOIN.GT.NPOIN) GO TO 200 
WRITE(13,910) JPOIN ,(DISPL(IGASJ),IGASJ=NGASJ,MGASJ) 
IF(KPOIN.GT.NPOIN) GO TO 200 
WRITE(13,910) KPOIN ,(DISPL(IGASK),IGASK=NGASK,MGASK) 

200 CONTINUE 
C C··· WRITES DISPLACEMENTS ON OUTPUT FILE 
C 

C 

560 WRITE(6,920) IPOIN,DISPL(NGASI) ,DISPL(MGASI) , 
JPOIN,DISPL(NGASJ),DISPL(MGASJ), 
KPOIN,DISPL(NGASK),DISPL(MGASK) 

C··· WRITES STRESSES ON OUTPUT FILE 
C 

OUTP 57 
OUTP 58 
OUTP 59 
OUTP 60 
OUTP 61 
OUTP 62 
OUTP 63 
OUTP 64 
OUTP 65 
OUTP 66 
OUTP 67 
OUTP 68 
OUTP 69 
OUTP 70 
OUTP 71 
OUTP 72 
OUTP 73 
OUTP 74 
OUTP 75 
OUTP 76 
OUTP 77 
OUTP 78 
OUTP 79 
OUTP 80 
OUTP 81 
OUTP 82 
OUTP 83 
OUTP 84 
OUTP 85 

WRITE(6,900) OUTP 86 
IF(NTYPE.NE.3) WRITE(6,970) OUTP 87 

970 FORMAT(1HO,1X,4HG.P.,6X,9HXX-STRESS,5X,9HYY-STRESS,5X,9HXY-STRESS OUTP 88 
.5X,9HZZ-STRESS,6x,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X,6H P.S.IOUTP 89 
IF(NTYPE.EQ.3) WRITE(6,975) OUTP 90 

975 FORMAT(1HO,1X,4HG.P.,6X,9HRR-STRESS,5X,9HZZ-STRESS,5X,9HRZ-STRESS,OUTP 91 
.5X,9HTT-STRESS,6x,8HMAX P.S.,6X,8HMIN P.S.,3X,5HANGLE,3X,6H P.S.)OUTP 92 
KGAUS=O OUTP 93 
DO 570 IELEM= 1 , NELEM OUTP 94 
KELGS=O OUTP 95 
WRITE(6,930) IELEM OUTP 96 

930 FORMAT(1HO,5X,13HELEMENT NO. =,15) OUTP 97 
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C 

DO 570 IGAUS=l,NGAUS 
DO 570 JGAUS=1,NGAUS 
KGAUS=KGAUS+l 
KELGS=KELG5+1 
XGASH=(STRSG(1,KGAUS)+STRSG(2,KGAUS»·0.5 
XGISH=(STRSG(1,KGAUS)-STRSG(2,KGAUS»·0.5 
XGESH=STRSG(3,KGAUS) 
XGOSH=SQRT(XGISH·XGISH+XGESH·XGESH) 
STRSP(1)=XGASH+XGOSH 
STRSP(2)=XGASH-XGOSH 
IF(XGISH.EQ.O.O) XGISH=0.lE-20 
STRSP(3)=ATAN(XGESHlXGISH)·28.647889757 

C ••• WRITES COHPLETE STRESS STATE ON TAPE 4 
C 

WRITE(4,950) (STRSG(ISTR1,KGAUS),ISTR1=1,NSTR1), 
.(STRSP(ISTRE),ISTRE=1,3) 

570 WRITE(6,940) KELGS,(STRSG(ISTR1,KGAUS),ISTR1=1,NSTR1), 
.(STRSP(ISTRE),ISTRE=1,3),VIVEL(5,KGAUS) 

980 FORMAT(lX,60I2) 
960 FORMAT(1X,10El1.4) 
950 FORMAT (7El0.4) 
940 FORMAT(I5,2X,6E14.6,F8.3,E14.6) 
900 FORMAT(/,10X,8HSTRESSES,/) 
920 FORMAT(3(lX,I5,2E12.5» 
910 FORMAT(I5,2E15.6) 

RETURN 
END 

10.6.20 Subroutine PREVOS 
This routine reads and write the initial forces and stresses. 

SUBROUTINE PREYOS (FORCE , NDOFN , NELEM , NGAUS , NPOIN , NPREV , 
• STRIN ) 

C·····················································, .. , ...... , ... . 
C 
c... GRAVITY LOADS AND STRESSES 
C 

c···········***··············**·········***··········· .............. . 
C 

C 

C 

DIMENSION ijpRCE(1) ,STRIN(4,1) 

IF(NPREY.EQ.O) RETURN 

NSTR1=4 
NGAU2=NGAUS·NGAUS 

c... READ GRAVITY LOADS 
C 

C 

WRITE(6,920) 
920 FORMATU/4X,6H NODE, 17H GRAVITY X-LOAD: ,17H GRAVITY Y-LOAD: /) 
200 READ (5,900) NGASH,XGASH, YGASH 
900 FORMAT(I5,4Fl0.3) 
910 FORMAT(Il0,4E18.5) 

NPOSN=(NGASH-l)·NDOFN+1 
FORCE(NPOSN)=XGASH 
NPOSN=NPOSN+l 
FORCE(NPOSN)=YGASH 
WRITE(6,910) NGASHIXGASH,YGASH 
IF (NGASH. NE. NPOIN GO TO 200 

c·.. READ GRAVITY STRESS 
C 

CUTP 98 
CUTP 99 
CUTP 100 
OUTP 101 
CUTP 102 
CUTP 103 
CUTP 104 
OUTP 105 
OUTP 106 
CUTP 107 
CUTP 108 
CUTP 109 
CUTP 110 
CUTP 111 
CUTP 112 
CUTP 113 
OUTP 114 
CUTP 115 
OUTP 116 
CUTP 117 
CUTP 118 
CUTP 119 
CUTP 120 
OUTP 121 
OUTP 122 
CUTP 123 
CUTP 124 
CUTP 125 

PREY 1 
PREY 2 
PREY 3 
!'!lEY 4 
PREY 5 
PREY 6 
PREY 7 
PREY 8 
PREV 9 
PREY 10 
PREY 11 
PREV 12 
PREY 13 
PREY 14 
PREY 15 
PREY 16 
PREY 11 
PREY 18 
PREV 19 
PREY 20 
PREV 21 
PREY 22 
PREY 23 
PREV 24 
PREY 25 
PREY 26 
PREY 27 
PREY 28 
PREY 29 
PREY 30 
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WRITE(6,930) PREY 31 
930 FORMAT(//2X,9HGAUSS PT.,17H GRAVITY X-STRESS,17H GRAVITY Y-STRESS,PREV 32 

.18H GRAVITY XY-STRESS,17H GRAVITY Z-STRESSf) PREY 33 
DO 500 IELEM=l,NELEM PREY 3~ 
DO 500 IGAUS=1,NGAU2 PREY 35 
READ(5,900) KGAUS,(STRIN(ISTRI,KGAUS),ISTRI=1,NSTR1) PREY 36 

500 WRITE(6,910)KGAUS, (STRIN(ISTRI,KGAUS) ,ISTRI=l ,NSTR1) PREV 37 
RETURN PREV 38 
END PREV 39 

10.6.21 Subroutine RESVPL 
This routine evaluates the internal resisting force vector 

Pn = t [B]nTondQ. 

It is very similar to the routine described in Section 8.8. 

SUBROUTINE RESVPL (COORD ,DTIME 
NDOFN ,NELEM 
NPOIN ,NSTRE 
RLOAD ,STRIN 
WEIGP ) 

,LNODS 
,NGAUS 
,!(fYPE 
,STRSG 

,MATNO 
,NLAPS 
,POSGP 
,TDISP 

,NCRIT ,NDIME , 
,NOODE ,NMATS f 

,PROPS ,RESID , 
,VISTN ,VIVEL , 

c·······***···································**······ .............. . 
C 
C·** EVALUATION OF INTEGRAL (B) •• T.(SIGMA) 
C 

c· .. ••••••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••• DIMENSION CooRD(NPOIN,l) ,DERIV(2,9),DJACM(2,2) ,AVECT(4) ,MATNO(l) , 

KGAUS=O 

PROPS(NMATS,1),DLCOD(2,9),STRIN(~,1),DEVIA(~),TDISP(1), 
LNODS(NELEM,1),GPCOD(2,9),STRSG(~,1),STRAN(4),POSGP(1), 
RLOAD(NELEM, 1) ,CARTD(2,9),VISTN(4,1),STRES(4),WEIGP(1), 
DMATX( ~,4),ELCOD(2,9),VlVEL(5,1),SHAPE(9),RESID(1), 
BMATX( 4,18),ELDIS(2,9),DESTN( 4) 

NSTR1=4 
NEVAB=NNODE*NDOFN 
NTOTV=NPOIN*NDOFN 
TWOPI=6.283185307179586 
DO 530 IELEM= 1 , NELEM 
DO 540 lEV AB= 1 ,NEV AB 

540 RLOAD(IELEM,IEVAB)=O.O 
530 CONTINUE 

DO 510 ITOTV=l,NTOTV 
510 RESID(ITOTV)=O.O 

C 
c*** LOOP OVER ALL THE ELEMENTS 
C 

C 

DO 20 IELEM=l,NELEM 
LPROP=MATNO(IELEM) 
THICK=PROPS(LPROP,3) 
POISS=PROPS(LPROP,2) 
FRICT=PROPS(LPROP,8) 

c*·* COMPUTE NEW COORDINATES AND 
C ELEMENT NODAL POINTS 
C 

DISPLACEMENTS OF THE 

DO 30 INODE =l,NOODE 
r~ODEcIABS(LNODS(IELEM,INODE)) 
NPOSN=(LNODE-1)*NDOFN 

RESD 1 
RESD 2 
RESD 3 
RESD 4 
RESD 5 
RESD 6 
RESD 7 
RESD 8 
RESD 9 
RESD 10 
RESD 11 
RESD 12 
RESD 13 
RESD 14 
RESD 15 
RESD 16 
RESD 17 
RESD 18 
RESD 19 
RESD 20 
RESD 21 
RESD 22 
RESD 23 
RESD 24 
RESD 25 
RESD 26 
RESD zr 
RESD 28 
RESD 29 
RESD 30 
RESD 31 
RESD 32 
RESD 33 
RESD 34 
RESD 35 
RESD 36 
RESD 37 
RESD 38 
RESD 39 
RESD 40 
RESD 41 
RESD 42 



418 FINITE ELEMENTS IN PLASTICITY 

C 

C 

DO 30 IDOFN=l,NDOFN 
NPOSN=NPOSN+l 
ELCOD( IDOFN , INODE) : COORD (LNODE , IDOFN) 
DLCOD(IDOFN,INODE)=CooRD(LNODE,IDOFN)+TDISP(NPOSN) 

30 ELDIS(IDOFN,INODE)=TDISP(NPOSN) 
CALL HOOPS (DMATX, LPROP, NMATS, NSTRE, NTYPE, PROPS) 
KGASP=O 
DO 40 IGAUS=l,NGAUS 
DO 40 JGAUS=l,NGAUS 
KGAUS=KGAUS+ 1 
KGASP=KGASP+ 1 
EXISP=POSGP(IGAUS) 
ETASP=POSGP(JGAUS) 

CALL SFR2 (DERIV ,NNODE ,SHAPE ,EXISP 
CALL JACOB2 (CARTD ,DERIV ,DJACB ,ELCOD 

IELEM ,KGASP ,NNODE ,SHAPE 

,ETASP ) 
IGPCOD , 

CALL JACOBO (CARTD ,DLCOD ,DJACH ,NDlME ,NLAPS ,NNODE 
DVOLU=DJACB*WEIGP(IGAUS)*WEIGP(JGAUS) 
IF(NTYPE.EQ.l) DVOLU:DVOLU*THICK 
IF(NTYPE.EQ.3) DVOLU=DVOLU*TWOPI*GPCOD(l,KGASP) 
CALL BLARGE (BMATX ,CARTD ,DJACH ,DLCOD ,GPCOD I 

KGASP ,NLAPS ,NNODE ,NTYPE ,SHAPE 
CALL LINGNL (CARTD ,DJACH ,DMATX ,ELDIS ,GPCOD ,KGASP, 

KGAUS ,NDOFN ,NLAPS ,NNODE ,NSTRE INTYPE, 
POISS ,SHAPE ,STRAN ,STRES ,VISTN 

DO 580 ISTR1=1,NSTRl 
580 STRES(ISTR1)=STRES(ISTR1)+STRIN(ISTR1,KGAUS) 

DO 570 ISTR1=1,NSTRl 
570 STRSG(ISTR1,KGAUS):STRES(ISTR1) 

C 

C 
IF(NLAPS.EQ.2.0R.NLAPS.EQ.0) GO TO 200 

CALL INVAR (DEVIA,LPROP, NCRIT, NMATS, PROPS, SINT3, STEFF, 
STRES,THETA,VARJ2,YIELD) 

CALL YIELDF (AVECT,DEVIA,FRICT,NCRIT,SINT3,STEFF,THETA,VARJ2) 
CALL FLOWVP (AVECT,KGAUS,LPROP,NCRIT,NMATS,PROPS, 

STEFF, VIVEL, YIELD) 
C 
C*** VISCO PLASTIC STRAIN INCREMENT AND A MEASURE FOR HARDENING 
C 

C 

DO 60 ISTRT:l,NSTRl 
DESTN(ISTR1):VIVEL(ISTR1,KGAUS)*DTlME 

60 VISTN(ISTR1,KGAUS)=VISTN(ISTR1,KGAUS)+DESTN(ISTR1) 
DEBAR=SQRT«2.0*(DESTN(1)*DESTN(1)+DESTN(2)*DESTN(2)+ 

• DESTN(4)*DESTN(4))+DESTN(3)*DESTN(3))/3.0) 
VIVEL(5,KGAUS):DEBAR 

C*** COHPUT INT(B**T*SIGMA) ON ELEMENT LEVEL 
C 

C 

200 CONTINUE 
KEVAB:O 
DO 502 INODE:l,NNODE 
DO 502 IDOFN=l,NDOFN 
KEV AB:KEVAB+ 1 
DO 501 ISTRE: 1 , NSTRE 

501 RLOAD(IELEM,KEVAB):RLOAD(IELEM,KEVAB)+ 
.BMATX(ISTRE,KEVAB)*STRSG(ISTRE,KGAUS)*DVOLU 

. 502 CONTINUE 
40 CONTINUE 
20 CONTINUE 

C*** ASSEMBLY OF RESID VECTOR 

RESD 43 
RESD 44 
RESD 45 
RESD 46 
RESD 47 
RESD 48 
RESD 49 
RESD 50 
RESD 51 
RESD 52 
RESD 5, 
RESD 54 
RESD 55 
RESD 56 
RESD 57 
RESD 58 
RESD 59 
RESD 60 
RESD 61 
RESD 62 
RESD 63 
RESD 64 
RESD 65 
RESD 66 
RESD 67 
RESD 68 
RESD 69 
RESD 70 
RESD 71 
RESD 72 
RESD 73 
RESD 74 
RESD 75 
RESD 76 
RESD 77 
RESD 78 
RESD 79 
RESD 80 
RESD 81 
RESD 82 
RESD 83 
RESD 84 
RESD 85 
RESD 86 
RESD 87 
RESD 88 
RESD 89 
RESD 90 
RESD 91 
RESD 92 
RESD 93 
RESD 94 
RESD 95 
RESD 96 
RESD 97 
RESD 98 
RESD 99 
RESD 100 
RESD 101 
RESD 102 
RESD 103 
RESD 104 
RESD 105 
RESD 106 
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00 500 IELEM= 1 ,NELEM 
KEVAB=O 
00 500 INODE=1,NNODE 
LNODE=LNODS(IELEM,INODE) 
NPOSN=(LNODE-1)'NOOFN 
DO 500 IDOFN=1,NOOFN 
KEVAB=KEVAB+1 
NPOSN=NPOSN+1 
RESID(NPOSN)=RESID(NPOSN)+RLOAD(IELEM,KEVAB) 

500 CONTINUE 
RETURN 
END 
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RESD 107 
RESD 108 
RESD 109 
RESD 110 
RESD 111 
RESD 112 
RESD 113 
RESD 114 
RESD 115 
RESD 116 
RESD 117 
RESD 118 
RESD 119 

RESD 66-68 Call LINGNL to determine the state of stress at the current 
Gauss point. 

RESD 77-78 

RESD 79 

RESD 80-81 

RESD 86 
RESD 87 

RESD 88-90 

RESD 95-101 
RESD 108-117 

Call INV AR to evaluate stress invariants at the current 
Gauss point. 
Call YIELDF to select the yield function and calculate the a 
vector. 
Call FLOWVP to define the rate of viscoplastic straining 
VIVEL if the stress point is outside the current yield surface. 
Evaluate the increments of viscoplastic strains DESTN. 
Evaluate the visco plastic strains (Evp)n+l for the next time 
station In + /1(, VISTN. 
Determine a measure of hardening for the current yield 
surface. 
Evaluate Pn(e) at the element level, RLOAD. 
Assemble Pn, RESID. 

10.6.22 Subroutine YIELDF 
This subroutine selects the yield function and calculates the vector a 

(AVECT) and is almost identical to the version described in Section 7.8.4.1. 

SUBROUTINE YIELDF (AVECT ,DEVIA ,FRICT ,NCRIT ,SINT3 ,STEFF , YELD 1 
• THETA ,VARJ2 ) YELD 2 

c······.**·······················**·······**····****** •• ****.** ••••••••• yELD 3 
C YELD 4 
C'" SELECTS YIELD FUNCTION AND CALCULATES VECTOR 'AVECT' YELD 5 
C YELD 6 
C··············.··.·········.······*··*·*·*·**.·*.***·"****'*****'*****YELD 7 

DIMENSION AVECT(4) ,DEVIA(4) ,VECA1(4) ,VECA2(4) ,VECA3(4) YELD 8 
IF(STEFF.EQ.O.O) RETURN YELD 9 
NSTR1=4 YELD 10 
TANTH=TAN(THETA) YELD 11 
SINTH=SIN(THETA) YELD 12 
COSTH=COS(THETA) YELD 13 
COST3=COS(3.0*THETA) YELD 14 
ROOT3=1.73205080757 YELD 15 
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C* •• CALCULATE VECTOR A1 
VECA1( 1)=1.0 
VECA1(2)=1.0 
VECA1(3)=0.0 
VECA1(4) =1. 0 

C •• * CALCULATE VECTOR A2 
DO 10 ISTR1=1,NSTR1 

10 VECA2(ISTR1)=DEVIA(ISTR1)/(2.0·STEFF) 
VECA2(3)=DEVIA(3)/STEFF 

C*.* CALCULATE VECTOR A3 
VECA3(1)=DEVIA(2)*DEVIA(4)+VARJ2/3.0 
VECA3(2)=DEVIA(1)*DEVIA(4)+VARJ2I3.0 
VECA3(3)=-2.0*DEVIA(3)*DEVIA(4) 
VECA3(4)=DEVIA(1)*DEVIA(2)-DEVIA(3)*DEVIAC3)+VARJ2/3.0 
GO TO C1,2,3,4) NCRIT 

C*** TRESCA 
1 CONS1=0.0 

ABTHE=ABS(THETA*51.2951195130B) 
IFCABTHE.LT .29.0) GO TO 20 
CONS2=ROOT3 
CONS3=0.O 
GO TO 40 

20 CONS2=2.0*CCOSTH+SINTH*TANC3.0*THETA» 
CONS3=ROOT3*SINTH/(VARJ2*COST3) 
GO TO 40 

CU* VON MISES 
2 CONS1=0.0 

CONS2=ROOT3 
CONS3=0.0 
GO TO 40 

C.** MOHR-COULOMB 
3 CONS1=SIN(FRICT*0.011453292)/3.0 

ABTHE=ABS(THETA*51.29511951308) 
IF(ABTHE.LT.29.0) GO TO 30 
CONS3=0.0 
PLUMI=1.0 
IF(THETA.GT.O.O) PLUMI=-1.0 
CONS2=0.5*(ROOT3+PLUMI*CONS1/ROOT3) 
GO TO 40 

30 TANT3=TAN(3.0*THETA) 
CONS2=COSTH*«1.0+TANTH*TANT3)+CONS1·CTANT3-TANTH)/ROOT3) 
CONS3=(ROOT3~INTH+CONS1*COSTH)/(2.0*VARJ2*COST3) 
GO TO 40 

C*** DRUCKER-PRAGER 
4 SNPHI=SIN(FRICT*0.011453292) 

CONS1=2.0*SNPHI/CROOT3*(3.0-SNPHI» 
CONS2=1.0 
CONS3=0.0 

40 CONTINUE 
DO 50 ISTR1=1,NSTR1 

50 AVECT(ISTR1)=CONS1*VECA1(ISTR1)+CONS2* 
.VECA2(ISTR1)+CONS3*VECA3CISTR1) 

RETURN 
END 

10.7 Examples 

10.7.1 Introduction 

YELD 16 
YELD 11 
YELD 18 
YELD 19 
YELD 20 
YELD 21 
YELD 22 
YELD 23 
YELD 24 
YELD 25 
YELD 26 
YELD zr 
YELD 28 
YELD 29 
YELD 30 
YELD 31 
YELD 32 
YELD 33 
YELD 34 
YELD 35 
YELD 36 
YELD 31 
YELD 38 
YELD 39 
YELD 40 
YELD 41 
YELD 42 
YELD 43 
YELD 44 
YELD 45 
YELD 46 
YELD 47 
YELD 48 
YELD 49 
YELD 50 
YELD 51 
YELD 52 
YELD 53 
YELD 54 
YELD 55 
YELD 56 
YELD 51 
YELD 58 
YELD 59 
YELD 60 
YELD 61 
YELD 62 
YELD 63 
YELD 64 
YELD 65 
YELD 66 
YELD 67 
YELD 68 
YELD 69 

To illustrate the use of DYNPAK we now describe the nonlinear transient 
dynamic analysis of (i) a spherical shell and (ii) a concrete gravity dam. 
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10.7.2 Spherical shell example 
The shell, (8) shown in Fig. 10.3, is subjected to a distributed step pressure 

of 600 Ibjin2. The material is assumed to obey the Von Mises yield condition 
with linear isotropic hardening. The dimensions and properties of the shell 
are given as follows: 

Internal radius 
Thickness of shell 
Semi angle 
Elastic modulus 
Poisson's ratio 
Yield stress 
Tangent hardening modulus 
Mass density 
Step distributed pressure 

R 

R = 22.27 in 
t = 0.41 in 
a = 26.67° 
E = 10.5 X 106 lbjin2 

v = 0.3 
ay = 0.024 X 106 Ibjin2 
ET = 0.21 X 106 lbj2 

P = 2.45 X 1O-4 1b-sec2jin4 

p = 6001b/in2 

Fig. 10.3 Spherical shell and finite element mesh. 

The shell is divided into ten, 8-noded, axisymmetric, isoparametric 
elements. The fundamental period of the shell is Tf = 0.55 X 10-3 sec, 
(Reference. 8). For explicit central difference analysis, the time step is taken as 
0.4 X 10-6 sec. 
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In order to illustrate the versatility of program DYNPAK we consider 
the following three cases: 
(i) Small elastic displacements 
(ii) Large elastic displacements 
(iii) Small elasto-viscoplastic displacements (with a fluidity parameter value 

of y = 100.0). 
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Fig. lO.4(a) Results of the transient dynamic analysis of a spherical shell cap. 
Cases (i) and (ii). 

Figure 1O.4(a) shows the vertical displacement of the crown lower point for 
the analyses based on both small and large elastic displacement assumptions. 
The results show that the inclusion of geometrically nonlinear effects in the 
analysis elongates the period. Figure lO.4(b) shows the small displacement, 
elasto-viscoplastic response (Case (iii» of the spherical shell cap in which 
the value of the fluidity parameter is taken as y = 100.0. It should be noted 
that permanent viscoplastic deflections occur thus providing a completely 
different response to either of the elastic responses shown in Fig. IO.4(a). 

In Chapter 11 this problem is repeated using an elasto-plastic material 
model. It should be noted that in order to simulate elasto-plastic behaviour 
with DYNPAK a high value of the fluidity parameter (say y = 10000.0) 
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t X 10-3 sees 

0.10 Small elasto-viscopla'tic displacement (y = [00.0) 

Fig. 1O.4(b) Results of the transient dynamic analysis of a spherical shell cap. 
Case (iii)" 

should be adopted. Interested readers may like to compare DYNPAK and 
MIXDYN for elasto-plastic behaviour using a high fluidity parameter. 
However, care should be taken since the use of high fluidity parameter values 
requires the use of a smaller time step when an Euler scheme is used to 
evaluate the viscoplastic strains (see Section 8.3). Typical input data for 
Case (ii) are given in Appendix IV. 

At this stage it is probably worth mentioning the important problem of 
combining material and geometric nonlinearities. Among the several papers 
on this topic in the existing literature we suggest that the interested reader 
could profitably refer to the following as a starting point for further study: 

McMEEKING, R. M. and RICE, J. R., Finite element formulations for problems 
of large elastic-plastic deformation, Int. J. Solids Structures, 11,601-616 (1975). 

HmBIIT, H. D., MARCAL, P. V. and RICE, J. R., A finite <!lement formulation 
for problems of large strain and large displacement, Int. J. Solids Structures, 
6, 1069-1086 (1970). 

BATHE, ~. J., RAMM, E. and WILSON, E. L., Finite element formulations for 
large deformation analysis, Int. J. Num. Meth. Engng., 9, 353-386 (1975). 
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10.7.3 Gravity dam example 
The geometry of the dam, the seismic acceleration history, the water level 

and material properties for both dam and foundation are arbitrary. 

-=-10700 
\ 

81.45 ~ 

E 3164000 t/m2 

v 0.20 

0.00 = 
e 0.269 tseel/m' IS.24m 

80.00 At 70.20 ,r 80.00 

E 1800000 t/m2 

v 0.20 
-50.00= e 0.183 tsec2/m4 

Fig. IO.5(a) Concrete gravity dam. 
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Fig, 1O.5(b) Finite element mesh for concrete gravity dam. 
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Both the gravity dam and the foundation shown in Fig. 1O.5(a) are idealized 
with two-dimensional, plane-strain, 8-noded isoparametric elements as shown 
in Fig. 1O.5(b), using a 2 x2 Gauss integration rule for the stiffness evaluation, 
and using a special mass lumping scheme with a 3 X 3 Gauss integration rule. 
The adopted 2 x 2 Gauss integration rule for the stiffness terms ensures that 
no locking behaviour will occur in the mesh, whereas the 3 X 3 Gauss 
integration rule for the lumped mass matrix terms renders better mass 
representation. The model base is assumed to be fixed, i.e. u = v = 0, and 
side boundaries are represented by horizontal rollers, i.e. v = o. 

A short duration analytic earthquake (sinesweep)(9) with a maximum 
acceleration level 0.33 g (developed as an equivalent to the EI Centro NS 
accelerogram) will be used as a prescribed horizontal acceleration history 
at the model base level. It is assumed that this signal is the result of the 
deconvolution process of a prescribed signal at the foundation level. The 
displacements obtained in the solution process are relative to the model base. 

Both the concrete and rock are assumed to behave as elasto-viscoplastic 
materials with no hardening. The Mohr-Coulomb yield surface is adopted, 
and the parameters c and c/> are obtained from the uniaxial properties leu and 
It as indicated in Table 10.3. 

ji, leu = tensile, compressive strengths of concrete, 

ji I-sin c/> 
a=-=---

j~u I +sin cf>' 

(
I-a) 

c/> = arc sin -- , 
I+a 

(a)-1/2 

C = 2 leu, 

Fo (Mohr-Coulomb) = c cos c/>. 

feu ft a C Fo= C cos c/> 
(tlm2) (tlm 2

) (tlm2) (tlm 2
) 

concrete 4000 500 0.125 707.11 62.73 323.94 
rock 3600 400 0.133 547.72 61.93 257.75 

Table 10.3 Mohr-Coulomb yield surface parameters for concrete dam example. 

The values of the fluidity parameters yare considered to be the same for 
both the concrete and rock materials. Values of y = 0.00001 and y = 0.001 
have been used for the two analyses presented. The stress level in the structure 
prior to the seismic excitation is assumed to be due to the self-weight and 
hydrostatic pressure of the water only. 
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The influence of the reservoir water on the dynamic behaviour of the dam 
is considered by taking into account the mass of water attached to the 
upstream face of the dam. The simple representation of 'added mass' with 
concentrated masses is used. The adopted model could be improved sig
nificantly with transmitting boundaries, better 'added mass' representation, 
a more realistic signal and a finer mesh. 

The choice of the time step length depends on two criteria. For the explicit 
central difference integration scheme of the dynamic equilibrium equations, 
the highest mesh frequency defines the critical time step length 

2 (p(l +v)(1-2v»)1/2 
!1tCD = -- ~ p.L . 

Wmax E(I -v) 
(10.51) 

For the integration of the equations, which govern viscoplastic straining 
using the Euler method, the critical tim'e step for the Mohr-Coulomb 
viscoplastic material is defined as 

4(1 + v)(l-2v) c cos c/> 
t::..tMc = . 

y(1-2v+sin2 c/» 
(10.52) 

For the mathematical model under consideration, (L = 2.4665 m), the 
choice of the time step is governed by the !1tCD criterion for both analyses. 
Note that since 

t::..tCD = 0.000478 sec (10.53) 

the adopted time step length is t::..t = 0.0004 sec. 
On the basis of the adopted mathematical model, (Fig. 10.5), input data 

can be prepared following the user notes, given in the Appendix III. 
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U « 

'" 
"' 
v 

'" 
N 

0 
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'" 
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JOHNSON/EPSTEIN SINES WEEP EARTHQUAKE 0.20 SEC 

Fig. IO.6(a) Johnson/Epstein sinesweep earthquake. 



SINESWEEP 
0.00" 
0.0296 
0.0659 
0.1229 
0.2144 
0.'567 
0.5672 
0.8568 
1.2165 
1 .5930 
1 .8589 
1.7935 
1 .1191 

-0.3381 
-2.22 86 
-~ .2271 
-2.3768 

0.3258 
2.9306 
2.4670 

-1.2454 
-3.1663 

0.4796 
2.6553 

-1.0789 
-1.'408 

l.g803 
-0.8041 
-0.3482 

0.9696 
-1.1436 

1 .1094 
-1.0054 

0.8371 
-0.5228 
0.0025 
0.5575 

-0.6446 
-0.0521 

0.5870 
0.1398 

-0.3826 
-0.4675 
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Of 0.01 SEt 
0.OU69 
0.0339 
0.0725 
0.1335 
e.2312 
0.3823 
0.6036 
0.9046 
1.2713 
1 .6419 
1.8761 
1 .7408 
C .9594 

-f,.6038 
-2.4500 
-3.2356 
-2.0819 

0.7742 
3.1090 
2.0698 

-1.7879 
-2.9582 

1.1375 
2.3743 

-1.5873 
-0.90~4 

1.8793 
-1.2427 

0.2047 
0.5104 

-t'.~166 

0.8596 
-0.7506 

0.5057 
-( .0956 
-0.4198 

O. 72~ 5 
-0.3831 
-0.4214 

(;.4302 
0.4490 

-0.0479 
-0.3716 

300 ENTRIES 
0.0104 
0.0385 
0.0795 
0.1449 
0.2491 
0.4092 
0.6417 
0.9537 
1.3263 
1.6881 
1.8859 
1.6747 
0.7829 

-0.8798 
-2.6507 
-3.2025 
-1.7485 

1.2139 
3.2125 
1.6041 

-2.271P 
-2.6169 

1.7207 
1.9551 

-1.9703 
-0.3116 

1.6956 
-1.5330 

0.7201 
-0.0151 
-0.3588 

0.4508 
-0.3392 

0.0580 
0.3502 
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0.6519 
0.0171 
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0.3081 
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0.0140 
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1.3812 
1.7312 
1.8874 
1.5945 
0.5899 

-1.1638 
-2.8273 
-3.1262 
-1.3804 

1.6349 
3.2351 
1.0~18 

-2.6762 
-2.1529 
2.1988 
1.4235 

-2.2002 
0.2988 
1.3476 

-1.6417 
l.n07 

-0.5283 
0.1518 

-0.0377 
0.1389 

-0.3962 
0.6922 

-0.7749 
0.3541 
0.4045 

-0.5422 
-0.3015 

0.3396 
0.4876 
0.2916 

0.0177 
0.0484 
0.0951 
0.1700 
0.2884 
0.4677 
0.7229 
1.0558 
1 .4357 
1 .7705 
1.8797 
1.4993 
0.!F05 

-1.4533 
-2.9764 
-3.0056 
-0.9825 

2.0272 
3.1726 
0.5176 

-2.9821 
-1.5831 

2.5461 
0.8133 

-2.2599 
0.8699 
0.8703 

-1.5565 
1.3817 

-0.9507 
0.6265 

-0 .5100 
0.5778 

-0.7437 
0.8352 

-0.5989 
-0.0615 
0.6304 

-0.2444 
-0.5364 
-0.0213 

0.3899 
0.4528 

0.0215 
0.0539 
0.1038 
0.1838 
0.3098 
0.4992 
0.7660 
1 .1086 
1 .4894 
1.8054 
1 .8621 
1.3887 
0.1554 

-1.7372 
-3.0948 
-2.8402 
-0.5607 
2.3~06 

3.0230 
-0.0715 
-3.1733 
-0.9256 
2.7439 
0.1640 

-2.1450 
1 .3510 
0.3129 

-1.2875 
1.4390 

-1 .2170 
0.9814 

-0.8715 
0.8784 

-0.8966 
0.7389 

-0.2364 
-0.4488 
0.6073 
0.1539 

-0.5135 
-0.3657 
0.0713 
0.3295 

Fig. IO.6(b) Digital form of Johnson/Epstein sinesweep earthquake. 
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0.0255 
0.0597 
0.1130 
0.1986 
0.3326 
0.5324 
0.8106 
1.1622 
1.5420 
1.8351 
1.8337 
1.2621 
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Prior to the dynamic analysis, the initial stresses 0"0 must be evaluated 
using some static finite element program. Nodal loads and the stress state 
for every Gauss integration point are recorded, and added to the input data 
for the dynamic analysis. The sinesweep accelerogram and 300 readings for 
At = 0.01 sec are given in Fig. 10.6. The accelerogram information is read 
in from a separate input unit (here tape 7, the assumed seismic excitation in 
the horizontal direction). 

The displacement histories for selected nodal points and stress histories 
for selected Gauss integration points are written on separate output units 
(tape 10, tape 11) and may be used later for plotting the results. The 
displacement histories for nodal points 51 (structure base level) and 127 (dam 
crest) are given in Fig. 10.7. 
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Fig. 10.7 Results of transient dyi.lamic analysis of a concerte gravity dam. 

10.8 Problems 
10.1 A simply supported beam is subjected to a step uniformly distributed 

load. The dimensions and material properties of the beam are shown 
in Fig. 10.8(a). Only one quarter of the beam needs to be analysed as 
shown in Fig. 1O.8(b). Use DYNPAK to find the midspan lateral 
deflection when the step lateral load is 0.75 po where po is the static 
collapse loa'a. Note that this problem has been solved by Liu and 
Lin (l Ol, Bathe et al. (lll and Nagarajan and Popov. (12) Use the Von 
Mises yield criterion, a high value of the fluidity parameter y and 
8-node elements. 

10.2 Repeat Problem 10.1 using the Tresca yield criterion. 
10.3 Repeat Problem 10.1 using loads of intensity 0.625 Po and 0.50 po· 

Compare your results with those of Liu and Lin. (101 

10.4 For a step lateral load of 0.625 po, repeat Problem 10.1 for various 
degrees of hardening. Compare your results with those of Liu and 
Lin.(lOI 

10.5 Solve the problem given in Chapters 7 and 8 using dynamic relax
ation. (13,141 

10.6 Implement an explicit elasto-plastic, transient dynamic, Mindlin plate 
program based on DYNPAK. Typical examples are given else
where. (15,161 
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0.75 Po Ib/in2 

~E~----------------30in------------------~~ 

..... ~--------------- 15 in -------------------.,.".. 

Fig. 10.8 Simply supported beam example (a) Geometry and loading, (b) Finite 
element idealisation. 
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Chapter 11 
Implicit-explicit transient 

dynamic analysis 

Written in collaboration with D. K. Paul 

11.1 Introduction 
In Chapter 10 we have shown that the explicit, central difference time 

stepping scheme is a simple and powerful method of time integration. The 
main drawback of the scheme is that it is conditionally stable. Thus the 
computational advantages of the central difference scheme are counter
.balanced by the very small size of time step necessary when some stiff (andjor 
small) elements are present. For such problems the unconditionally stable im
plicit schemes permit the use of larger time steps, the size of which is governed 
only by accuracy considerations. Unfortunately these schemes which require 
matrix factorisations involve larger computer core storage and more oper
ations per time step than the central difference scheme. The selection of a 
suitable time integration scheme is therefore largely a matter of experience. 

In some problems, typified by the one illustrated in Fig. 11.1, we may be 
confronted with a situation in which there is a 'soft' subregion QE where an 

Implicit subregion, {1' 

-+-__ Explicit 
subregion, W 

Fig. 11.1 Implicit-explicit partitioning. 

431 
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explicit schepte is desirable and a 'stiff' subregion QI where an implicit 
scheme is preferable for greater efficiency. In such cases it is possible to simul
taneously make use of both implicit and explicit algorithms. Implicit
explicit schemes offer a unified approach to problems of structural transient 
dynamics and can lead to significant computational advantages. 

Implicit--explicit schemes were first introduced by Belytschko and 
Mullen(1-3) and were given an alternative form by Hughes and co-workers(4-6) 
and Park et al. (7-8) It can be shown that the stability of such schemes is 
governed by the explicit elements. 

In this chapter Implicit and Implicit-Explicit methods for nonlinear 
transient dynamic analysis are discussed and we follow the element par
titioning approach described by Hughes. A program, named MIXDYN, for 
Implicit-Explicit linear and nonlinear transient dynamic analysis is included. 
Some numerical examples are solved to show some of the capabilities of 
the program. The same program could be modified for static analysis by 
some simple changes. 

11.2 Implicit time integration 

11.2.1 Newmark's algorithm 

In order to introduce the implicit/explicit algorithm we describe the 
predictor-corrector form of the Newmark scheme for the integration of the 
semi-discrete system of equations which govern nonlinear transient dynamic 
problems. Typically at time station tn +!:"t these equations take the fo)-m 

Man+l +Pn+l = In+l (I 1.1) 

where M, an+l, Pn+l and In+l are the mass matrix, acceleration vector, 
internal force vector (which may depend on the displacemen.ts dn+l and 
velocities tin+l and their histories) and applied force vector respectively. Let 

(11.2) 

denote the tangent stiffness and damping matrices respectively. 
In the Newmark scheme we endeavour to satisfy the following equations 

(11.3) 

(11.4) 



where 
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Vn+l = iJn+l + Myan+1 (11.5)* 

(I 1.6) 

(11.7) 

Note that dn, Vn and an are the approximations to d(tn), d(tn) and d(tn) and 
f3 and yare free parameters which control the accuracy and stability of the 
method. The values dn+1 and Vn+1 are predictor values and d n+1 and V1I+l 

are corrector values. 
Initially the displacements do and velocities Vo are provided and we find 

the accelerations ao from the expression 

Mao =/o-p(do, vo). (11.8) 

Thus ao may be found by a factorization, forward reduction and back 
substitution unless M is diagonal in which case the solution is trivial. 

We then solve (11.3) to (1 \. 7) by forming an 'effective static problem't 
which is solved using a Newton Raphson type scheme, as described earlier. 
The algorithm is summarised in Table 11.1. 

Table 11.1 Newmark's algorithm 

I Set iteration counter i = O. 
2 Begin predictor phase in which we set 

d,,+!li] = iTn+! = dn+Mvn+M2(1-2~)un/2 (i) 
V1I+,li] = Vn+, "" vn...+M(I-y)un (ii) 
un+,L'] = [dn+1P]- dn+,l/C">.t2~) = O. (iii) 

3 Evaluate residual forces using the equation 
IfIli] = /11+' - MUn+ Ili]-p(dn+,li], Vn+ ,[ill. (iv) 

4 If required, form the effective stiffness matrix using the expression 
K* = M /(t.t2~)+yCT /(M~)+ KT(dn+1Ii]). (v) 

Otherwise use a previously calculated K*. 
5 Factorize, forward reduction and backsubstitute as required to 

solve 
K* t.dli ] = IfIli]. (vi) 

6 Enter corrector phase in which we set 
dn+,l<+1) = dn+lli]+t.d Li] (vii) 
Un+1l !+1] = [dn+1l'+1]-ii,,+tl/(M2~) (viii) 
V.+,[<+1] = Vn+l+t.tYUn+lIH1]. (ix) 

7 If t.d[i] and/or IfIli] do not satisfy the convergence conditions then 
set i = i+ 1 and go to step 3, otherwise continue. 

S Set dn+. = dn+. li +1] (x) 
V,,+. = Vn+,['+'] (xi) 
Un+. = u,,+.['+1] (xii) 

for use in the next time step. Also set n = n+ 1, formp and begin 
next time step. 

* In this chapter y is a Newmark parameter and not the viscoplastic fluidity parameter. 

t K· Adl!] = ~ [I]. 
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11.2.2 Predictor-corrector algorithm 
Let us now consider an 'explicit' algorithm associated with the Newmark 

schemes described earlier. In this explicit predictor-corrector algorithm we 
assume that the mass matrix M is diagonal and we make use of the expression 

(11.9) 

Notice that the~lcula~ionjs <;:XIllicit since we use corrector values obtained 
from information given in the previous step. 

As we would like to eventulilly combine the implicit and explicit methods 
we organise our implementation of this explicit method in a similar fashion 
to the implementation given of the implicit scheme in the previous section. 
Table 11.2 summarises the algorithm. 

Table 11.2 Explicit predictor-corrector algorithm 

1 Begin predictor phase by setting 
dn+l[O) = dn+! = dn+Mvn+M2(l-2~)an/2 (i) 
Vn+l[O) = Vn+l = vn+M(l-y)an (ii) 
an+l[O) = O. (iii) 

2 Evaluate the residual forces using the equation 
",[0) = in+! - p(dn+![O), Vn+I[O). (iv) 

3 If required, form the 'effective' stiffness matrix using the expression 
K* = M/(M2~). (v) 

Note that as the mass matrix M does not change K* will be formed 
once only. / 

4 Perform factorization, forward reduction and backsubstitution as 
required to solve 

K* ~d[O) = ",[0) (vi) 
5 Enter the corrector phase in which we set 

dn+.lI) = dn+1[O)+ ~d[O) (vii) 
an+P) = [dn+P)-dn+']/(M2~) (viii) 
Vn+P) = Vn+l + ~tyan+l[l). (ix) 

6 Set 'dn+l = dn+P) (x) 
Vn+l = Vnh[l) (xi) 
an+! = a'+1[1) (xii) 

for use in the next time step. Also set n = n+ 1, form p and begin 
next time step. 

11.3 implicit-explicit algorithm 

11.3.1 Introduction 
We now combine the methods described in Sections 11.2.1 and 11.2.2 so 

that the finite element mesh contains two groups of elements: the implicit 
group and the explicit group. The superscripts I and E will henceforth refer 
to the implicit and explicit groups respectively. 

In the implicit-explicit algorithm we iterate within each time step in order 
to satisfy the equation 
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Man+l+pI(dn+l, Vn+l)+pE(dn+l, Vn+l) =/n+l (11.10) 

in which M = MI+ME and/n+l =/n+lI+/n+lE • Note that we assume ME 
is diagonal. 

11.3.2 The structure of the effective stiffness matrix 
The algorithm, which is summarised in Table 11.3, is very similar to the 

implicit algorithm given in Section 11.2.2. The profile structure of K* is very 
interesting. It has diagonal subregions corresponding to the explicit group of 
elements. Elsewhere, K* has a profile strueture which corresponds to the 
connectivity of the implicit group only. 

Table 11.3 Implicit--explich algorithm 

1 Set iteration counter i = O. 
2 Begin predictor phase in which we set 

dn+l[i] = dn+l = dn+Mvn+A/2(1-2~)an/2 (i) 
Vn+l[i] = Vn+l = vn+M(1-y)an (ii) 
a'+l[i] = [dn+l[il- dn+l1/(M2~) = O. (iii) 

3 Evaluate residual forces using the equation 
'JI[i] = /n+1- Man+t[il- pI(dn+t[i], IIn+1[i]) - pE(i1n+h Vn+l). (iv) 

4 If required, form the effective stiffness matrix using the expression 
K* = M/(At2~)+yCTI/(M~)+KTI(dn+l[il). (v) 

Otherwise use a previously calculated K*. 
(Note that KTI = apI/ad and CTI = apI/Oil). 

5 Perform factorization, forward reduction and backsubstitution as 
required to solve. 

K* A/Jlil = 'JI[i]. (vi) 
6 Enter corrector phase in which we set 

dn+l[i+1] = dn+l[i]+ Ad[i] (vii) 
an+l[<+I] = [dn+l[l+I]-ii.+,]/(M2~) (viii) 
Vn+l[l+I] = IIn+l+A/yan+l[t+1]. (ix) 

7 If Ad[i] and/or 'JI[i] do not satisfy the convergence conditions, then 
set i = i+ 1 and go to step 3, otherwise continue. 

8 Set dn+l = dn+l[H 1] (x) 
Vn+l = 1I'+I[i+1] (xi) 
an+l = an+l[i+1] (xii) 

for use in the next time step. Also set n = n+ I, form p and begin 
next time step. 

Consider the three meshes and effective stiffness matrices shown in 
Fig. 11.2(a)-{c): 

(i) When there are only explicit elements, K* is diagonal. In other words 
K* has the same profile structure as ME (Fig. 11.2(a)). 

(li) For a mesh consisting of only implicit elements K* has the same profile 
structure as KI (Fig. 11.2(b)). 

(iii) For the partitioned mesh containing both implicit and explicit groups 
we see, the appropriate combination of parts of both profile structures 
(Fig. 11.2(c». 
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To fully exploit the profile structure of K*, Hughes et af. (4) have suggested 
the use of profile solvers. In our implementation of the scheme we adopt a 
slightly modified version of the in-core profile solver given by Bathe and 
Wilson. (9) - *\i"c>' l(:) 
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(ii) Profile of K*. 

Fig. 11.2(a) Two-dimensional finite element mesh and profile structure of the 
effective stiffness matrix K* (explicit elements only). 

11.3.3 Alternative predictor values 
In equations (i}-(iii) in Table 11.3 we gave the approach described by 

Hughes and Liu,<4) For implicit-explicit problems other predictor values may 
be adopted. Here w<; consider two cases: 

I. Hughes and Liu predictor values 

d"+l [0] = d,,+l = d n + Mv" + ~t2(1 - 2(3)an/2 (i) 

Vn+l[O] = iin+l = Vn + ~t(l -y)an 

a"+l [0] = [dn+l [Ol-dn +ll/(M2f3) 

(ii) 

(iii) (ll.ll) 
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(i) Finite element mesh-2 degrees of freedom per node. 
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(ii) Profile of K*. 

Fig. 11.2(b) Two-dimensional finite element mesh and profile structure of the 
effective stiffness matrix K* (implicit elements only). 

2. Alternative predictor values 

d",I[O] = d" 

Iln+1[0] = Vn 

an+ 1 [0] = [dn+llO]-dn+l]/(.t;t2,8) 

(where dn+ 1 = d,. + .t;tvn -+- .:'1t 2(1 - 2,8)a,,)/2 

(i) 

(ii) 

(iii) 

(11.12) 

The second approach is recommended for elastoplastic problems for use 
with meshes involving only implicit elements in which y = % and when 
large time steps are adopted. 

11.3.4 Stability limits 
Hughes et al. (4) have discussed the stability limits for this implicit-explicit 

scheme. 
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Fig. 11.2(c) Two-dimensional finite element mesh and profile structure of the 
effective stiffness matrix K* ( Implicit and explicit elements) . 

• 
If y;;'! and f:3 = (y + !)2/4, we achieve unconditional stability in the 

implicit element group. The time step is then restricted by the explicit element 
group. For the case in which y = !, the critical time step may be written as 

lltcrit = 2/wmax (11.13) 

Where Wmax is the maximum frequency of the explicit group. We can estimate 
Wmsx as 

Wmsx':;; max( wmax(el) 

• 
(l1.l4) 

where wmax(el is the maximum frequency of the eth element of the explicit 
group. 

Since KT is changing from step to step, strictly speaking the maximum 
frequency should be estimated at the beginning of every step. In elasto
plastic analYsis, the structure generally becomes more flexible and (11.14) 
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may be used. However, for a better estimate of the critical time step the 
nonlinear eigenvalues should be evaluated. 

If only implicit elements are used and if y~! and f3 = (y-H)2/4, then 
error investigations carried out in terms of period elongation and amplitude 
decay with the increase of time step indicate that for reasonable accuracy the 
time step should be limited to 1/100 of the fundamental (largest) period. It is 
observed that the amplitude decay caused by the numerical integration errors 
effectively filters the higher mode response out of the solution in the Houbolt 
and Wilson e method. However when we employ the Newmark constant
average-acceleration scheme, which does not introduce amplitude decay, 
the higher frequency response is retained in the solution. In order to obtain 
amplitude decay using the Newmark method, it is necessary to employ 
y>?,. 

11.4 Evaluation of the tangential stiffness matrix 
In program MIXDYN we adopt an elasto-plastic material model and 

therefore the stresses and the tangential stiffness matrix at any time station 
tn +!::.t may be evaluated in the manner outlined in Chapter 7 for static 
problems. As an alternative geometrically nonlinear elastic effects are con
sidered using a total Lagrangian formulation. 

The internal resisting force vector for the implicit elements at time station 
t n +!::.t is given as 

Pn+11 = f I [BI]T n+l Un+l dO (11.15) 
Q 

and therefore the tangential stiffness matrix may be written as 

OPn+lI 

iidn+l 
= [KTI]n+l = J'I[Bl]Tn+lDn+l[BI]nndD 

!J 

+ f [G]T n+l Sn+l Gn r1 dO 
[/ 

{l1.l6Y' 

in which Dnt 1 is the elasto-plastic modulus matrix defincd in Chapter 7, 
[BNLl]n+l is the nonlinear strain-displacement matrix defined in Chapter 10, 
the matrix Sn+l is given as 

[ 
uxh 

Sn+l = 
Txy 12 Uy 12 LII (11.17) 

for plane stress and plane strain problems, and 

:. L (11.1 R) 

o 
* The second matrix is only included for geometrically nonlinear problems. 
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for axisymmetric problems, and 

aNt aNt T 

0 - 0 
ox oy 

[Gt]n+l = 
aNi oN, 

(11.19) 

0 0 
ox oy 

for plane stress and plane strain problems, and 

aNt aNt Nt T 

0 0 
or oz r 

[G;]n+l = 
aNt 

(11.20) 
aNi 

0 0 0 
or oz 

for axisymmetric problems. 
Note that all of the yield criteria described in Chapter 7 are included in 

program MIXDYN. 

11.S Program MIXDYN 

11.S.1 Introduction 
The computer program 'MIXDYN' is based on the Implicit-Explicit 

time integration scheme of Hughes and Liu(4) for two-dimensional plane 
stress/strain and axisymmetric nonlinear dynamic transient problems. Some 
of the subroutines are the same as in DYNPAK. The profile solvers DECOMP 
and REDBAK and a few other subroutines used in this program are based 
on those given in Reference (9). (These subroutines are rewritten using new 
variables names). Some new subroutines have also been included in the . , 
program. The program considers geometric or elasto-plastic material 
nonlinearity. A total Lagrangian formulation using four-, eight- and 
nine-noded quadrilateral isoparametric elements is adopted to model 
the geometric nonlinear behaviour. The program has several options; 
it can be used for small or large deformation elastic and small deformation 
elasto-plastic transient dynamic analysis and the analysis may be carried 
out using an explicit, implicit or combined impiicit--cxplicit algorithm. 
Furthermore, four types of elasto-plastic material models can be 
considered: (i) Tresca, (ii) Von Mises, (iii) Drucker-Prager and (iv) Mohr
Coulomb. 

The flow diagram for MIXDYN is shown in Fig. i 1.3. The program is 
written in modular form and the input and output data representation is 
identical to that given for DYNPAK. 

The subroutines which have not-appeared elsewhere in the book are now 
described. 
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I CONTROL I 

--1 NODXYR I 
I INPUTD f-

-l GAUSSQ I 

I INTIME I 

I PREVOS I 

I LOADPL f-- --1 SFR2 I 
-l JACOB2 I 
---j MODPS I 

--1 GAUSSQ I 

I LUMASS I SFR2 J 

--1 JACOB2 I ---i MODPS J 

--t ADDBAN I -1 SFR2 I 

I LlNKIN . 
COLMHT I --1 JACOB2 I 
ADDRES I -{ JACOBD I 

--1 BLARGE I 
I GSTIFF I --1 INVAR I 

rl DECOMP I 
-\ FLOWPL I 

H MULTPY I --I MODPS I -1 DlNTOB I 
~ ~ H REDBAK I --t SFR2 I § 0 

-\ GEOMST I 0 I IMPEXP j-...l H FUNCTS I -l JACOB2.J ~ z -{ ADDBAN I 
.~ 0 - --1 FUNCTA I """i JACOBD I .... --i YIELDF I 
~ 

« co: 
~ I RESEPL I BLARGE I .... -

MULTPY I --t INVAR I 
I ITRATE 

REDBAK I --I FLOWPL I 

I OUTDYN I ---j LlNGNL i 
-l YIELDF I 

Fig. 11.3 Overall structure of program MIXDYN. 
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11.5.2 Master routine MIXDYN 
The master routine organises the calling of the main routines as outlined 

in the flow diagram (Fig. 11.3). In subroutine CONTOL control parameters 
are read and a check is made on the maximum control dimensions. Note 
that the values used for checking in CONTOL should agree with the maximum 
dimensions in the master routine. Subroutine INPUTD, INTIME and 
PREVOS read the mesh data, time integration data and data for the previous 
state of the structure. Subroutine LINKIN links the rest of the program with 
the profile solver, i.e., it generates all information required for the profile 
solver. Subroutines LUMASS and LOADPL generate the lumped mass and 
applied force vectors respectively. GSTIFF calculates th;global stiffness 
matrix in compacted form. In the time--step do loop IMPEXP -perloims 
~----

the direct time integration using either of the (i) Implicit, (ii) Explicit or 
(iii) combined Implicit-Explicit schemes. RESEPL calculates the equivalent 
nodal forces using elasto-plastic material behaviour. The maximum dimen
sion of the program have been set to a maximum of 50 elements, 200 nodes, 
10 sets of material properties, 6000 coefficients in the mass and stiffness 
matrices and 400 acceleration ordinates. For larger problems the dimensions 
must therefore be changed. 

PROGRAM MIXDYN (INPUT ,TAPE5=INPUT ,TAPE4,TAPE10,TAPE12,TAPE3, MDYN 1 
OUTPUT,TAPE6=OUTPUT,TAPE7,TAPE11,TAPE13) MDYN 2 

c*****************.* ••• *************************************************MDYN 3 
C MDYN 4 
C TIME INTEGRATION IMPLICIT-EXPLICIT ALGORITHM MDYN 5 
C MDYN 6 
c**************.*.******************************************************MDYN 7 

DIMENSION CooRD(200,2) , STIFF(6000) , DISPI( 400 ) ,POSGP( 4) , MDYN 8 
IFPRE(2,200) ,STIFS(6000) ,VELOI(400) ,WEIGP( 4) , MDYN 9 
LNODS(50, 9) ,STIFI(6000) ,ACCEI( 400) , NPRQD( 10) , MDYN 10 
RLOAD(50,18) ,XMASS(6000) ,DISPL(400) ,NGRQS( 10). , MDYN 11 
PROPS(10,13) ,DAMPI(6000) , VELOL( 400) ,INTGR( 50) , MDYN 12 
LEQNS(18,50) ,DAMPG(6000) ,ACCEL(400) ,MATNO( 50) , MDYN 13 
STRIN(4,450) ,YMASS( 400) ,ACCEK(400) ,MAXAI(400) , MDYN 14 
STRAG(4,450) , FORCE ( 400) ,ACCEJ(400) ,MAXAJ(400) , MDYN 15 
STRSG(4,450) ,RESID( 400) ,DISPT(400) ,ACCEH(400) , MDYN 16 
EPSTN( 450) ,TEMPE( 400) ,DISPQ(400) ,ACCEV(400) , MDYN 17 
NITER( 2000) , MHIGH ( 400) ,EFFST(450) ,VELOT(400) MDYN 18 

C MDYN 19 
COMMON STIFF ,XMASS ,DAMPG ,STIFI ,STIFS ,DAMPI MDYN 20 

G MDYN 21 
C MDYN 22 

CALL CONTOL (NDOFN ,NELEM ,NMATS ,NPOIN MDYN 23 
C MDYN 24 

CALL INPUTD (COORD ,IFPRE ,LNODS ,MATNO ,NCONM ,NCRIT , MDYN 25 
NDIME ,NDOFN ,NELEM ,NGAUM ,NGAUS ,NLAPS , MDYN 26 
NMATS ,NNODE , NPOIN ,NPREV ,NSTRE ,NTYPE , MDYN 27 
POSGP ,PROPS ,WEIGP ) MDYN 28 

C MDYN 29 
CALL INTIME (AALFA ,ACCEH ,ACCEV ,AFACT ,AZERO ,BEETA , MDYN 30 

BZERO ,DELTA ,DTIME ,DTEND ,GAAMA ,IFIXD , MDYN 31 
IFUNC ,INTGR ,KSTEP ,MITER ,NDOFN ,NELEM , MDYN 32 
NGRQS ,NOUTD ,NOUTP ,NPOIN ,NPRQD ,NREQD , MDYN 33 
NREQS ,NSTEP ,OMEGA ,DISPI ,TOLER ,VELOI , MDYN 34 
IPRED ) MDYN 35 
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C t-IDYN 36 
CALL PREVOS (FORCE INDOFN ,NELEM ,NGAUS ,NPOIN ,NPREV , t-IDYN 37 

STRIN t-IDYN 38 
C t-IDYN 39 

CALL LOADPL (COORD ,FORCE ,LNODS ,MATNO ,NDIME ,NDOFN , t-IDYN 40 
NELEM ,NGAUS ,NMATS ,NNODE ,NPOIN ,NSTRE , t-IDYN 41 
NITPE ,POSGP ,PROPS ,RLOAD ,STRIN ,TEMPE, t-IDYN 42 
WEIGP ) t-IDYN 43 

C t-IDYN 44 
CALL LUMASS (COORD ,INTGR ,LNODS ,MATNO ,NCONM ,NDIME , t-IDYN 45 

NDOFN ,NELEM ,NGAUM ,NMATS ,NNODE ,NPOIN , t-IDYN 46 
NITPE ,PROPS ,!MASS) t-IDYN 47 

C t-IDYN 48 
CALL LINKIN (FORCE IFPRE INTGR ,LEQNS ,LNODS ,MAW , t-IDYN 49 

MAXAJ :MHIGH :NDOFN ,NELEM ,NEQNS ,NNODE t-IDYN 50 
NPOIN ,NWKTL ,NWMTL ,XMASS ,YMASS) t-IDYN 51 

C t-IDYN 52 
DO 510 ISTEP=1,NSTEP t-IDYN 53 

C t-IDYN 54 
DO 500 IITER=1,MITER t-IDYN 55 

C t-IDYN 56 
CALL GSTIFF (COORD ,EPSTN ,INTGR ,ISTEP ,KSTEP ,LEQNS , t-IDYN 57 

LNODS ,MATNO ,MAXAI ,MAXAJ ,NCRIT ,NDIME , t-IDYN 58 
NDOFN ,NELEM ,NGAUS ,NLAPS ,NMATS ,NNODE , t-IDYN 59 
NPOIN ,NSTRE ,NITPE ,NWMTL ,NWKTL ,POSGP , t-IDYN 60 
PROPS ,STIFF ,STIFI ,STRSG ,DISPT ,WEIGP ) t-IDYN 61 

C t-IDYN 62 
CALL IMPEXP (AALFA ,ACCEH ,ACCEI ,ACCEJ ,ACCEK ,ACCEL , t-IDYN 63 

ACCEV ,AFACT ,AZERO ,BEETA ,BZERO ,CONSD , t-IDYN 64 
CONSF ,DAMPI ,DAMPG ,DELTA ,DISPI ,DISPL , t-IDYN 65 
DISPT ,DTEND ,DTIME ,GAAMA ,IFlXO ,IFPRE , t-IDYN 66 
IFUNC ,lITER ,ISTEP ,KSTEP ,MAXAI ,MAXAJ , t-IDYN 67 
NDOFN ,NEQNS ,NPOIN ,NWKTL ,NWMTL ,OMEGA, t-IDYN 68 
FORCE ,STIFF ,STIFI ,STIFS IVELOI ,VELOL , t-IDYN 69 
VELDT ,XMASS ,!MASS ,IPRED t-IDYN 70 

C t-IDYN 71 
CALL RESEPL (COORD ,DISPT ,EFFST ,RLOAD ,EPSTN ,lITER, t-IDYN 72 

INTGR ,LEQNS ,LNODS ,MATNO ,NCRIT ,NDIME , t-IDYN 73 
NDOFN ,NELEM ,NGAUS ,NLAPS ,NMATS ,NNODE , t-IDYN 74 
NPOIN ,NSTRE ,NITPE ,POSGP ,PROPS ,RESID 

I 
t-IDYN 75 

STRAG ,STRIN ,STRSG ,WEIGP ,IPRED ,ISTEP MOYN 76 
C t-IDYN 77 

CALL ITRATE (ACCEI ,ACCEL ,CONSD ,CONSF ,XMASS ,DISPI , t-IDYN 78 
DISPL ,DISPT ,MAXAI ,NCHEK ,NEQNS ,NWMTL , t-IDYN 79 
RESID ,STIFS ,TOLER ,VELOI ,VELOL ,VELOT , t-IDYN 80 
IITER ,MITER ) t-IDYN 81 

C t-IDYN 82 
500IF(NCHEK.EQ.1) GO TO 510 t-IDYN 83 

C t-IDYN 84 
510 CALL OUTDYN (DISPQ ,DTIME ,EPSTN ,IFPRE ,lITER ,ISTEP , t-IDYN 85 

NDOFN ,NELEM ,NGAUS ,NGRQS ,NITER ,NOUTD , t-IDYN 86 
NOUTP ,NPOIN lNPRQD ,NREQD ,NREQS ,NITPE , t-IDYN 87 
STRSG ,DISPI t-IDYN 88 

C t-IDYN 89 
STOP t-IDYN 90 END t-IDYN 91 
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11.5.3 Subroutine ADDBAN 
This routine(9) assembles the element stiffness matrix into the global 

stiffness matrix in a compacted form. 

SUBROUTINE ADDBAN (STIFF, MAXAl , ESTIF , LEQNS , NEV AB) c·*t_ ••••••••••••••••••••••••••••••• __ ••• _ •••••••••••••••••••••••••• 
C 
C *** ASSEMBLY OF TOTAL STIFFNESS VECTOR 
C 
c················_·_····---_················_·······_-* ............ . 
C 

DIMENSION STIFF(l),MAXAI(l),ESTIF(l),LEQNS(l) 

KOUNT:O 
DO 200 IEVAB:l,NEVAB 
IEQNS:LEQNS(IEVAB) 
IF(IEQNS) 200,200,100 

100 IMAXA:MAXAl(IEONS) 
KEVAB:IEVAB 
DO 220 JEVAB:l,NEVAB 
JEQNS:LEONS(JEVAB) 
IF(JEQNS) 220,220,110 

110 IJEON:IEQNS-JEONS 
IF(IJEQN) 220,210,210 

210 ISIZE:IMAXA+IJEQN 
JSIZE:KEVAB 
IF(JEVAB.GE.IEVAB) JSIZE:JEVAB+KOUNT 
STIFF(ISIZE):STIFF(ISIZE)+ESTIF(JSIZE) 

220 KEVAB:KEVAB+NEVAB-JEVAB 
200 KOUNT:KOUNT+NEVAB-IEVAB 

RETURN 
END 

11.5.4 Subroutine ADDRES 

ADDB 1 
ADDB 2 
ADDB 3 
ADDB 4 
ADDB 5 
ADDB 6 
ADDB 7 
ADDB 8 
ADDB 9 
ADDB 10 
ADDB 11 
ADDB 12 
ADDB 13 
ADDB 14 
ADDB 15 
ADDB 16 
ADDB 17 
ADDB 18 
ADDB 19 
ADDB 20 
ADDB 21 
ADDB 22 
ADDB 23 
ADDB 24 
ADDB 25 
ADDB 26 
ADDB 27 

This routine(9) addresses the diagonal elements of the global matrix using 
the column heights. 

SUBROUTINE ADORES ( MAXAl ,MHIGH ,NEONS , NWKTL ,MKOUN ) 
c················.,. ..• _--•...... · ... ,---_ ................. -_ ... _._-
C 
C *** EVALUATES ADRESSES OF DIAGONAL ELEMENTS 
C c ••••••••• _ ••••••••••••• _ •••••• , •••• _ •••••••• _ •••••••• **'44**.' ••••• 

DIMENSION MAXAI(l) ,MHIGH(l) 
NEQNN:NEQNS+l 
DO 20 IEQNN:l,NEONN 

20 MAXAl( 1>=1 
MAXAl(2):2 
MKOUN:O 
IF(NEONS.EQ.1) GO TO 30 
DO 10 IEQNS:2,NEONS 
IF(MHIGH(IEONS).GT.MKOUN) MKOUN:MHIGH(IEONS) 

10 MAXAI(IEQNS+l):MAXAI(IEQNS)+MHIGH(IEONS)+l 
30 MKOUN:MKOUN+ 1 

NWKTL:MAXAI(NEQNS+l)-MAXAI(l) 
RETURN 
END 

ADDR 1 
ADDR 2 
ADDR 3 
ADDR 4 
ADDR 5 

.ADDR 6 
ADDR 7 
ADDR 8 
ADDR 9 
ADDR 10 
ADDR 11 
ADDR 12 
ADDR 13 
ADDR 14 
ADDR 15 
ADDR 16 
ADDR 17 
ADDR 18 
ADDR 19 
ADDR 20 
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11.5.5 Subroutine COLMHT 
This routine(9) calculates the vertical column heights above the diagonal 

of the global matrix using equation numbers and the total number of degrees 
of freedom of an element (NEV AS). 

SUBROUTINE COLMHT (MHIGH ,NEVAB ,LEQNS 
c············**··········***··**·*****·········***····*-.*._ ..... _ .. 
C 
C*** EVALUATES THE COLUMN HEIGHT OF STIFFNESS MATRIX 
C 
c························· __ ······ __ ·_--_·····_···_---* ..... -._ ..... 

DIMENSION LEQNS(1) ,MHIGH(1) 
MAXAM=100000 
DO 100 IEVAB=1,NEVAB 
IF(LEQNS(IEVAB» 110,100,110 

110 IF(LEQNS(IEVAB)-MAXAM) 120,100,100 
120 MAXAM=LEQNS(IEVAB) 
100 CONTINUE 

00 200 lEV AB= 1, NEV AB 
IEQNS=LEQNS(IEVAB) 
IF(IEQNS.EQ.O) GO TO 200 
JHIGH=IEQNS-MAXAM 
IF(JHIGH.GT.MHIGH(IEQNS» MHIGH(IEQNS)=JHIGH 

200 CONTINUE 
RETURN 
END 

11.5.6 Subroutine DECOMP 

COLM 1 
COLM 2 
COLM 3 
COLM 4 
COLM 5 
COLM 6 
COLM 7 
COLM 8 
COLM 9 
COLM 10 
COLM 11 
COLM 12 
COLM 13 
COLM 14 
COLM 15 
COLM 16 
COLM 17 
COLM 18 
COLM 19 
COLM 20 
COLM 21 

This routine(9) factorises a matrix into lower, diagonal and upper matrices 
(LDLT) 

SUBROUTINE DECOMP (STIFF ,MAXAI ,NEQNS ,ISHOT ) 
c·············_···_·············-··············_··_···*.-*_._ ..... _. c 
C *** FACTORISES (L).(D)*(L) TRANSPOSE OF STIFFNESS MATRIX 
C 
C··············_············_*··········_·····_-------... * •••• **_ ••• 

DIMENSION STIFF(1) ,MAXAI(1) 
C 

IF(NEQNS.EQ.1) RETURN 
00 200 IEQNS=1,NEQNS 
IHAXA=MAXAI(IEQNS) 
IDlER =IHAXA+ 1 
KUPER=MAXAI(IEQNS+1)-1 
KHIGH=KUPER-LOWER 
IF(KHIGH) 304,240,210 

210 KSIZE=IEQNS-KHIGH 
ICOUN=O 
JUPER=KUPER 
00 260 JHIGH=1,KHIGH 
ICOUN=ICOUN+ 1 
JUPER=JUPER-1 
KMAXA:MAXAI(KSIZE) 
NDIAG=MAXAI(KSIZE+1)-KMAXA-1 
IF(NDIAG) 260,260,270 

DECM 1 
DECM 2 
DECM 3 
DECM 4 
DECM 5 
DECM 6 
DECM 7 
DECM 8 
DECM 9 
DECM 10 
DECM 11 
DECM 12 
DECM 13 
DECM 14 
DECM 15 
DECM 16 
DECM 11 
DECM 18 
DECM 19 
DEeM 20 
DEeM 21 
DEeM 22 
DEeM 23 
DEeM 24 
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270 NCOLM=MINO(ICOUN,NDIAG) 
COUNT=O .. 
DO 280 ICOLM=1,NCOLM 

280 COUNT=COUNT+STIFF(KMAXA+ICOLM)*STIFF(JUPER+ICOLM) 
STIFF(JUPER)=STIFF(JUPER)-COUNT 

260 KSIZE=KSIZE+1 
240 KSIZE=IEQNS 

BSUMM=O. 
DO 300 ICOLM=LOWER,KUPER 
KSIZE=KSIZE-1 
JMAXA=MAXA!(KSIZE) 
RATIO=STIFF(ICOLM)/STIFF(JMAXA) 
BSUMM=BSUMM+RATIO·STIFF(ICOLM) 

300 STIFF(ICOLM)=RATIO 
STIFF(IMAXA)=STIFF(IMAXA)-BSUMM 

304 IF(STIFF(IMAXA» 310,310,200 
310.JE.(~ .EQ.O) GO TO 320 
~- IF(STIFF(IMAXA) .EQ.O) STIFF(IMAXA)=-1.E-16 

GO TO 200 
320 WRITE(6,2000) IEQNS,STIFF(IMAXA) 

STOP 
200 CONTINUE 

RETURN 
2000 FORMAT(/148H STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE ,II 

.32H NONPOSITIVE PIVOT FOR EQUATION ,I4,/ll0H PIVOT = ,E20.12) 
END 

11.5.7 Subroutine DlNTOB 

DECM 25 
DECM 26 
DECM 27 
DECM 28 
DECM 29 
DECM 30 
DECM 31 
DECM 32 
DECM 33 
DECM 34 
DECM 35 
DECM 36 
DECM 37 
DECM 38 
DECM 39 
DECM 40 
DECM 41 
DECM 42 
DECM 43 
DECM 44 
DECM 45 
DECM 46 
DECM 47 
DECM 48 
DECM 49 
DECM 50 

This routine multiplies the modulus matrix D with the strain matrix B. 

SUBROUTINE DINTOB (BMATX ,DBMAT ,DMATX ,NEVAB ,NSTRE ) 
c*_.***_.* ••• *_.**._*--***._._*_._-_ .. *--**.**-**** ••• **4*****4***** 
C 
c*** CALCULATE D INTO B 
C C.-44*f*_*._ •• *** ••••• _. ______ ._. _________ ._* __ *. _____ *****_444f44f_ 

DIMENSION DBMAT(4,18) ,DMATX(4,4) ,BMATX(4,18) 
DO 10 ISTRE=1,NSTRE 
DO 10 IEVAB=1,NEVAB 
DBMAT(ISTRE,IEVAB) =0.0 
DO 10 JSTRE=1,NSTRE 
DBMAT(ISTRE,IEVAB)=DBMAT(ISTRE,IEVAB)+ 

.DMATX(ISTRE,JSTRE)*BMATX(JSTRE,IEVAB) 
10 CONTINUE 

RETURN 
END 

11.5.8 Subroutine GEOMST 
This routine adds the initial stress matrix to the stiffness matrix. 

SUBROUTINE GEOMST (CARTD ,DVOLU ,ESTIF ,KGAUS ,NDOFN ,NNODE , 
• STRSG ,SHAPE ,NTYPE ,GPCOD ,KGASP ) c ••••••• _ •••••• __ •• _ ••• -._._ •• _._--_ ••••••• _. __ •••••• _44*** ____ ._. __ 

C 
C ADD INITIAL STRESS STIFFNESS MATRIX TO STIFFNESS MATRIX 
C 
c •• * •••• **** •• ****.* ••• *** •••• ~***.*********************4** ••• -.4_.

DIMENSION STRES(4) ,CARTD(2,9) ,ESTIF(171) ,STRSG(4,1) , 
SHAPE(1) ,GPCOD(2,9) 

NEVAB=NNODE*NDOFN 
DO 300 ISTR1=1,4 

DINT 1 
DINT 2 
DINT 3 
DINT 4 
DINT 5 
DINT 6 
DINT 7 
DINT 8 
DINT 9 
DINT 10 
DINT 11 
DINT 12 
DINT 13 
DINT 14 
DINT 15 
DINT 16 

GEOM 1 
GEOM 2 
GEOM 3 
GEOM 4 
GEOM 5 
GEOM 6 
GEOM 7 
GEOM 8 
GEOM 9 
GEOM 10 
GEOM 11 
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300 STRES(ISTR1):STRSG(ISTR1,KGAUS) 
IEVAB:l 
KOUNT:NEVAB 
DO 200 INODE:l,NNODE 
DO 100 JNODE:INODE,NNODE 
DGASH:STRES(l)*CARTD(l,INODE)*CARTD(l,JNODE)+ 

.STRES(3)*(CARTD(1,INODE)*CARTD(2,JNODE)+ 

.CARTD(2,INODE)*CARTD(1,JNODE»+ 

.STRES(2)*CARTD(2,INODE)*CARTD(2,JNODE) 
DGASY:DGASH*DVOLU 
DGASX:DGASY 
IF(NTYPE.NE.3) GO TO 400 
PRODT=SHAPE(INODE)/(GPCOD(1,KGASP)**2) 
DGASX=DGASY+STRES(4) *PRODT*SHAPE(JNODE) *DVOLU 

400 ESTIF(IEVAB):ESTIF(IEVAB)+DGASX 
JEVAB=IEVAB+KOUNT 
ESTIF(JEVAB)=ESTIF(JEVAB)+DGASY 
IEVAB=IEVAB+2 

100 CONTINUE 
KOUNT=KOUNT-2 
IEVAB=JEVAB+ 1 

200 CONTINUE 
RETURN 
END 

11.5.9 Subroutine GSTIFF 

447 
GEOM 12 
GEOM 13 
GEOM 14 
GEOM 15 
GEC»1 16 
GEOM 17 
GEOM 18 
GEOM 19 
GEOM 20 
GEOM 21 
GEOM 22 
GEC»l 23 
GEOM 24 
GEOM 25 
GEOM 26 
GEOM 27 
GEOM 28 
GEOM 29 
GEOM 30 
GEOM 31 
GEOM 32 
GEOM 33 
GEOM 34 
GEOM 35 

This routine generates the compacted geometrically nonlinear stiffness 
matrix for two-dimensional plane stress/strain and axisymmetric problems 
from the element stiffness matrices. 

SUBROUTINE GSTIFF (COORD ,EPSTN ,INTGR ,ISTEP ,KSTEP ,LEQNS , 
LNODS ,MATNO ,MAXAI ,MAXAJ ,NCRIT ,NDlME , 
NDOFN ,NELEM ,NGAUS ,NLAPS ,NMATS ,NNODE , 
NPOIN ,NSTRE ,NTYPE ,NWMTL ,NWKTL ,POSGP , 
PROPS ,STIFF ,STIFI ,STRSG ,TDISP ,WEIGP ) 

c************************************·****************._--_._._ •• _--
C 
C EVALUATES GEOMETRICALLY NONLINEAR STIFFNESS MATRIX 
C FOR 2-D PLANE STRESS/STRAIN 2-D ELEMENT 
C 
c··_·_····_*----_·_···_· __ ·_·_---_···_*---··_-------_·-*-.***_. __ ._ .. 

C 

C 
C 

C 

DIMENSION CooRD(NPOIN,l) ,DMATX(4, 4) ,ELCOD(2,9) ,AVECT(4) , 
LNODS(NELEM,l) ,BMATX(4,18) ,CARTD(2,9) ,DVECT(4) , 
PROPS(NMATS,l) ,DBMAT(4,18) ,GPCOD(2,9) ,DEVIA(4) , 
LEQNS( 18, 1) ,STRSG(4, 1) ,DLCOD(2,9) ,STRES(4) , 
ESTIF( 171) ,DJACM(2, 2) ,DERIV(2,9) ,SHAPE(9) 

DIMENSION MAXAI(1) ,INTGR(1) ,STIFF(1) ,POSGP(1) ,EPSTN(1) , 
MAXAJ( 1) ,TDISP( 1) ,STIFI( 1) ,WEIGP( 1) ,MATNO( 1) 

IF(ISTEP.EQ.l) GO TO 200 
KOUNT=(ISTEP/KSTEP)*KSTEP 
IF(KOUNT.NE.ISTEP)RETURN 

200 CONTINU E 
TWOPI=6.283185307179586 
KGAUS=O 

c*** LOOP OVER EACH ELEMENT 
C 

NSTR1=4 
NEVAB=NDOFN*NNODE 
DO.500 IWKTL=l,NWKTL 

500 STIFF(IWKTL) ,STIFI(IWKTL)=O.O 

STIF 1 
STIF 2 
STIF 3 
STIF 4 
STIF 5 
STIF 6 
STIF 7 
STIF 8 
STIF 9 
STIF 10 
STIF 11 
STIF 12 
STIF 13 
STIF 14 
STIF 15 
STIF 16 
STIF 17 
STIF 18 
STIF 19 
STIF 20 
STIF 21 
STIF 22 
STIF 23 
STIF 24 
STIF 25 
STIF 26 
STIF 27 
STIF 28 
STIF 29 
STIF 30 
STIF 31 
STIF 32 
STIF 33 
STIF 34 
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DO 70 IELEM= 1 , NELEM STIF 35 
LPROP=MATNO(IELEM) STIF 36 

C STIF 37 
C.** EVALUATE THE COORDINATES OF THE ELEMENT NODAL POINTS STIF 38 
C STIF 39 

IPOSN=O STIF 40 
DO 10 INODE=1,NNODE STIF 41 
LNODE=LNODS(IELEM,INODE) STIF 42 
DO 10 IDIME=l,NDIME STIF 43 
IPOSN=IPOSN+ 1 STIF 44 
NPOSN=LEQNS(IPOSN,IELEM) STIF 45 
IF(NPOSN.EQ.O) DISPT=O. STIF 46 
IF(NPOSN.NE.O) DISPT=TDISP(NPOSN) STIF 47 
DLCOD(IDIME,INODE)=COORD(LNODE,IDIME)+DISPT STIF 48 

10 ELCOD(IDIME,INODE)=COORD(LNODE,IDIME) STIF 49 
YOUNG:PROPS(LPROP, 1) STIF 50 
POISS:PROPS(LPROP, 2) STIF 51 
THICK:PROPS(LPROP, 3) STIF 52 
HARDS:PROPS(LPROP, 7) STIF 53 
FRICT=PROPS(LPROP, 8) STIF 54 

C STIF 55 
C." INITIALIZE THE ELEMENT STIFFNESS MATRIX 171:NEVAB·(NEVAB+1l/2 STIF 56 
C STIF 57 

DO 20 ISIZE:l,171 STIF 58 
20 ESTIF(ISIZE):O.O STIF 59 

KGASP:O STIF 60 
C STIF 61 
C". ENTER LOOPS FOR AREA NUMERICAL INTEGRATION STIF 62 
C STIF 63 

DO 50 IGAUS:l,NGAUS STIF 64 
EXISP=POSGP(IGAUS) STIF 65 
DO 50 JGAUS=l,NGAUS STIF 66 
ETASP=POSGP(JGAUS) STIF 67 
KGASP:KGASP+ 1 STIF 68 
KGAUS:KGAU5+1 STIF 69 
CALL MODPS (DMATX, LPROP, NMATS, NSTRE, NTYPE\ PROPS) STIF 70 
CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP STIF 71 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD, STIF 72 

IELEM,KGASP, NNODE, SHAPE) STIF 73 
CALL J ACOBD (CARTD, DLCOD, DJ ACM, NDlME, NLAPS, NNODE) STIF 74 
DVOLU:DJACB*WEIGP(IGAUS)·WEIGP(JGAUS) STIF 75 
IF(NTYPE.EQ.3) DVOLU:DVOLU*rwOPI*GPCOD(l,KGASP) STIF 76 
IF(NTYPE.EQ.l) DVOLU=DVDLU*THICK STIF 77 

C STIF 78 
C**· EVALUATE THE B AND DB MATRICES STIF 79 
C STIF 80 

CALL BLARGE (BHATX,CARTD,DJACM;DLCOD,GPCOD, STIF 81 
• KGASP,NLAPS,NNODE,NTYPE,SHAPE) STIF B2 
IF( NLAPS. EQ. 2 .OR. NLAPS. EQ.O') GO TO 80 STIF 83 
IF(ISTEP.EQ.l) GO TO 80 STIF 84 
IF(EPSTN(KGAUS).EQ.O.O) GO TO 80 STIF 85 
DO 90 ISTR1=l,NSTR1 STIF 86 

90 STRES(ISTR1)=STRSG(ISTR1,KGAUS) STIF 81 
CALL INVAR (DEVIA,LPROP, NCRIT, NHATS\ PROPS,SINT3,STEFF, STIF 88 

• STRES,THETA,VARJ2,YIELD STIF 89 
CALL YIELDF (AVECT , DEVIA,FRICT , NCRIT ,SINT3,STEFF, STIF 90 

• THETA,VARJ2) STIF 91 
CALL FLCfftPL (AVECT ,ABETA,DVECT , HARDS,NTYPE, POISS, YOUNG) STIF 92 
DO 100 ISTRE=',NSTRE STIF 93 
DO 100 JSTRE=l,NSTRE STIF 94 

100 DHATX(ISTRE,JSTRE)=DMATX(ISTRE,JSTRE)-ABETA.DVECT(ISTRE)- STIF 95 
• DVECT(JSTRE) STIF 96 

80 CONTINUE STIF 97 
CALL DINTOB (BHATX,DBMAT ,DHATX,NEVAB,NSTRE) STIF 98 
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C 
C "'EVALUATE GEOMETRIC STIFFNESS TERMS 
C 

C 

IF(NLAPS.LT.2) GO TO 85 
CALL GEOMST (CARTD, DVOW , ESTIF ,KGAUS, NDOFN, NNODE, 

STRSG,SHAPE,NTYPE,GPCOD,KGASP) 

C'" CALCULATE THE ELEMENT STIFFNESSES 
C 

C 

85 KOUNT=O 
DO 30 IEV AB= 1 ,NEV AB 
DO 30 JEVAB=IEVAB,NEVAB 
KOUNT=KOUNT+l 
DO 30 ISTRE=1,NSTRE 

30 ESTIF(KOUNT)=ESTIF(KOUNT)+BMATX(ISTRE,IEVAB)' 
• DBMAT(ISTRE,JEVAB)'DVOLU 

50 CONTINUE 

C'" GENERATES GLOBAL STIFFNSS MATRIX IN COMPACTED COLUMN FORM 
C 

IF(INTGR(IELEM).EQ.2) GO TO 210 
CALL ADDBAN (STIn, MAXAI, ESTIF , LEQNS ( 1 , IELEM) ,NEV AB) 

210 CALL ADDBAN (STIFF ,MAXAJ, ESTIF ,LEQNS( 1 ,IELEM) ,NEVAB) 
70 CONTINUE 

C WRITE(6,900) (STIFI(I),I=1,NWMTL) 
900 FORMAT(10E12.4) 

RETURN 
END 

11.5.10 Subroutine IMPEXP 
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STIF 99 
STIF 100 
STIF 101 
STIF 102 
STIF 103 
STIF 104 
STIF 105 
STIF 106 
STIF107 
STIF 108 
STIF 109 
STIF 110 
STIF 11 1 
STIF 112 
STIF 113 
STIF 114 
STIF 115 
STIF 116 
STIF 117 
STIF 118 
STIF 119 
STIF 120 
STIF 121 
STIF 122 
STIF 123 
STIF 124 
STIF 125 
STIF 126 

This routine generates the partial effective load vector for direct time 
integration. 

SUBROUTINE IMPEXP (AALFA ,ACCEH ,ACCEI ,ACCEJ ,ACCEK ,ACCEL , 
ACCEV ,AFACT ,AZERO ,BEETA ,BZERO ,CONSD , 
CONSF ,DAMPI ,DAMPG ,DELTA ,DISPI ,DISPL , 
DISPT ,DTOO ,DTIME ,GAAMA ,IFIXD ,IFPRE , 
lFUNC ,lITER ,ISTEP ,KSTEP ,MAXAI ,MAXAJ , 
NDOFN ,NSIZE ,NPOIN ,NWKTL ,NWMTL ,OMEGA , 
RLOAD ,STIFF ,STIFI ,STIFS ,VELOI ,VELOL , 

. VELar ,XMASS ,YMASS ,IPRED ) 
C·········.· .. ········································ ............ . 
C 
C'" GENERATES PARTIAL EFFECTIVE LOAD VECTOR 
C 

C········· •. ··.···············.······················· ............ . 

C 
C 
C 

DIMENSION STIFF(1) ,DISP!(1) ,ACCEH(1) ,DISPL(1) ,IFPRE(2,1) , 
XMASS(1) ,VELO!(1) ,ACCEV(1) ,VELOL(1) ,ACCEK( 1), 
RLOAD( 1) ,ACCEl( 1) ,MAXAl( 1) ,ACCEL( 1) ,DAMPG( 1), 
ACCEJ(1) ,MAXAJ(1) ,YMASS(1) ,STIFl(1) ,DISPT( 1), 
STIFS(1) ,DAMP!(1) ,VELar(1) 

IF(ISTEP.GT.l.0R.IITER.GT.l) GO TO 1000 
CONSA=DTlME·DTlME·(0.5-DELTA) 
CONSB=DTlME·(1.-GAAMA) 
CONSC=DTlME'DTlME'DELTA 
CONSD=DTlME*GAAMA 
CONSF=1.1CONSC 
CONSG:BEETA*GAAMA'DTlME 
CONSH=AALFA*GAAMA'DTlME 
CONSE= 1 • +CONSH 

IMEX 1 
IMEX 2 
lMEX 3 
lMEX 4 
lMEX 5 
lMEX 6 
IMEX 7 
lMEX 8 
lMEX 9 
IMEX 10 
lMEX 11 
lMEX 12 
IMEX 13 
IMEX 14 
IMEX 15 
IMEX 16 
IMEX 17 
lMEX 18 
lMEX 19 
lMEX 20 
lMEX 21 
lMEX 22 
IMEX 23 
IMEX 24 
IMEX 25 
!HEX 26 
IMEX Z7 
IMEX 28 
IMEX 29 
lMEX 30 
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ISHaJ'=O 
DO 550 IPOIN=1,NPOIN 
DO 550 lDOFN=1,NDOFN 
ISIZE=IFPRE(lDOFN,IPOIN) 
IF(ISIZE.EQ.O) GO TO 550 
ACCEI(ISIZE)=1.0 
~CCEL(ISIZE)=O.O 
IF(IDOFN.EQ. 1) GO TO 550 
ACCEI(ISIZE)=O.O 
ACCEL(ISIZE)=1.0 

550 CONTINUE 
DO 590 ISIZE=1,NSIZE 
IMAXA=MAXAI(ISIZE) 

590 XMASS(IMAXA)=XMASS(IMAXA)+YMASS(ISIZE) 
C 
C *.. CALCULATES VECTORS FOR HORIZONTAL AND VERTICAL EXCITATION 
C 

C 

CALL MULTPY (ACCEK,XMASS,ACCEL,MAXAI,NSIZE,NWMTL) 
CALL MULT?Y (ACCEJ, XMASS, ACCEI , MAXAI , NSIZE, NWMTL) 
CALL MULTPY (DISPL,STIFF,DISPI,MAXAJ,NSIZE,NWKTL) 

C *** CALCULATES DAMPING MATRIX (AALFA*M+BEETA·K) 
C 

DO 500 ISIZE=1,NSIZE 
IMAXA=MAXAI(ISIZE) 
KMAXA=MAXAI(ISIZE+1)-1 
JMAXA=MAXAJ(ISIZE) 
DO 500 LMAXA=IMAXA,KMAXA 
DAMPI(JMAXA)=AALFA·XMASS(LMAXA) 

500 JMAXA:JMAXA+1 
DO 560 IWKTL=1,NWKTL 

560 DAMPI(IWKTL)=DAMPI(IWKTL)+BEETA.STIFF(IWKTL) 
C C··· CALCULATES INITIAL ACCELERATION 
C 

C 

CALL MULTPY (VELOL,DAMPI,VELOI,MAXAJ,NSIZE,NWKTL) 
DO 600 IWMTL=1,NWMTL 

600 DAMPG(IWMTL)=XMASS(IWMTL) 
DO 510 ISIZE = 1,NSIZE 

510 ACCEI(ISIZE)=RLOAD(ISIZE)-DISPL(ISIZE)-VELOL(ISIZE) 
CALL DECOMP (DAMPG,MAXAI,NSIZE,ISHaJ') 
CALL REDBAK (DAMPG,ACCEI,MAXAI,NSIZE) 
WRITE (6,900) 
WRITE (6,910) (ACCEI(ISIZE),ISIZE=1,NSIZE) 

900 FORMAT(!' INITIAL ACCELERATION 'I) 
910 FORMAT(1X,10E12.5) 

1000 CONTINUE 
IF(IITER.GT.1) GO TO 650 

C··· CALCULATES PREDICTED DISPLACEMENT AND VELOCITY VECTOR 
C 

C 

DO 540 ISIZE=1,NSIZE 
IF(IPRED.EQ.1) GO TO 210 
DISPT(ISIZE)=DISPI(ISIZE) 
VELaJ'(ISIZE)=VELOI(ISIZE) 

210 DISPI(ISIZE)=DISPI(ISIZE)+DTIME.VELOI(ISIZE)+CONSA*ACCEI(ISIZE) 
VELOI(ISIZE)=VELOI(ISIZE)+CONSB·ACCEI(ISIZE) 
IF(IPRED.EQ.2) GO TO 220 
DISPT(ISIZE)=DISPI(ISIZE) 
VELaJ'(ISIZE) =VELOI (ISIZE) 

220 ACCEI(ISIZE)=CONSF.(DISPT(ISIZE)_DISPI(ISIZE)) 
540 CONTINUE 

C··· CALCULATES LOAD VECTORS 

IMEX 31 
IMEX 32 
IMEX 33 
IMEX 34 
IMEX 35 
IMEX 36 
IMEX 37 
IMEX 38 
IMEX 39 
IMEX 40 
IMEX 41 
IMEX 42 
IMEX 43 
IMEX 44 
IMEX 45 
IMEX 46 
IMEX 47 
IMEX 48 
IMEX 49 
IMEX 50 
IMEX 51 
IMEX 52 
IMEX 53 
IMEX 54 
IMEX 55 
IMEX 56 
IMEX 57 
IMEX 58 
IMEX 59 
IMEX 60 
IMEX 61 
IMEX 62 
lMEX 63 
IMEX 64 
lMEX 65 
lMEX 66 
lMEX 67 
IMEX 68 
IMEX 69 
IMEX 70 
IMEX 71 
IMEX 72 
IMEX 73 
lMEX 74 
IMEX 75 
IMEX 76 
lMEX 77 
lMEX 78 
IMEX 79 
IMEX 80 
IMEX 81 
IMEX 82 
lMEX 83 
IMEX 84 
lMEX 85 
lMEX 86 
lMEX 87 
IMEX 88 
IMEX 89 
lMEX 90 
lMEX 91 
lMEX 92 
IMEX 93 
lMEX 94 
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FACTS =FUNCTS (AZERO,BZERO,DTEND,DTIME,IFUNC,ISTEP,OMEGA) 
FACTH =FUNCTA (ACCEH,AFACT,DTEND,DTIME,IFUNC,ISTEP) 
FACrv =FUNCTA (ACCEV,AFACT,DTEND,DTlME,IFUNC,ISTEP) 

--G-- . WRITE(6,9'10} FACTS,FACTH,FAGTV 
650 CONTINUE 

C 
~(J~T.EP .EQ.l)GO TO 6.40 

C .. - CALCULATES DAMPING AND K-STAR MATRICES 
C 

DO 530 ISIZE=l,NSIZE 
IMAXA=MAXAI(ISIZE) 
KMAXA=MAXAI(ISIZE+l)-l 
JMAXA=MAXAJ(ISIZE) 
DO 530 LMAXA=IMAXA,KMAXA 
DAMPI(JMAXA)=AALFA*XMASS(LMAXA) 

530 JMAXA=JMAXA+l 
DO 580 IWKTL=l,NWKTL 

580 DAMPI(IWKTL)=DAMPI(IWKTL)+BEETA*STIFF(IWKTL) 
CALL MULTPY (VELOL ,DAMPI ,VELDT 'MAXAJ ,NSIZE 
KOUNT= (ISTEP/KSTEP) *KSTEP 
IF(KOUNT.NE.ISTEP) GO TO 660 

640 DO 610 IWHTL=l,NWMTL 
610 DAMPG(IWHTL)=CONSE*XMASS(IWMTL) 

DO 620 ISIZE=l,NSIZE 
IMAXA=MAXAI(ISIZE) 

620 DAMPG(IMAXA)=DAMPG(IMAXA)-CONSH*YMASS(ISIZE) 
DO 630 IWMTL=l,NWMTL 
DAMPG(IWMTL)=DAMPG(IWMTL)+CONSC*STIFI(IWMTL) 

630 STIFS(IWHTL)=STIFI(IWMTL)+DAMPG(IWMTL)*CONSF 
-e--WRITE( ~i900) {STIFS ( I) , 1= 1 ,NWI'ITL) 

C 
CALL DECOMP (STIFS ,MAXAI ,NSIZE ,ISHDT ) 

C _.* CALCULATES PARTIAL EFFECTIVE LOAD VECTOR 
C 

660 DO 520 ISIZE=1,NSIZE 
IF(IFUNC.NE.O) GO TO 570 

,NWKTL ) 

IF(IFIXD.EQ.2) DISPL(ISIZE)=-VELOL(ISIZE)-FACTH*ACCEJ(ISIZE) 
+RLOAD(ISIZE) 

IF(IFIXD.EQ.l) DISPL(ISIZE)=-VELOL(ISIZE)-FACrv*ACCEK(ISIZE) 
+RLOAD( ISIZE) 

IF(IFIXD.EQ.O) DISPL(ISIZE)=-VELOL(ISIZE)-FACTH*ACCEJ(ISIZE) 
+RLOAD(ISIZE)-FAcrv*ACCEK(ISIZE) 

IF(IFUNC.EQ.O) GO TO 520 
570 DISPL(ISIZE)=-VELOL(ISIZE)+RLOAD(ISIZE)*FACTS 
520 CONTINUE 

RE1'URN 
END 

11.5.11 Subroutine ITRATE 
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IMEX 95 
IMEX 96 
IMEX 97 
IMEX 98 
IMEX 99 
IMEX 100 
IMEX 101 
IMEX 102 
IMEX 103 
IMEX 104 
IMEX 105 
IMEX 106 
IMEX 107 
IMEX 108 
IMEX 109 
IMEX 110 
IMEX 111 
IMEX 112 
IMEX 113 
IMEX 114 
IMEX 115 
IMEX 116 
IMEX 117 
IMEX 118 
IMEX 119 
lMEX 120 
lMEX 121 
IMEX 122 
IMEX 123 
IMEX 124 
IMEX 125 
IMEX 126 
IMEX 127 
lMEX 128 
IMEX 129 
IMEX 130 
IMEX 131 
lMEX 132 
IMEX 133 
lMEX 134 
IMEX 135 
lMEX 136 
lMEX 13'7 
lMEX 138 
IMEX 139 
IMEX 140 
IMEX 141 
IMEX 142 

This routine generates the total effective load vector and solves for the 
incremental displacements. It then checks for convergence. 

SUBROUTINE ITRATE (ACCEI ,ACCEL ,CONSD ,CONSF ,XMASS ,DIS?I , 
• DISPL ,DISPT ,MAXAI ,NCHEK ,NSIZE ,NWMTL 

RESID ,STIFS ,TOLER ,VELOI ,VELOL ,VELDT , 
• lITER ,MITER ) 

C· •• * ••••••••••••• *******.******** ••• *********.*******1 •• *.*.* •• _._. 
C 

g -** CALCULATES INCREMENT IN DISPLACEMENT AND APPLIES CONVERGENCE 
C'·"_'4'_.*._*_._._._ ........ , ... _ .. ,_* __ ._._._."._.*'_4****_,_,*1 

DIMENSION DISPI(l) ,VELOI(1) ,ACCEI(l} ,RESID(l) ,MAXAI(l} , 

ITER 
ITER 
ITER 
ITER 
ITER 
ITER 
ITER 
ITER 
ITER 9 
ITER 10 

1 
2 
3 
4 
5 
6 

~ 
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C 
C 

c 

NCHEK=O 

DISPL(1) ,VELOL(1) ,ACCEL(1) ,STIFS(1) ,DISPT(1) , 
XMASS( 1) , VEWr( 1) 

CALL MULTPY (ACCEL ,XMASS ,ACCEI ,MAXAI ,NSIZE ,NWMTL ) 

C *,. CALCULATES TOTAL EFFECTIVE LOAD VECTOR 
C 

DO 660 ISIZE=l,NSIZE 
660 ACCEL(ISIZE)=DISPL(ISIZE)-ACCEL(ISIZE)-RESID(ISIZE) 

C 
c •• , CALCULATES DELTA DISPLACEMENT 
C 

210 CALL REDBAK (STIFS,ACCEL,MAXAI,NSIZE) 
C 
C *.1 APPLIES CONVERGENCE 
C 

SUMPP=O. 
SUMPQ=O. 
DO 670 ISIZE=l,NSIZE 
DISPP=ACCEL(ISIZE) 
DISPQ=DISPT(ISIZE)+DISPP 
DISPT(ISIZE)=DISPQ 
SUMPP=SUMPP+DISPP*DISPP 
SUMPQ=SUMPQ+DISPQ*DISPQ 

670 CONTINUE 
DO 530 ISIZE=l,NSIZE 
ACCEI(ISIZE)=CONSF*(DISPT(ISIZE)-DISPI(ISIZE» 

530 VELOT(ISIZE)=VELOI(ISIZE)+CONSD*ACCEI(ISIZE) 
220 SUMPP=SQRT(SUMPP/SUMPQ) 

IF(SUMPP.GT.TOLER) GO TO 550 
NCHEK=l 
GO TO 240 

550 IF(IITER.LT.MITER) GO TO 230 
240 DO 540 ISIZE=l,NSIZE 

VELOI(ISIZE)=VELOT(ISIZE) 
540 DISPI(ISIZE)=DISPT(ISIZE) 
230 CONTINUE 

RETURN 
END 

Calculates total effective load vector. 
Solves for incremental displacements. 
Calculates norm of displacement increments. 

ITER 11 
ITER 12 
ITER 13 
ITER 14 
ITER 15 
ITER 16 
ITER 17 
ITER 18 
ITER 19 
ITER 20 
ITER 21 
ITER 22 
ITER 23 
ITER 24 
ITER 25 
ITER 26 
ITER 27 
ITER 28 
ITER 29 
ITER 30 
ITER 31 
ITER 32 
ITER 33 
ITER 34 
ITER 35 
ITER 36 
ITER 37 
ITER 38 
ITER 39 
ITER 40 
ITER 41 
ITER 42 
ITER 43 
ITER 44 
ITER 45 
ITER 46 
ITER 47 
ITER 48 
ITER 49 
ITER 50 
ITER 51 

ITER 20-21 
ITER 2S 
ITER 28-37 
ITER 38-40 Calculates new and total displacement, velocities and accel

erations. 
ITER 41-42 
ITER 46-49 

Applies convergence check. 
Stores the final velocities and displacements in vectors VELOI 
and DISPI respectively. 

11.5.12 Subroutine LINKlN 
This routine calculates the equation number from the array IFPRE which 

stores the information about the restrained degrees offreedom. 
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SUBROUTINE LINKIN (FORCE ,IFPRE ,INTGR ,LEQNS ,LNODS ,MAXAI , 
MAXAJ ,HHIGH ,NDOFN ,NELEM ,NEQNS ,NNODE , 

• NPOIN , NWKTL , NWMTL , XMASS , YMASS) 
C········.·.···.······················_,·············· .. , ... __ .,_ .. 
C 
C *** LINKS WITH PROFILE SOLVER 
C 

C····························,,···············,-,····· ... *,.,_." •• DIMENSION LNODS(NELEM,l) ,XMASS(l) ,MAXAI(l) ,INTGR(l) , 

C 

C 

IFPRE(NDOFN,l) ,YMASS(l) ,MAXAJ(l) ,MHIGH(l) , 
LEQNS( 18," ,FORCE(l) ,EMASS(17l) 

IMASS:l 
REWIND 3 
NEVAS:NNODE*NDOFN 

C··· NUMBER OF UNKNOWNS 
C 

NEQNS:O 
DO 100 IPOIN:l,NPOIN 
DO 150 IDOFN:l,NDOFN 
IF(IFPRE(IDOFN,IPOIN)) 110,120,110 

120 NEQNS:NEQNS+l 
lFPRE(IDOFN,IPOIN):NEQNS 
GO TO 150 

110 lFPRE(IDOFN,IPOIN):O 
150 CONTINUE 

C WRITE(6,7) IPOIN,(IFPRE(IDOFN,IPOIN),IDOFN=l,NDOFN) 
100 CONTINUE 

MEQNS:1 +NEQNS 
C 
C··· CONNECTIVITY ARRAY LEQNS 
C 

DO 70 IELEM: 1 , NELEM 
DO 70 IEVAS:l,NEVAB 

70 LEQNS(IEVAS,IELEM):O 
DO 50 IELEM: 1 , NELEM 
IEVAS:l 
DO 80 INODE:l,NNODE 
IDENT:LNODS(IELEM,INODE) 
DO 80 IDOFN: 1 , NDOFN 
LEQNS(IEVAS,IELEM):IFPRE(IDOFN,IDENT) 

80 IEVAS:IEVAB+l 
C WRITE(6,6) IELEM,(LEQNS(IEVAS,IELEM),IEVAS:l,NEVAS) 
50 CONTINUE 
6 FORMAT(Il0,24I3) 
7 FORMAT(4Il0) 
8 FORMAT(8E12.4) 
C 
C··· LOOP OVER ALL ELEMENTS 
C 

250 DO 190 IELEM: 1 , NELEM 
IF(INTGR(IELEM) .NE. IMASS) GO TO 190 
CALL COLHHT (HHIGH,NEVAS, LEQNS( 1, IELEM)) 

190 CONTINUE 
C 
C··· ADDRESES OF DIAGONAL ELEMENTS - MAXA ARRAY 
C 

CALL ADDRES(MAXAJ,HHIGH,NEQNS,NWKTL,MKOUN) 
IF(IMASS.EQ.2) GO TO 205 
DO 580 IEQNS:l,MEQNS 

580 HAXA!(IEQNS):MAXAJ(IEQNS) 
IMASS~2 
NWMTL:NWKTL 
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LINK 1 
LINK 2 
LINK 3 
LINK 4 
LINK 5 
LINK 6 
LINK 7 
LINK 8 
LINK 9 
LINK 10 
LINK 11 
LINK 12 
LINK 13 
LINK 14 
LINK 15 
LINK 16 
LINK 17 
LINK 18 
LINK 19 
LINK 20 
LINK 21 
LINK 22 
LINK 23 
LINK 24 
LINK 25 
LINK 26 
LINK 27 
LINK 28 
LINK 29 
LINK 30 
LINK 31 
LINK 32 
LINK 33 
LINK 34 
LINK 35 
LINK 36 
LINK 37 
LINK 38 
LINK 39 
LINK 40 
LINK 41 
LINK 42 
LINK 43 
LINK 44 
LINK 45 
LINK 46 
LINK 47 
LINK 48 
LINK 49 
LINK 50 
LINK 51 
LINK 52 
LINK 53 
LINK 54 
LINK 55 
LINK 56 
LINK 57 
LINK 58 
LINK 59 
LINK 60 
LINK 61 
LINK 62 
LINK 63 
LINK 64 
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GO TO 250 
205 CONTINUE 

WRITE(6,920) NEQNS,NWMTL,NWKTL 
WRITE(6,930) (MAXAI(I),I=l,MEQNS) 
WRITE(6,930) (MAXAJ(I),I=l,MEQNS) 

930 FORMAT(5X,20I5) 
920 FORMAT(/5X,'NEQNS=' ,I5,5X, 'NWMTL=' ,I5,5X, 'NWKTL=' ,15/) 

IF(NWKTL.GT.6000) GO TO 210 
GO TO 220 

210 WRITE(6,910) 
STOP 

220 CONTINUE 
910 FORMAT (I 'SET DIMENSION EXCEEDED - CHECK LINKIN 'I) 

C 
C... GLOBAL MASS MATRIX 
C 

DO 'i00 IELEM= 1, NELEM 
IMASS=INTGR(IELEM) 
IF<IMASS.EQ.2) GO TO 500 
READ (3) £MASS 
CALL ADDBAN (XMASS,MAXAI,EMASS,LEQNS( 1, IELEM) ,NEVAB) 

500 CONTINUE 
C 
C •• * GLOBAL MASS VECTOR 
C 

NPOSM=O 
DO 510 IPOIN =l,NPOIN 
DO 510 IDOFN =l,NDOFN 
NPOSM=NPOSM+ 1 
NPOSN=IFPRE(IDOFN,IPOIN) 
IF(NPOSN.EQ.O) GO TO 510 
YMASS(NPOSN)=YMASS(NPOSM) 
FORCE(NPOSN)=FORCE(NPOSM) 

510 CONTINUE 
RETURN 
END 

LINK 65 
LINK 66 
LINK 67 
LINK 68 
LINK 69 
LINK 70 
LINK 71 
LINK 72 
LINK 73 
LINK 74 
LINK 75 
LINK 76 
LINK 77 
LINK 78 
LINK 79 
LINK 80 
LINK 81 
LINK 82 
LINK 83 
LINK 84 
LINK 85 
LINK 86 
LINK 87 
LINK 88 
LINK 89 
LINK 90 
LINK 91 
LINK 92 
LINK 93 
LINK 94 
LINK 95 
LINK 96 
LINK 97 
LINK 98 
LINK 99 
LINK 100 

LINK 18-29 Reassigns IFPRE vector with equation numbers. If IFPRE 
is not zero than IFPRE is reassigned as zero. 

LINK 3~5 Evaluates the vector LEQNS on element level for assigning 
equation nUq1ber corresponding to each node in an element. 

LINK 52-55 Calculates column height above the diagonal in global matrix. 
LINK 59--62 Assigns location for diagonal elements in global matrix. 
LINK 80--85 IMASS = 1 calculates stiffness matrix for only implicit 

elements. 
IMASS = 2 calculates stiffness matrix for complete mesh. 

11.5.13 Subroutine MULTPY 
This routine(9) evaluates the product of square matrix AMATX and an 

array START and stores the result in FINAL. 

SUBROUTINE MULTPY (FINAL ,AMATX ,START ,MAXAI ,NEQNS ,NWMTL ) 
c··············.···· ...... _ ............................... _._ ....•.. 
C 
C .*. TO EVALUATE PRODUCT OF B TIMES RR AND STORE RESULT IN TT 
C 
c······················.·_ .. ···· ......... ··· .•...................... 

DIMENSION FINAL(l) ,AMATX(l) ,START(l) ,MAXAI(l) 
c 

MULT 1 
MULT 2 
MULT 3 
MULT 4 
MULT 5 
MULT 6 
MULT 7 
MULT 8 
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C 

IF(NWMTL.GT.NEQNS) GO TO 20 
DO 10 IEQNS:l,NEQNS 

10 FINAL(IEQNS):AMATX(IEQNS)*START(IEQNS) 
RETURN 

20 DO 40 IEQNS:l,NEQNS 
40 FINAL(IEQNS):O.O 

DO 100 IEQNS:l,NEQNS 
LOWER:MAXAI(IEQNS) 
KUPER:MAXAI(IEQNS+l)-l 
JEQNS:IEQNS+l 
TERMI:START(IEQNS) 
DO 100 ICOLM:LOWER,KUPER 
JEQNS:JEQNS-1 

100 FINAL(JEQNS):FINAL(JEQNS)+AMATX(ICOLM)*TERMI 
IF(NEQNS.EQ.1) RETURN 
DO 200 IEQNS:2,NEQNS 
LOWER:MAXAI(IEQNS)+l 
KUPER:MAXAI(IEQNS+l)-l 
IF(KUPER-LOWER) 200,210,210 

210 JEQNS:IEQNS 
SUMAA:O.O 
DO 220 ICOLM:LOWER,KUPER 
JEQNS:JEQNS-l 

220 SUMAA:SUMAA+AMATX(ICOLM)*START(JEQNS) 
FINAL(IEQNS):FINAL(IEQNS)+SUMAA 

200 CONTINUE 
RETURN 
END 

11.5.14 Subroutine REDBAK 

MULT 9 
MULT 10 
MULT 11 
MULT 12 
MULT 13 
MULT 14 
MULT 15 
MULT 16 
MULT 17 
MULT 18 
MULT 19 
MULT 20 
MULT 21 
MULT 22 
MULT 23 
MULT 24 
MULT 25 
MULT 26 
MULT 27 
MULT 28 
MULT 29 
MULT 30 
MULT 31 
MULT 32 
MULT 33 
MULT 34 
MULT 35 
MULT 36 
MULT 37 

This routine(9) solves the equations after the matrix is decomposed (into 
the form LDLT) using forward and backward substitution. 

SUBROUTINE REDBAK (STIFF ,FORCE ,MAXAI ,NEQNS ) 
c ••• ****** •• ******************************************1'*1*"*1**1'* 
C C.... TO REDUCE AND BACK-SUBSTITUTE ITER RATION VECTORS 
C 
C •••••••••••••••••••••••••••••• _ ••••• -•••••••• _ ••••• _-*._11 ••• _ •• _.-
C 

C 

DIMENSION STIFF(l) ,FORCE(1) ,MAXAI(l) 

DO 400 IEQNS:l,NEQNS 
LOWER :MAXAI(IEQNS)+1 
KUPER:MAXAI(IEQNS+1)-1 
IF(KUPER-LOWER) 400,410,410 

410 JEQNS:IEQNS 
SUMCC:O.O 
DO 420 ICOLM:LOWER,KUPER 
JEQNS:JEQNS-l 

420 SUMCC=SUMCC+STIFF(ICOLM)*FORCE(JEQNS) 
FORCE(IEQNS)=FORCE(IEQNS)-SUMCC 

400 CONTINUE 

DO 480 IEQNS:l,NEQNS 
KMAXA:MAXAI(IEQNS) 

480 FORCE(IEQNS):FORCE(IEQNS)/STIFF(KMAXA) 
IF( NEQNS. EQ. 1) RETURN 
JEQNS:NEQNS 
DO 500 IEQNS:2,NEQNS 
LOWER=MAXAI (JEONS) + 1 
KUPER:MAXAI(JEQNS+1)-1 

RBAK 1 
RBAK 2 
RBAK 3 
RBAK 4 
RBAK 5 
RBAK 6 
RBAK 7 
RBAK 8 
RBAK 9 
RBAK 10 
RBAK 11 
RBAK 12 
RBAK 13 
RBAK 14 
RBAK 15 
RBAK 16 
RBAK 17 
RBAK 18 
RBAK 19 
RBAK 20 
RBAK 21 
RBAK 22 
RBAK 23 
RBAK 24 
RBAK 25 
RBAK 26 
RBAK 27 
RBAK 28 
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IF(KUPER-LOWER) 500,510,510 
510 KEQNS=JEQNS 

RBAI< 29 
RBAI< 30 
RBAI< 31 
RBAI< 32 
RBAI< 33 
RBAI< 34 
RBAI< 35 
RBAI< 36 

DO 520 ICOLM=LOWER,KUPER 
KEQNS=KEQNS-1 

520 FORCE(KEQNS)=FORCE(KEQNS)-STIFF(ICOLM)·FORCE(JEQNS) 
500 JEQNS=JEQNS-1 

RETURN 
END 

11.5.15 Subroutine RESEPL 
This routine evaluates the internal force vector for elasto-plastic materials. 

(See Section 7.8.7.) 

SUBROUTINE RESEPL (COORD ,DISPL ,EFFST ,ELOAD ,EPSTN ,lITER, RESD 
INTGR ,LEQNS ,LNODS ,MATNO ,NCRIT ,NDlME , RESD 
NDOFN , NELEM ,NGAUS ,NLAPS ,NMATS ,NNODE , RESD 
NPOIN ,NSTRE ,NTYPE ,POSGP ,PROPS ,RESID RESD 

. STRAG ,STRIN ,STRSG ,WEIGP ,IPRED ,ISTEP l RESD 
C.·.··· •••••••••••••••••• •••••••• •••••••••• ••••••••••• •••••••••••••••••• RESD 

1 
2 
3 
4 
5 
6 
7 
8 
9 

C RESD 
C··· EVALUATES RESIDUAL FORCES RESD 
C RESD 
c •• ••••• ••••••••••••••••• •• ••• ••••••• •• ••••••••••• ••••••••••••• •••• ••••• RESD 10 

DIMENSION CooRD(NPOIN,1) ,DERIV(2,9) ,DMATX(4, 4),AVECT(4),MATNO(1),RESD 11 
• PROPS(NMATS,1),DLCOD(2,9),BMATX(4,1B),DEVIA(4),DISPL(1),RESD 12 

LNODS(NELEM,1),GPCOD(2,9),DJACM(2, 2),STRAN(4),POSGP(1),RESD 13 
ELOAD(NELEM,1),CARTD(2,9),SHAPE( 9),STRES(4),WEIGP(1),RESD 14 
STRIN( 4,1),ELCOD(2,9),SIGMA( 4),SGTOT(4),EFFST(1),RESD 15 
STRSG( 4,1),ELDIS(2,9),DESIG( 4),DVECT(4),EPSTN(1),RESD 16 
STRAG( 4,1),RESID( 1),LEQNS(18,1),INTGR(1) RESD 17 

TWOPI=6.283185307179586 RESD 18 
NEVAS=NNODE'NDOFN RESD 19 
NTOTV =NPOIN.NDOFN RESD 20 
NSTR1=4 RESD 21 
DO 530 IELEM= 1 NELEM RESD 22 
IF(INTGR(IELEMl.EQ.2.AND.IITER.GT.1.AND.IPRED.EQ.1) GO TO 530 RESD 23 
DO 540 lEV AS= 1 , NEV AB RESD 24 

540 ELOAD ( IELEM , lEV AB) =0 . 0 RESD 25 
530 CONTINUE RESD 26 

DO 51 0 ITOTV = 1 , NTOTV RESD 27 
510 RESID(ITOTV)=O.O RESD 28 

KGAUS=O RESD 29 
DO 20 IELEM= 1 ,NELEM RESD 30 
IF(INTGR(IELEM).EQ.2.AND.IITER.GT.1.AND.IPRED.EQ.1) GO TO 20 RESD 31 
LPROP=MATNO(IELEM) RESD 32 
YOlING=PROPS(LPROP, 1) RESD 33 
POISS=PROPS(LPROP,2) RESD 34 
THICK=PROPS(LPROP,3) RESD 35 
UNIAX=PROPS(LPROP,6) RESD 36 
HARDS=PROPS(LPROP,7) RESD 37 
FRICT=PROPS(LPROP,8) RESD 38 
FRICT=FRICT'0.017453292 RESD 39 
IF(NCRIT.EQ.3) UNIAX=UNIAX'COS(FRICT) RESD 40 
IF(NCRIT.EQ.4) UNIAX=6.0'UNIAX.COS(FRICT)/ RESD 41 

(1.73205080757.(3.0-SIN(FRICT») RESD 42 
C 
c· .. COOUTE COORDINATE AND INCREMENTAL DISPLACEMENTS OF THE 

RESD 43 
RESD 44 
RESD 45 C ELEMENT NODAL POINTS 

C 
IPOSN=O 
DO 30 lNODE=1,NNODE 
LNODE=LNODS(IELEM,INODE) 

RESD 46 
RESD 47 
RESD 48 
RESD 49 
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00 30 IDIME:l,NDIME 
IPOSN:IPOSN+l 
NPOSN:LEQNS(IPOSN,IELEM) 
IF(NPOSN.EQ.O) DISPT:O. 
IF(NPOSN.NE.O) DISPT:DISPL(NPOSN) 
DLCOD(IDIME,INODE)=COORD(LNODE,IDlME)+DISPT 
ELCOD(IDlME,INODE):COORD(LNODE,IDlME) 

30 ELDIS(IDIME INODE}=DISPT 
CALL MODPS IDMATX,LPROP,NMATS,NSTRE,NTYPE,PROPS} 
KGASP=O 
DO 40 IGAUS:l,NGAUS 
DO 40 JGAUS:l,NGAUS 
EXISP:POSGP(IGAUS} 
ETASP:POSGP(JGAUS) 
KGAUS:KGAUS+ 1 
KGASP=KGASP.l 
CALL SFR2 (DERIV,NNODE,SHAPE,EXISP,ETASP) 
CALL JACOB2 (CARTD,DERIV,DJACB,ELCOD,GPCOD, 

IELEM,KGASP,NNODE,SHAPE) 
CALL JACOBD (CARTD,DLCOD,DJACM,NDIMEINLAPS,NNODE) 
DVOLU:DJAGB*WEIGP(IGAUS)*WEIGP(JGAUS 
IF(NTYPE.EQ.3) DVOLU:DVOLU*rwOPI*GPCOD(l,KGASP} 
IF(NTYPE.EQ.l) DVOLU:DVOLU*THICK 
CALL BLARGE (BMATX,GARTD,DJACM,DLGOD,GPCOD, 

KGASP,NLAPS,NNODE,NTYPE,SHAPE) 

CALL LINGNL (CARTD,DJAGM,DMATX,ELDIS,GPGOD,KGASP, 
KGAUS,NDOFN,NLAPS,NNODE,NSTRE,NTYPE, 
POISS,SHAPE,STRAN,STRES,STRAG) 

DO 560 ISTR1:l,NSTRl 
560 STRAG(ISTR1,KGAUS)=STRAG(ISTR1,KGAUS)+STRAN(ISTR1) 

IF(ISTEP.GT.l.AND.IITER.GT.l) GO TO 160 
DO 170 ISTR1:1,NSTRl 

170 STRES(ISTR1)=STRES(ISTR1)+STRIN(ISTR1,KGAUS) 
160 CONTINUE 

PREYS:UNIAX+EPSTN(KGAUS)*HARDS 
DO 150 ISTR1=1,NSTRl 
DESIG(ISTR1)=STRES(ISTR1} 

150 SIGMA(ISTR1)=STRSG(ISTR1,KGAUS)+STRES(ISTR1) 
IF(NLAPS.EQ.2.0R.NLAPS.EQ.0) GO TO 60 
CALL INVAR (DEVIA ,LPROP, NGRIT ,NMATS ,PROPS,SINT3 ,STEFF , 

SIGMA ,THETA,VARJ2 ,YIELD) 
ESPRE:EFFST(KGAUS}-PREYS 
IF(ESPRE.GE.O.O) GO TO 50 
ESCUR=YIELD-PREYS 
IF(ESGUR.LE.O.O) GO TO 60 
RFACT=ESGUR/(YIELD-EFFST(KGAUS» 
GO TO 70 

50 ESCUR=YIELD-EFFST(KGAUS) 
IF(ESCUR.LE.O.O) GO TO 60 
RFACT:1.0 

70 MSTEP:ESCUR*8.0/UNIAX.l.0 
IF(MSTEP.GT.l0) MSTEP=10 
ASTEP=MSTEP 
REDUC:1.0-RFAGT 
00 80 ISTR1:l,NSTR1 
SGTOT(ISTR1}:STRSG(ISTR1,KGAUS}.REDUC*STRES(ISTR1) 

80 STRES(ISTR1}=RFACT*STRES(ISTR1)/ASTEP 
DO 90 JSTEP=l,MSTEP 
CALL INVAR (DEVIA,LPROP, NCRIT ,NMATS

I
PROPS,SINT3 ,STEFF, 

. SGTOT ,THETA,VARJ2 ,YIELD 
CALL YIELDF (AVECT,DEVIA,FRICT,NCRIT,SINT3,STEFF, 

. THETA,VARJ2) 
CALL FLCMPL (AVECT ,ABETA,DVECT ,HARDS,NTYPE,POISS, YOUNG) 

RESD 50 
RESD 51 
RESD 52 
RESD 53 
RESD 54 
RESD 55 
RESD 56 
RESD 57 
RESD 58 
RESD 59 
RESD 60 
RESD 61 
RESD 62 
RESD 63 
RESD 64 
RESD 65 
RESD 66 
RESD 67 
RESD 68 
RESD 69 
RESD 70 
RESD 71 
RESD 72 
RESD 73 
RESD 74 
RESD 75 
RESD 76 
RESD 77 
RESD 78 
RESD 79 
RESD 80 
RESD 81 
RESD 82 
RESD 83 
RESD 84 
RESD 85 
RESD 86 
RESD 87 
RESD 88 
RESD 89 
RESD 90 
RESD 91 
RESD 92 
RESD 93 
RESD 94 
RESD 95 
RESD 96 
RESD 97 
RESD 98 
RESD 99 
RESD 100 
RESD 101 
RESD 102 
RESD 103 
RESD 104 
RESD 105 
RESD 106 
RESD 107 
RESD 108 
RESD 109 
RESD 110 
RESD 111 
RESD 112 
RESD 113 
RESD 114 
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AGASH:O.O 
DO 100 ISTR1:l,NSTRl 

100 AGASH:AGASH+AVECT(ISTR1)*STRES(ISTR1) 
DLAMD:AGASH*ABETA 
IF(DLAMD.LT.O.O) DLAMD=O.O 
BGASH:O.O 
DO 110 ISTR1:l,NSTRl 
BGASH:BGASH+AVECT(ISTR1)*SGTOT(ISTR1) 

110 SGTOT(ISTR1):SGTOT(ISTR1)+STRES(ISTR1)-DLAMD*DVECT(ISTR1) 
EPSTN(KGAUS):EPSTN(KGAUS)+DLAMD*BGASH/YIELD 

90 CONTINUE 
CALL INVAR (DEVIA,LPROP , NCRIT,NMATS, PROPS ,SINT3 ,STEFF , 

SGTOT ,THETA ,VARJ2,YIELD) 
CURYS=UNIAX+EPSTN(KGAUS)*HARDS 
BRING=1.0 
IF(YIELD.GT.CURYS) BRING:CURYS/YIELD 
DO 130 ISTR1=l,NSTR1 

130 STRSG(ISTR1,KGAUS)=BRING*SGTOT(ISTR1) 
EFFST(KGAUS):BRING*YIELD 

C*** ALTERNATIVE LOCATION OF STRESS REDUCTION LOOP TERMINATION CARD 
C 90 CONTINUE 
C*** 

GO TO 190 
60 DO 180 ISTR1:1,NSTR1 

180 STRSG(ISTR1,KGAUS):STRSG(ISTR1,KGAUS)+DESIG(ISTR1) 
EFFST(KGAUS):YIELD 

C 
C*** CALCULATE THE EQUIVALENT NODAL FORCES AND ASSOCIATE WITH THE 
C ELEMENT NODES 

190 MGASH=O 
DO 140 INODE=l,NNODE 
DO 140 IDOFN=l,NDOFN 
MGASH=MGASH+ 1 
DO 140 ISTRE=l,NSTRE 

140 ELOAD(IELEM,MGASH)=ELOAD(IELEM,MGASH)+BMATX(ISTRE,MGASH)* 
.STRSG(ISTRE,KGAUS)*DVOLU 

40 CONTINUE 
20 CONTINUE 

DO 500 IELEM:1,NELEM 
DO 500 IEVAB=l,NEVAB 
LMVEB=LEQNS(IEVAB,IELEM) 
IF(LMVEB.EQ.O) GO TO 550 
RESID(LMVEB):RESID(LMV~)+ELOAD(IELEM,IEVAB) 

550 CONTINUE 
500 CONTINUE 

RETURN 
END 

11.6 Examples 

11.6.1 Spberical sbell example 

RESD 115 
RESD 116 
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Some of the capabilities(lO) of the program MIXDYN are explained by 
analysing some simple problems. The spherical shell problem described(1l.12) 
in Chapter 10 is again solved for the following cases: 

(i) Elastic small deformation (all implicit elements) 
(ii) Elastic geometrically nonlinear (all implicit elements) 
(iii) Elasto-plastic small deformation (all implicit elements) 
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(iv) Elastic small deformation (all explicit elements) 
(v) Elastic geometrically nonlinear (all explicit elements) 
(vi) Elasto-plastic small deformation (all explicit elements) 

p =600 Ib/in2 

Two 
stiff 
elements 

R=22.27 in 

" 

Fig. 11.4 Modified spherical shell example with stiff elements. 

To demonstrate the capabilities of program MIXDYN we also solve a 
slightly modified version of the spherical shell example. Two stiff and dense 
elements are added to the finite element mesh at the crown as shown in 
Fig. 11.4. The stiff elements have the following properties: 

Elastic modulus E = 0.105 X 109 Ibjin2 
poisson's ratio v = 0.3 
mass density p = 0.780 X 10-3 Ib.sec2jin4 

yield stress 00 = 0.5 X 105 lbjin2 

The following modified shell examples are also analysed: 

(vii) Elasto-plastic small deformations (all implicit elements) 
(viii) Elasto-plastic small deformations (all explicit elements) 
(ix) Elasto-plastic small deformations (stiff elements are implicit elements, 

the remaining elements are explicit). 

The highest and lowest eigenvalues are evaluated for both the original 
and the modified spherical shells. For the original spherical shell the funda
mental period is 0.547 x 10-3 sec and the smallest time period is 1.380 x 10-6 
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sec. For the modified spherical shell the fundamental period Tj is 0.592 X 10-3 

sec and the smallest time period Til is 0.776 X 10-6 sec. Thus the addition of 
the stiff elements does not significantly change the largest period but it does 
change the smallest period quite dramatically. For an accurate solution based 
on implicit time integration the time step length t!.t is taken as Tj/100~0.6 x 
10-5 sec for both the original and the modified spherical shell. For a stable 
and accurate solution based on explicit time integration the time step length 
III ~ TII/TT which is 0.25 X 10-6 sec for the modified spherical shell or 0.40 X 

\0-6 sec for the original spherical shell. Thus the addition of two stiff 
elements reduces the critical time step length to 1/1.6 of the original critical 
time step length. Hence the explicit analysis becomes more expensive. 
However, if the stiff elements are taken as implicit elements in case (ix) for 
implicit-explicit analysis, then the critical time step is governed by the 
remaining explicit elements so that the time step must be less than or equal to 
0.40 X 10-6 sec. 
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Spherical shell results. Cases (i), (ii), (iv) and (v). 

Figure 11.5(a) compares the response of the elastic analyses with small 
and large deformations. * The results are similar to the results obtained 
using DYNPAK. The response with the large deformation gives a time 
period which is elongated. 

• Note that the implicit and explicit results overlap. 
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Fig. 11.5(b) Spherical shell results. Cases (iii) and (vi). 

Figure 11.5(b) illustrates the elasto-plastic small deformation response. 
The time periods are elongated with the inclusion of plasticity effects. 

In Fig. 11.5(c) the results for the problem with the stiff element are pre
sented with explicit, implicit and mixed explicit-implicit analysis (cases (vii)
(ix». The execution times and results are compared. The relative computer 
times are: 

(i) all elements considered as explicit - 120.0 sec 
(ii) stiff elements as implicit and rest explicit 
(iii) all elements considered as implicit 

- 80.8 sec 
- 16.4 sec 

O.DO 
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'Y = 0.55 
fj = 0.276 

Explicit At = 0.25 X 10'" sec 
implicit-explicit At =O.40x 10'" sec 
Implicit At = 0.60 X 10'" sec 

(a) Comparison of explicit, implicit-explicit 
and implicit time integration schemes 

Fig. 11.5(c) Spherical shell results. Cases (vii)-(ix). 
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This shows that by representing the stiff elements implicitly computer time 
can be saved. The analysis in which all elements are treated implicitly gives 
the lowest execution time for this small problem. However, with increasing 
problem size (and band width) the solution time for an implicit solution 
increases very rapidly because of the large core requirement and the increased 
number of computer operations. 

Finally it should be noted that Hughes has recently shown how the implicit
explicit schemes may be used in a more general context where there are, for 
example, nonsymmetric stiffness matrices involved or an implicit-explicit 
dynamic relaxation solution is required. (131 

11.7 Problems 
ILl Repeat Problems 10.1-10.4 using program MIXDYN. Use fully 

explicit, fully implicit and mixed implicit/explicit meshes. 
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Chapter 12 
Alternative formulations and 

further applications 

12.1 Introduction 
Throughout this text we have considered several specific elasto-plastic 

material problems and, apart from Chapter 3, treatment has been limited to 
the use of elasto-plastic quasi-static incremental theory or an elasto-visco
plastic formulation. These theories and the application areas of solids and 
plates form, undoubtedly, the area of most interest and importance in non
linear material analysis and it is for this reason that they have been chosen for 
study in this text. However, other topics and applications of possibly equal 
importance have had to be omitted for reasons of space and it is the aim of 
this chapter to indicate to the reader some areas for future studies. The 
developments which will be discussed can be categorised into the following 
classes: 

• Further applications. The elasto-plastic and elasto-viscoplastic theories 
described earlier in this text can be extended to cover some alternative 
structural forms. Of prime importance in this area is the analysis of 
both thick and thin three-dimensional shell structures and the main 
changes necessary to the corresponding linear elastic finite element 
process relate to expressing the yield criterion in terms of the appropri
ate stress resultants. 

• Alternative material models. The behaviour of some engineering 
materials may not be adequately described by the yield criteria presented 
in Chapter 7. This is particularly true of soils, rocks and concrete, since 
these materials, for example, have a limited tensile strength which is not 
accurately reflected in either the Mohr-Coulomb or Drucker-Prager 
failure laws. For such materials appropriate failure criteria must be 
developed. Additionally for soils the assumption of associated plas
ticity leads to excessive dilatency necessitating alternative formu
lations for accurate material modelling. 

• Further problem classes. Many physical situations exist which are 
governed by nonlinear equation systems which are not suitable for 
solution by the techniques described so far in the text. One such 

465 



466 FINITE ELEMENTS IN PLASTICITY 

example is the time dependent deformations which take place during a 
metal forming process. In this application the elastic strains are 
negligible compared with the plastic components and therefore the 
stress increments can no longer be expressed by use of (8.15). 

For dynamic situations, coupled media problems frequently have to 
be solved. This may involve a fluid/structure interaction problem of the 
seismic analysis of water retaining structures or the impulsive loading 
of a nuclear containment vessel together with the coolant fluid. All the 
above problems may be complicated by further nonlinear behaviour 
due to gross geometrical deformations. 

• Improved numerical techniques. Since nonlinear solution processes are 
necessarily expensive with regard to computational time, any savings 
which can be made in this area are of prime importance. Developments 
in this area include improved nonlinear equation solution techniques 
and self-adaptive schemes for optimisation of the finite element mesh 
and load incrementation. A further enhancement is the use of sub
structuring techniques to separate elastic and elasto-plastic regions 
leading ultimately to coupled boundary integral/finite element solutions. 

In this chapter we explore the above developments (and others) in more 
detail and provide the reader with references for future study. Many of the 
subroutines presented earlier in the text can be employed (possibly in a 
modified form) in the development of computer codes for these further 
applications. Therefore the role of each subroutine presented is summarised 
and its location in the text also listed. 

12.2 List of subroutines 
In this section we record details of each subroutine that has been presented 

in this text. This library of subroutines can be employed to develop computer 
codes for the further applications discussed later in this chapter. The section 
of the chapter in which the subroutine is presented is recorded and the codes 
in which it is used are also indicated, employing the following program names; 

One-dimensional applications 
QllTER Solution of quasiharmonic problems by direct iteration 

(Chapter 3). 
QUNEWT Solution of quasiharmonic problems by the Newton-Raphson 

NON LAS 
ELPLAS 
UNVIS 
TIMOSH 

TIMLAY 

process (Chapter 3). 
Solution of nonlinear elastic problems (Chapter 3), 
Solution of elasto-plastic problems (Chapter 3). 
Solution of elasto-viscoplastic problems (Chapter 4). 
Solution of elasto-plastic nonJayered Timoshenko beams 
(Chapter 5). 
Solution of elasto-plastic layered Timoshenko beams (Chap
ter 5). 
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Two-dimensional applications 

PLANET 

VISCOUNT 

MINDLIN 
MINDLAY 
DYNPAK 

MIXDYN 

Elasto-plastic analysis of plane stress, plane strain and aXI
symmetric solids (Chapter 7). 
Elasto-viscoplastic analysis of plane stress, plane strain and 
axisymmetric solids (Chapter 8). 
Elasto-plastic analysis of non layered Mindlin plates (Chapter9). 
Elasto-plastic analysis of layered Mindlin plates (Chapter 9). 
Elasto-plastlc transient dynamic analysis of two dimensional 
solids (Chapter 10). 
Implicit-explicit elasto-viscoplastic transient dynamic analysis 
of two dimensional solids (Chapter II). 

12.2.1 Subroutines for one-dimensional applications 

ASSEMB Section 3.4.2 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLA Y) 
Assembles the element contributions to form the global stiffness 
matrix and global load vector. (Simple equation solver). 

ASTIFI Section 3.10.1 (QUNEWT) 
Formulates the stiffness matrix for each element according to 
(2.25) and (2.29) for the solution of one dimensional quasi
harmonic problems by the Newton Raphson method. 

BAKSUB Section 3.4.4 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLAY) 
Performs the backsubstitution phase of the Gaussian reduction 
process. (Simple equation solver). 

BEAM Section 5.4.5 (TIMOSH) 
The master routine for elasto-plastic nonlayered Timoshenko 
beam program TIMOSH. 

BEML Section 5.5.5 (TIMLA Y) 
The master routine for elasto-plastic layered Timoshenko 
beam program TIMLAY. 

CONUND Section 3.10.3 (QUNEWT, NON LAS, ELPLAS, TIMOSH, 
TIMLAY) 
Monitors convergence of the nonlinear solution process based 
on the residual forces according to (3.27). 

CONVP Section 4.9 (UN VIS) 
Monitors convergence to steady state conditions according to 
(4.41) for one-dimensional elasto-viscoplastic problems. 

DATA Section 3.2 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLA Y) 
Data input subroutine for one-dimensional applications. 
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GREDUC Section 3.4.3 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLA Y) 
Undertakes equation elimination by Gaussian reduction. 
(Simple equation solver). 

INCLOD Section 3.7 (QUlTER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLA Y) 
Controls the incrementing of the applied loads for one
dimensional applications (modified for viscoplastic problems in 
Section 4.10). 

INCVP Section 4.8 (UNVIS) 
Evaluates quantities at the end of the time step and the 
equilibrium correction terms for one-dimensional elasto
viscoplastic problems. 

INITAL Section 3.6 (QUITER, QUNEWT, NON LAS, ELPLAS, 
TIMOSH, TIM LA Y) 
Initialises to zero some arrays used by other subroutines for 
one-dimensional applications. 

MONITR Section 3.9.2 (QUlTER) 
Monitors convergence of the direct iteration process for one
dimensional quasiharmonic problems. 

NONAL Section 3.3 (QUlTER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIM LA Y) 
Controls the nonlinear solution process according to the value 
of NALGO specified, for one-dimensional applications. 

REFORI Section 3.10.2 (QUNEWT) 
Evaluates the 'equivalent nodal forces' according to (3.26) for 
one-dimensional quasiharmonic problems. (Newton Raphson 
solution). 

REFOR2 Section 3.11.2 (NONLAS) 
Evaluates the equivalent nodal forces according to (3.32) for 
one-dimensional nonlinear elastic problems. 

REFOR3 Section 3.12.2 (ELPLAS) 
Evaluates the equivalent nodal forces for one-dimensional 
e1asto-plastic problems. 

REFORB Section 5.4.5 (TIMOSH) 
Evaluates the residual forces for a nonlayered elasto-plastic 
Timoshenko beam. 

RFORBL Section 5.5.5 (TIM LA Y) 
Evaluates the residual forces for a layered elasto-plastic 
Timoshenko beam. 

RESOLV Section 3.4.5 (QUITER, QUNEWT, NONLAS, E,LPLAS, 
TIMOSH, TIM LA Y) 
Undertakes reduction of the R.H.S. terms for equation 
resolution (Simple equation solver). 



RESULT 

STIFFI 

STIFBL 

STIFFB 

STIFF2 

STIFF3 

STUNVP 

UNDIM 

UNVISC 

ALTERNATIVE FORMULATIONS 469 

Section 3.5 (QUITER, QUNEWT, NONLAS, ELPLAS, 
TIMOSH, TIMLA Y) 
Outputs the results for one-dimensional applications. 
Section 3.9.1 (QUITER) 
Formulates the stiffness matrix for each element according to 
(2.25) for the solution of one-dimensional quasiharmonic 
problems by direct iteration. 
Section 5.5.5 (TIMLA Y) 
Evaluates the elasto-plastic stiffness matrix for each element 
for the solution of layered Timoshenko beams. 
Section 5.4.5 (TIMOSH) 
Formulates the elasto-plastic stiffness matrix for each element 
for the solution of non layered Timoshenko beams. 
Section 3.1 I.l (NON LAS) 
Formulates the stiffness matrix for each element according to 
(2.33) for nonlinear elastic one-dimensional problems. 
Section 3.12.1 (ELPLAS) 
Formulates the stiffness matrix for each element according to 
either (2.38) or (2.43) for one-dimensional elasto-plastic 
problems. 
Section 4.7 (UNVIS) 
Formulates the stiffness matrix for each element in turn for 
one-dimensional elasto-viscoplastic applications. 
Section 3.8 (QUITER, QUNEWT, NONLAS, ELPLAS) 
The main or master segment for one-dimensional nonlinear 
problems. Sec Fig. 3.1 for the small changes in the different 
applications. 
Section 4.11 (UN VIS) 
The main or master segment for one-dimensional visco-plastic 
problems. 

12.2.2 Subroutines for two-dimensional applications 
ADDBAN Section 11.5.3 (MIXDYN) 

Generates the global matrix from the element stiffness matrices. 
ADDRES Section 11.5.4 (MIXDYN) 

Addresses the diagonal term of a matrix. 
ALGOR Section 6.5.2 (PLANET, VISCOUNT, MINDLIN, MIND

LAY) 

BLARGE 

BMATPB 

Controls the nonlinear solution process according to the value 
of NALGO specified, for two-dimensional applications. 
Section 10.6.3 (DYNPAK, MIXDYN) 
Evaluates the strain matrix B for small and large deformation. 
Section 6.4.8 (MINDLIN) 
Evaluates the strain matrix, B, for plate bending problems. 
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Section 6.4.7 (PLANET, VISCOUNT) 
Evaluates the strain matrix, B, for plane and axisymmetric 
situations. 

CHECK I Section 6.4.13 (PLANET, VISCOUNT, MINDLIN, 
MINDLAY) 
Scrutinises the problem control parameters for possible errors 
(two-dimensional applications). 

CHECK2 Section 6.4.15 (PLANET, VISCOUNT, MINDLIN, 
MINDLAY) 
Checks the geometric data, boundary conditions and material 
properties for possible errors (two-dimensional applications). 

COLMHT Section 11.5.5 (MIXDYN) 
Evaluates the height of column above the diagonal of a matrix 
from the known addresses of diagonal terms. 

CONTOL Section 10.6.4 (DYNPAK, MIXDYN) 
Reads control data for dynamic dimensioning and also checks 
the dimension limits. 

CONVER Section 6.5.4 (PLANET) 
Monitors convergence of the nonlinear solution iteration 
process for two-dimensional applications. 

CONVMP Section 9.5.3 (MINDLIN, MINDLA Y) 
Checks for convergence of solution of elasto-plastic layered 
and nonlayered Mindlin plates. 

DBE Section 6.4.11 (PLANET, VISCOUNT) 
Forms the matrix product DB. 

DECOMP Section 11.5.6 (MIXDYN) 
Decomposes positive definite matrix into LDLT. 

DEPMPA Section 9.6.4 (MINDLA Y) 
Sets up the layered discretisation for the layered elasto-plastic 
Mindlin plate. 

D1MEN Section 7.8.1 (PLANET, VISCOUNT) 
Presets the value of variables associated with dynamic dimen
sioning. 

D1MMP Section 9.5.4 (MINDLIN, MINDLAY) 
Sets up dynamic dimensions in programs MINDLIN and 
MINDLA Y for the elasto-plastic analysis of layered and 
nonla yered plates. 

D1NTOB Section 11.5.7 (MIXDYN) 
Multiplies the modulus and strain matrices to give DB. 

DYNPAK Section 10.6.2 (DYNPAK) 
Organises the explicit viscoplastic transient dynamic analysis. 

ECHO Section 6.4.14 (PLANET, VISCOUNT, MINDLIN, MIND
LAY) 
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Echoes the remaining data after input data errors have been 
diagnosed. 

EXPLIT Section 10.6.5 (DYNPAK) 
Carries out explicit time integration. 

FEAM Section 9.6.2 (MINDLA Y) 
Organising routine for the e1asto-plastic analysis of layered 
Mindlin plates. 

FEMP Section 9.5.2 (MINDLIN) 
Organising routine for the elasto-plastic analysis of non layered 
Mindlin plates. 

FIXITY Section 10.6.6 (DYNPAK) 
Boundary conditions are inserted. 

FLOWMP Section 9.5.5 (MINDLIN, MINDLAY) 
Determines OF/aUf (i.e. yield function derivatives) for elasto
plastic layered and non layered Mindlin plates. 

FLOWPL Section 7.8.4.2 (PLANET, MIXDYN) 
Determines the vector d n for elasto-plastic analysis. 

FLOWVP Section 8.9 (VISCOUNT, DYNPAK) 
Determines the viscoplastic strain rate for each Gauss point 
according to (8.7). 

FRONT Section 6.4.12 (PLANET, VISCOUNT, MINDLIN, MIND
LAY) 
Performs element assembly and equation solution by the 
frontal method. Contains a facility for efficient resolution of 
equations. 

FUNCTA Section 10.6.8 (DYNPAK, MIXDYN) 
Interpolates acceleration ordinate at M intervals. 

FUNCTS Section 10.6.9 (DYNPAK, MIXDYN) 
Evaluates factor for Heaviside and Harmonic time function at 
M apart. 

GAUSSQ Section 6.4.2 (PLANET, VISCOUNT, MINDLIN, MIND
LAY, DYNPAK, MIXDYN) 
Evaluates the sampling point positions and weighing factors 
for numerical integration by Gauss quadrature. 

GEOMST Section 11.5.8 {MIXDYN) 
Evaluates the stress stiffness matrix. 

GRADMP Section 9.5.6 (MINDLIN) 
Evaluates the total displacement and rotation derivatives 
(ow/ex, ow/oy, oOx/ox, oOx/oy, COy/ax, oOy/oy). 

GSTIFF Section 11.5.9 (MIXDYN) 
Evaluates the global stiffness matrix in compacted profile form. 

IMPEXP Section 11.5.10 (MIXDYN) 
Sets the constants of integration and evaluates partial effective 
load vector. 
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Section 6.5.3 (PLANET, VISCOUNT, MINDLIN, MIND
LAY) 
Controls the incrementing of the applied loads for two
dimensional applications. 
Section 6.5.1 (PLANET, VISCOUNT, MINDLIN, MIND-
LAY) 
Data input subroutine for two-dimensional applications. 
Section 10.6.10 (DYNPAK, MIXDYN) 
Data input subroutine. Reads the mesh data, properties etc 
Section 10.6.11 (DYNPAK, MIXDYN) 
Reads the data necessary for time integration. 
Section 7.8.3 (PLANET, VISCOUNT, DYNPAK, MIXDYN) 
Evaluates the effective stress level at a given point for moni
toring plastic yielding. 
Section 8.7.3 (VISCOUNT) 
This subroutine determines the inverse of any arbitrary square 
matrix. 
Section 9.5.7 (MINDLIN) 
Evaluates the Mindlin plate stress resultant invariants for 
nonlayered plates. 
Section 11.5.11 (MIXDYN) 
Evaluates the total effective load and iterates until con
vergence is reached. 

JACOBD Section 10.6.13 (DYNPAK, MIXDYN) 
Evaluates the deformation Jacobian matrix. 

JACOB2 Section 6.4.4 (PLANET, VISCOUNT, MINDLIN, MIND
LA Y, DYNPAK, MIXDYN) 
Evaluates the Jacobian matrix, its inverse and the Cartesian 
derivatives of the element shape functions for two-dimensional 
applications. 

LA YMPA Section 9.6.5 (MINDLA Y) 
Evaluates the matrix of flexural rigidities and the matrix of 
shear rigidities for the layered elastoplastic Mindlin plate. 

LINEAR Section 7.8.6 (PLANET, MIXDYN) 
Determines the stresses from given displacements assummg 
linear elastic behaviour. 

LlNGNL Section 10.6.14 (DYNPAK, MIXDYN) 
Evaluates the linear stresses for small and large deformation 
analysis. 

LlNKIN Section 11.5.12 (MIXDYN) 
This routine links with the profile solver. 

LOADPB Section 6.4.6 (MINDLIN, MINDLA Y) 
Evaluates the consistent nodal forces for plate bending 
problems. 
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LOADPL Section 10.6.15 (DYNPAK, MIXDYN) 
Generates the load vector. 

LOADPS Section 6.4.5 (PLANET, VISCOUNT) 
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Evaluates the consistent nodal forces due to gravity and 
distributed edge loads for two-dimensional problems. 

LUMASS Section 10.6.16 (DYNPAK, MIXDYN) 
Generates the consistent mass matrix for implicit elements and 
special lumped mass matrix for explicit elements. 

MDMPA Section 9.6.6 (MINDLA Y) 
Evaluates the constitutive matrices for use in layered Mindlin 
plate analysis. 

MINDPB Section 9.5.8 (MINDLIN, MINDLA Y) 
Reads additional input data for elasto-plastic, layered and 
nonlayered Mindlin plates. 

MIXDYN Section 11.5.2 (MIXDYN) 
Organises implicit/explicit transient dynamic program. 

MODPB Section 6.4.10 (MINDLIN) 
Evaluates the D matrix for plate bending applications. 

MODPS Section 6.4.9 (PLANET, VISCOUNT, DYNPAK, MIXDYN) 
Evaluates the D matrix for plane and axisymmetric situations. 

MULTPY Section 11.5.13 (MIXDYN) 
Multiplies square matrix to a vector or vector to a vector. 

NODEXY Section 6.4.1 (PLANET, VISCOUNT, MINDLIN, MIND
LAY) 
Interpolates the coordinates of midside nodes for elements 
with straight sides. This routine is modified in MINDLIN and 
MINDLA Y where a hierarchical formulation is adopted for 
the ninth node. (See Section 9.5). 

NODXYR Section 10.6.18 (DYNPAK, MIXDYN) 
Evaluates the midside node of elements. In case of ax 1-

symmetric problems if (R, 0) coordinates are read 1', z co
ordinates are evaluated within it. 

OUTDYN Section 10.6.19 (DYNPAK, MIXDYN) 
Writes the output on output file and stress and displacement 
histories of required Gauss points and nodes respectively on 
specified tapes. 

OUTMP Section 9.5.10 (MINDLIN) 
Outputs displacements, reactions and Gauss point stress 
resultants for elasto-plastic non layered Mindlin plates. 

OUTMPA Section 9.6.7 (MINDLA Y) 
Outputs displacements, reactions and Gauss point layer 
stresses for elasto-plastic layered Mindlin plates. 
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OUTPUT Section 7.8.8 (PLANET, VISCOUNT) 
Outputs the results for two-dimensional problems at specified 
intervals. 

PLAST Section 7.8.9 (PLANET) 
The main or master segment for two-dimensional elasto
plastic applications. 

PREVOS Section 10.6.20 (DYNPAK, MIXDYN) 
Reads the initial force and stresses. 

REDBAK Section I 1.5.14 (MIXDYN) 
Solves equations after matrix decomposition, using forward 
and backward substitution. 

RESEPL Section 11.5. IS (MIXDYN) 
Evaluates the internal force for different yield criteria in the 
implicit explicit program. 

RESMP Section 9.5.11 (MINDLIN) 
Evaluates the internal nodal forces 

RESMPA 

RESIDU 

RESVPL 

SFR2 

STEADY 

STEPVP 

STIFFP 

for the stress resultants Uf and Us for elasto-plastic, non
layered Mindlin plates. 
Section 9.6.8 (MINDLA Y) 
Evaluates the residual force vector for layered elasto-plastic 
Mindlin plates. 
Section 7.8.7 (PLANET) 
Evaluates the nodal forces which are statically equivalent to 
the stress field satisfying elasto-plastic conditions. 
Section 10.6.21 (DYNPAK) 
Evaluates the internal forces for different yield criteria in the 
explicit transient dynamic program. 
Section 6.4.3 (PLANET/ VISCOUNT, MINDLIN, MIND
LAY, DYNPAK, MIXDYN) 
Evaluates the element shape functions and their local deriva
tives for 4, 8 and 9 node isoparametric quadrilateral elements. 
SFR2 is modified in MINDLIN and MINDLA Y to allow for 
a hierarchical representation for the 9th central node. 
Section 8.12 (VISCOUNT) 
Monitors convergence to steady state conditions for two
dimensional elasto-viscoplastic problems. 
Section 8.8 (VISCOUNT) 
Evaluates quantities, such as stresses and viscoplastit strains, 
at the end of each time step of a visco plastic solution: 
Section 7.8.5 (PLANET) 
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Evaluates the stiffness matrix for each element for elasto
plastic problems employing either D or Dep as appropriate. 
Section 9.5.13 (MINDLIN) 
Evaluates the stiffness matrices for nonlayered elasto-plastic 
Mindlin plate elements. 
Section 8.7.1 (VISCOUNT) 
Evaluates the stiffness matrix for each element in turn for two
dimensional elasto-viscoplastic applications. 
Section 9.6.9 (MINDLA Y) 
Evaluates the stiffness matrices for layered elasto-plastic 
Mindlin plate elements. 
Section 8.10 (VISCOUNT) 
Evaluates the increment in stress occurring during a timestep 
of a viscoplastic analysis according to (8.20). 
Section 9.5.14 (MINDLIN) 
Evaluates stress resultants [M x, My, M xv' Qx, QyF for 
e1asto-plastic nonlayered Mindlin plates. 
Section 9.6.10 (MINDLA Y) 
Evaluates the stresses [ax, ay, TXY, TXZ, TyzF for elasto-plastic 
layered Mindlin plates at each layer and each Gauss point. 

SUBMP Section 9.5.15 (MINDLIN, MINDLA Y) 
Carries out matrix multiplications in elasto-plastic layered and 
non layered Mindlin plates. 

TANGVP Section 8.7.2 (VISCOUNT) 
Evaluates the Dn matrix for viscoplastic analysis by implicit 
time stepping schemes. 

VISCO Section 8.13 (VISCOUNT) 
The main or master segment for two-dimensional elasto
viscoplastic applications. 

VZERO Section 9.5.16 (MINDLIN, MIND LA Y) 
Zeroes a vector in elasto-plastic layered and non layered 
Mindlin plates. 

YIELDF Section 7.8.4.1 (PLANET, VISCOUNT, MIXDYN, DYN
PAK) 
Determines the flow vector a for plastic and viscoplastic 
applications. (Amended in Section 10.6.22 for dynamic 
transient problems). 

ZERO Section 7.8.2 (PLANET, VISCOUNT) 
Sets to zero the contents of several arrays employed in the 
programs. (Modified for viscoplastic applications in Section 
8.11). 

ZEROMP Section 9.5.16 (MINDLIN, MINDLAY) 
Zeroes various arrays in elasto-plastic layered and nonlayered 
Mindlin plate programs. 
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12.3 Alternative material models 
The plastic behaviour of most solids is adequately described by the four 

yield criteria presented in Chapter 7; namely the Tresca, Von Mises, Mohr
Coulomb and Drucker-Prager yield surfaces. However, for some engineering 
materials, notably concrete, rocks and soils, some modifications must be 
made to the above criteria or new yield surfaces postulated if an accurate 
prediction of the material response is required. 

For soils, the Mohr-Coulomb and Drucker-Prager criteria suffer from 
two deficiencies. Firstly, the assumption of an associated flow rule leads to 
excessive dilatency and secondly it is seen from Fig. 7.4 that both models 
imply that the material can support an unlimited hydrostatic compression. 
These deficiencies can be removed by use of the so-called critical state model, 
which assumes that the yield surface comprises two distinct parts.(1-31 The 
surface is shown plotted in terms of deviatoric (Jd and hydrostatic stress, (Js, 

in Fig. 12.1. In the subcritical region yielding is stable due to strain hardening 
of the material whilst the supercritical region exhibits strain softening so that 
this portion of the yield surface forms a failure criterion. 

A A' 0 

non-associated 
flow 
rule 

supercritical 

region 

subcritical 

/ region 

~ critical state line 

I 

F'UB=O--J 
(elliptical section) 

associated 
flow rule 

D 

Fig. 12.1 Critical state model for the behaviour of soil, [ad = !a'-<>31, a, 

= H '" + "3)]' 

A nonassociative flow rule is adopted in the supercritical region and the 
conical yield surface implied in Fig. 12.1 may be circular or hexagonal in 
form corresponding to a Mohr-Coulomb behaviour. In the subcritical 
region, the two most common shapes for the so-called cap is a log spiral or an 
ellipse and an associated flow rule is assumed to be obeyed. The yield surface 
can be expressed in the form 

u, 
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FSUPER = ud - 2 sin 1> Us - 2(' cos 1> = 0 

(12.1 ) 

in which Scs is the slope of the critical state line. 
In the tensile zone, various options are open for modelling the limited 

tensile strength of the soil. The curved line BA' can be employed or, more 
simply the vertical intercept DB (implying zero tensile strength) may be 
assumed. Complete details of the critical state model for soils can be found 
in Refs. 1-3 including its application to the numerical solution of practical 
problems. 

The Mohr-Coulomb and Drucker-Prager criteria exhibit the same 
deficiencies for modelling concrete behaviour as occur in the case of soils. In 
particular they overestimate the tensile strength of the material and also 
allow the material to support an unlimited hydrostatic compression. Many 
models have been proposed to more accurately predict the behaviour of 
concrete; a review of which can be found in Ref. 4. 

The most common method of predicting the tensile behaviour of concrete 
(and rocks) is by use of the no-tension model (or limited tension model).(51 
In this, the tensile principal stresses are monitored throughout the structure 
and as soon as the value at any point exceeds the specified limiting tensile 
strength of the concrete, the material is assumed to crack in a plane normal 
to the principal direction. The tensile stress must then be reduced to zero by 
evaluating its nodal force equivalent and regarding these as residual forces 
to be applied and redistributed in an iterative process. Should the crack close 
on load reversal a frictional behaviour between the surfaces of the crack can 
be modelled. It is worth recording that the numerical stability of such 
solution processes is relatively poor since on initiation of tensile cracking the 
existing stress must be eliminated by redistribution, whereas for elasto-plastic 
problems, yielding merely necessitates that the existing stress level be main
tained. 

An example of this type of analysis is illustrated in Fig. 12.2 where a 
cylindrical prestressed concrete reactor vessel is shown. The geometry of the 
vessel, together with the location of the prestressing system is indicated and 
the finite element mesh employed in solution is also shown. The concrete is 
assumed to behave as a limited tension material and the steel components as 
a Von Mises elasto-plastic solid. The effects of prestressing are included as an 
initial stress system and the vessel is incrementally loaded by a progressively 
increasing internal pressure. Figure 12.3 shows the vertical deflection of the 
centre point of the end slab with increasing load and good agreement is 
observed with both the experimental results and numerical analysis of Ref. 6. 
The zones of tensile cracking are shown in Fig. 12.4 for various applied 
pressure values and again good agreement with the results of Ref. 6 is evident. 
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Fig. 12.2 Finite element idealisation of a prestressed concrete reactor vessel by 
quadratic isoparametric elements. 
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Fig. 12.4 Zones of tensile cracking for the vessel of Fig. 12.2 failing in slab flexural 
mode. 

For predicting the compressive behaviour of concrete as well as the tensile 
response many failure surfaces have been proposed and a typical model is 
illustrated in Fig. 12.5. In addition to a brittle behaviour in tension, the 
model allows a viscoplastic range of behaviour before material failure. For 
further details the reader is directed to Ref. 4. 

A final approach to concrete behaviour which is worthy of mention is 
afforded by the so-called endochronic theory pioneered by Valanis(7,8) and 
generalised to concrete structures by Bazant. (9,10) To account for the strain 
history dependence of materials (in addition to their strain rate dependence) 
the concept of intrinsic time z is introduced which is related to the Newtonian 
time scale, t according to 

(12.2) 

where d, IS effectively a measure of the deformation path length, f3 is a 
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material parameter and C1 depends on t. Bazant has generalised the endo
chronic model to account for inelastic dilatancy, hydrostatic and shear 
compaction and fracture behaviour. (10) 
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Fig. 12.5 Typical yield and failure surfaces for concrete. 

12.4 Further applications 

12.4.1 Flow problems 
In this class of problem we are concerned with the continuing viscous flow 

of materials under steady state conditions. Typical examples include the 
extrusion of material through a die and flow of lubricating muds in oil 
drilling applications. In each case the problem is characterized by the fact 
that the elastic strains are negligible in comparison to the plastic components. 
For this reason, the viscoplastic numerical process described in Chapter 8 is 
unsuitable, since the increment of stress occurring during a timestep was 
based on the elastic strain increment accorc;iing to (8.15). Thus an alternative 
formulation is clearly necessary and in fadl: a considerable simplification is 
achieved if the elastic components of strain are neglected in solution. (11) 

The plastic strain rate, Evp, which is now assumed to be the total strain 
rate, E, is given from (8.7) to be 

E = Evp = y<<IJ(F»a, (12.3) 

and we recall that a is the flow vector defined by (7,42), <IJ is an appropriate 
flow function (given for example by (8.8) or (8.9» and y is a fluidity parameter. 
For the particular case of a Von Mises yield surface we have from (7.11) that 

(ll,4) 

where J 2' is the second deviatoric stress invariant and cry is the uniaxial yield 
stress of the material which may be a function of the strain hardening 
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parameter K. Substituting from (12.4) into (12.3), and using (7.42) to express 
a, results in 

E = y<$(y'3(N)1/L O'y» y'3/2(N)l/2 a' = r(a')O", (12.5) 

in which a' are the deviatoric stresses and rea') is a symmetric viscoplastic 
compliance matrix whose form can be explicitly determined on prescription 
of the appropriate flow function (I>. Thus a relationship has been established 
between the total strain rate and the deviatoric stresses. 

The strain rate can be expressed in terms of the displacement velocities v 
by taking the differential form of the standard strain/displacement relation
ship, to give 

E = Bv. (12.6) 

We assume, as for the viscoplastic case of Chapter 8, that the flow velocities 
are sufficiently slow to neglect inertia effects and that the following standard 
static equilibrium equations therefore hold. 

Iv BT 0' dV + f = 0, (12.7) 

in which f are the applied forces comprising body forces b and boundary 
tractions, t. Thus a complete analogy exists between the above problem and 
the case of an elastic material in which the relationship between stress and 
strain is nonlinear according to 

0' = D(O')E. (12.8) 

Table 12.1 Correspondence between small strain nonlinear elastic problems and 
viscoplastic flow situations 

Small strain nonlinear elasticity 

Displacements, d 
Stresses, a 
Strains, E 

Applied forces,f 
Nonlinear elastic compliance matrix, 

[D(a»)-l 

Flow problem 

V eloci ties, " 
Stresses, 0' 

Strain rates, E 
Applied forces,f 
Viscoplastic compliance matrix, 

T(a) 

This analogy is indicated in Table 12. J. Therefore flow problems, in which 
the elastic components of deformation are negligible, can be solved by use of 
a linear elastic computer code which includes a facility for dealing with a 
stress dependent D matrix. Obviously the steady state solution to the flow 
problem must be arrived at in an iterative manner and a similar procedure 
must be employed in the corresponding elastic solution. The simplest approach 
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is to proceed by the method of direct iteration, as described in Chapters 2 and 
3, and to base the value of the compliance matrix r on the current value of (T. 

This solution procedure can be summarised as follows: 

(1) From the stresses (Tn at iteration n evaluate the viscoplastic compliance 
matrix r(un) = rn. 

(2) Compute the element stiffness matrix of each element as 

and also the consistent nodal applied forces,,'). 
(3) Assemble and solve the stiffness equations to give the improved velocity 

estimate, vn+l. 

(4) Compute the strain rates, En+l = Bvn+!. 

(5) Compute the stresses, (Tn+! = [I'n]-lEn+l. 

(6) Return to Step 1 and repeat the process until convergence takes place 
(i.e. vn+1 :::: vn). 

The procedure described above is most suitable when boundary and body 
forces produce the forcing action. For the case when the problem is defined 
in terms of prescribed boundary velocities the compliance matrix r must be 
expressed in terms of the current strain rate, E. (12) 

For metal forming problems, the situation is complicated by the fact that 
the geometry of the deforming solid is continually varying throughout the 
process. For such problems the transient form of the flow equations must be 
used and an incremental procedure can be adopted by which the coordinates 
of the finite element mesh are sequentially updated during solution.(13) 

It should be noted that no volumetric strain rate exists for some visco
plastic flow laws, as generally defined by (12.3), and this is indeed the case for 
the Von Mises criterion employed in (12.5). Consequently the viscoplastic 
compliance matrix r cannot be inverted as required by Step 2 above and the 
same numerical difficulties that exist in incompressible elastic problems are 
encountered. However these can be readily overcome by the use of selective 
integration techniques whereby the element stiffness matrix is separated into 
volumetric and deviatoric components.(14) The near singularity arising in the 
former term as incompressible behaviour is approached is then numerically 
removed by employing a low order Gaussian integration rule. 

An important application of the above solution process is to the flow of 
non-Newtonian fluids, in which the material viscosity depends nonlinearly 
on the shear strain rate. Practical examples of such flow can be found in 
Refs. 15 and 16. Deviations from Newton's law of viscosity are best illus
trated by means of flow curves and some of the most important cases are 
shown in Fig. 12.6. The effective stress, a, and effective strain rate, [, are 
defined by (7.12) and (7.22) respectively. 
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Fig. 12.6 Various flow curves for non-Newtonian fluids. 
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The Bingham fluid is seen to be a particular form of visco plastic relation 
(12.3) or (12.5). Writing in terms of the effective stress and strain rate, (12.5) 
can be expressed as 

(j = ,.d, (12.9) 

where the apparent viscosity f.J. is given by 

~ = y(3)y (!I>[(Y3)(N)1/LaYl). 
f.J. 2(N)1/2 

(12.10) 

For the Bingham plastic we can write from the expression given in Fig. 12.6 
and using (12.9) that 

i/y+ay 
f.J.= -

E 

As y--+oo, ideal plasticity behaviour is approached resulting in 

ay 
f.J. =-:- • 

• 
Similarly for a Power Law pseudoplastic we have from Fig. 12.6 

i M - 1 

f.J.=--. 
y 

(12.11) 

(12.12) 

(12.13) 

Thus for each case the problem again reduces to an elastic problem in which 
the shear modulus is dependent on the current strain rate and can be solved 
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by use of the analogy indicated in Table 12.1. Solution can be achieved by 
use of the method of direct iteration or by the Newton-Raphson process 
described in Chapters 2 and 3. 

As an example of viscous flow analysis(l71 the problem of the flow of a 
Bingham fluid in a cylindrical annulus is illustrated in Fig. 12.7, where the 
geometry and finite element mesh employed are also indicated. Steady state 
flow is induced parallel to the axis of the cylinder by the application of an 
axial pressure gradient. The finite element velocity distributions obtained by a 
direct iteration solution scheme are shown in Fig. 12.8 for different values of 
the pressure gradient. The flow velocities are in good agreement with the 
theoretical solution of Ref. 18. 

v=o 

/ 

10 parabolic elements with 2 x 2 gauss 
integration 

Fig. 12.7 Flow of Bingham fluid in an annulus under an axial pressure gradient 
showing finite element mesh idealisation. 

12.4.2 Nonlinear fracture mechanics 
A class of elasto-plastic problems which require special attention is that of 

crack propagation in ductile materials. Figure 12.9 illustrates the types of 
problem which demand solution and it is seen that a geometrical singularity 
exists at the crack tip. The numerical techniques presented in Chapter 7 
allows the elasto-plastic stress field to be determined in the vicinity of the 
crack tip (for Modes I and II at least) but a criterion for propagation of the 
crack must be established in some way. 
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Fig. 12.8 Steady state velocity profile for the problem of Fig. 12.7 for various 
applied pressure gradients. 

For linear elastic fracture problems crack advance can be monitored by 
specifying a critical value of a quantity, K, termed the stress intensity Jactor* 
which characterises the stress field in the vicinity of the crack tip according 
to(20) 

a = KJ(())/v(21Tr) +terms of order rOo (12.14) 

A separate K parameter exists for each fracture mode, designated by KJ, 
KJ1 and KIll respectively and they are functions only of geometry and 
loading conditions. A crack in any mode is then assumed to propagate when 
K attains a critical value Kc which is treated as a material parameter. 

We now seek a similar criterion for elasto-plastic material behaviour. The 
most widely accepted principle in present use is the so-called J contour 
integral attributed to Rice(211 and which was originally formulated for non
linear elastic applications. The J integral is defined to be 

J 
JUt 

J = wdy-Ti-dS, 
r dx 

(12.15) 

for a crack aligned in the x direction. Here r is any contour from the lower 
crack face leading anticlockwise around the crack tip to the upper face, 
S is the path length around this contour and Ttduj is the work contribution 

* An excellent introduction to fracture mechanics is provided in Refs. 19 and 24. 
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Fig. 12.9 Basic modes of fracture. 

of traction components Tt on r moving through displacements dUj. The 
term w is the strain energy density defined as 

The J integral is independent of the choice of path r provided that the 
faces ofthe crack are stress free. 

For Mode I opening in a strain-hardening nonlinear elastic material the 
near tip solution for the stress, strain and displacement can be shown to be 
of the form(22-241 

where 

I 
a = C----a(O) 

rl/(N+l1 

I 
Ep = C----€(O) 

r N /(N+lI 

II = Cr 1/(N+ll u(O), 

_ ( JE )ll(N+l) 
C - . 

ay2[ 

(12.17) 

(12.18) 
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The term N is a constant which measures the strain hardening of the material, 
E the elastic modulus, ay the stress denoting the limit of linearity and I is a 
tabulated constant whose value depends on N. 

For loading situations, nonlinear elastic behaviour is identical to that of a 
material obeying the laws of 'deformation' plasticity(25) in which the current 
stiffness is a function only of the current state of deformation and not of the 
loading path by which this condition has been reached. Furthermore for 
monotonic loading, experience indicates that there is no significant difference 
between solutions obtained by use of 'deformation' theories and the incremen
tal theory adopted in Chapter 7. By this argument it is concluded that 
expressions (12.17) and (12.18) are applicable to e1asto-plastic solids. Conse
quently crack propagation in elasto-plastic materials is governed by a critical 
value of the J integral. 

One of the difficulties of numerical fracture studies is that a reasonably 
accurate prediction of the stress field in the vicinity of the crack tip is required. 
This is a computationally expensive process for elasto-plastic problems and 
in some instances economies can be made by use of special crack tip elements. 
For example, in Mode II deformation under plastic conditions, a shear strain 
singularity of order l/r develops, which has been modelled by Levy e! a1.(26) 

by coalescing two nodes of a linear quadrilateral isoparametric element and 
treating their displacements independently. This approach has also been 
employed by Rice et al.(27) 

12.4.3 Coupled-field problems 
The transient analysis of many engineering systems involves the formu

lation of the semi-discrete coupled-field equations of motion which are then 
solved by a time-stepping procedure. (28) Coupled-field equations involving 
plasticity arise in the modelling of structure-fluid interaction, soil-fluid 
interaction, structure-structure interaction, etc. There are two main sources of 
difficulty in solving such problems: 

(i) The isolated fields may display quite different response characteristics 
which may only' be analysed efficiently by different time integration 
algorithms and/or different time steps. 

(ii) Most engineering software has been developed for the treatment of 
single-field problems. The term 'partitioned transient analysis pro
cedures' has been used to describe methods which allow the direct time 
integration of the entire equations to be performed by either sequential 
or parallel execution of single-field analyzers. 

We have discussed partitioned procedures for structural Gynamic problems 
in Chapter II. We described an implicit-explicit partition through which 
meshes that exhibit high (low) frequency response charactcristics are treated 
by implicit (explicit) integration formulae. Park(29) has recently extended thc 
approach described in Chapter 11. 
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Park et al. (301 have studied implicit-implicit partitions in certain types of 
fluid-structure interaction problems. The solution of these coupled-field 
equations was obtained by a sequential execution of fluid and structural 
analyzers which gave rise to the term 'staggered solution procedures.' 

Hughes(311 has summarised recent work on transient fluid-structure 
interaction problems. In particular he mentions work on procedures known 
as mixed, or arbitrary, Lagrangian-Eulerian methods. 

In recent work on soil liquefaction problems, Zienkiewicz et a7.(321 have 
devised a model which couples the soil and pore-fluid behaviour during earth
quakes. Pore pressure build up and pore water migration are both accurately 
modelled. 

Many other coupled-field problems involving elasto-plastic behaviour have 
been reported in the literature. It should however be emphasised that care 
should be taken in considering the stability of such schemes. 

12.4.4 Elasto-plastic and geometrically nonlinear analyses of plates and 
shells 

The linear and nonlinear finite element analysis of plates and shells has 
attracted much attention in the last decade. Two basic approaches have been 
adopted: 

(i) The classical procedure 

Here a plate or sheII theory is used as a basis for the finite element 
formulation. Let us briefly summarise such an approach. We begin 
with the field equations of the three-dimensional theory and make 
various assumptions which lead to the plate or shell theory. In the 
reduction from three to two dimensions we include an analytical 
integration over the thickness. We then base our finite element dis
cretisation process on the plate or sheII theory. The surface geometry 
(in the case of shells) and the field variables are approximated using 
discrete nodal values and suitable interpolation functions. Integration 
of the various element stiffness and force terms is carried out over the 
reference surface. Stresses may then be obtained from the stress 
resultants. Examples of such an approach include the simple facet 
element and the many elements derived from classical'thin plate theory, 
Mindlin/Reissner plate theory, shallow shell theory or even higher order 
shell theories. (33,341 There are very many examples of the application of 
the classical procedures in nonlinear finite element analysis of plates 
and shells. We include a brief sample in the list of references to this 
chapter. (35-3S) For elasto-plastic problems many research workers 
express the yield function in terms of the stress resultants (cf. the non
layered approach in Chapter 9). For example, Crisfield(39-441 uses a 
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modified Ilyushin yield criterion expressed in terms of the bending 
moments [M x, My, M Xy)T and the membrane forces [N x, Ny, N xylT. 
To allow for the gradual spread of plasticity over the plate or shell 
thickness, a modified classical procedure may be adopted in which 
integration through the thickness is performed numerically during the 
finite element stiffness and force evaluation rather than analytically 
prior to the finite element discretisation. Gauss-Legendre, Lobatto 
and the mid-ordinate rules are frequently used for this purpose. To 
allow for geometrically nonlinear effects, total or updated Lagrangian 
approaches are adopted. (45-5.51 

(ii) Ahmad and related elements 
Here isoparametric elements with independent rotational and dis
placement degrees of freedom are used. This concept originally intro
duced by Ahmad et al.(561 was later extended to allow for the linear 
analysis of thin as well as moderately thick shells by Zienkiewicz 
et al.(571 by the use of the reduced integration technique.* 

Ahmad elements were originally developed because of the computational 
difficulties encountered in the use of the usual three-dimensional elements 
for the analysis of plates and shells. In the three-dimensional elements the 
stiffness coefficients corresponding to the transverse displacement degrees of 
freedom are very much larger than those corresponding to the longitudinal 
displacements. Erroneous strain energy corresponding to the normal stresses 
in the thickness direction are also introduced. Both of these difficulties are 
overcome in Ahmad elements. Normals to the plate or shell reference surface 
before deformation are assumed to remain straight but not necessarily 
normal to the reference surface after deformation. Furthermore, the normal 
stresses in the direction of the shell thickness are ignored and suitably 
modified constitutive equations are adopted. 

Various nonlinear problems have been solved using Ahmad shell elements 
by Ramm(671, Krakeland(681, Bathe and Bolourchi(691 and others(70-731. As 
in the modified classical procedures, to allow for the gradual spread of 
plasticity over the plate or shell thickness, numerical integration techniques 
are adopted. For geometrically nonlinear behaviour both total and updated 

• The Mindlin plate elements described in Chapters 6 and 9 are simply plate versions 
of the Ahmad elements in which integration has been carried out analytically through 
the plate thickness. Much work on reduced and selective integration techniquesl • 8 - 6.) 

eventually led to the recognition that the use of selective integration techniques is 
equivalent to the use of a special type of mixed formulation. 16G) Defects in the Ahmad 
elements have now been widely acknowledged and the use of the 9-node heterosis Mind
lin plate element and the 16-node cubic Ahmad element are usually recommended. 
Other Ahmad/Mindlin C(O) elements should be used with caution as they are known to 
give overstiff solutions for thin plates and shells and to develop mechanisms (zero 
energy modes) or near mechanisms (artificially low energy modes) when reduced or 
selective integration is used. 
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Lagrangian schemes have been used. Special techniques have been incorpor
ated to allow for large rotations in the total Lagrangian formulations. (67-69) 

The Ahmad shell concept has been developed further by its originator 
Irons with the introduction of the Semiloof element.(901 Irons adopted a 
convenient nodal configuration involving rotational degrees of freedom at 
'Loof' nodes on the curved boundaries of the element. By imposing a series 
of constraints to eliminate transverse shear effects (reminiscent of the discrete 
Kirchhoff hypothesis), a highly effective thin shell element is obtained. 
Various research workers(74-76) have successfully extended this work into the 
nonlinear range. 

Both classical and Ahmad procedures may be used as a basis for the 
nonlinear analysis of reinforced concrete plates and shells using the layering 
concept described in Chapter 9. Special constitutive relationships are required 
to represent the concrete and steel reinforcing bars are treated as a 'smeared' 
layer with uni-directional elasto-plastic properties. Much work has been 
completed in this area. (77-85) 

Elasto-viscoplastic plates and shells are easily developed using the concepts 
described in Chapters 8 and 9.(86",87) 

12.5 Equation solving techniques 

12.5.1 Standard and modified Newton method 
Before considering some alternative nonlinear solution procedures which 

may be used in elastoplastic finite element analysis we review the techniques 
described earlier. 

As we have already seen, most elasto-plastic finite element programs are 
simply extensions of elastic finite element programs with linearised load 
increments. Some form of iterative procedure is usually adopted to dissipate 
the out-of-balance nodal forces. 

The standard and variety of modified Newton methods were described 
earlier in Part I. Recall that the standard Newton method involves iterations 
in which 

(12.19)* 

where d is the vector of nodal displacements and the equations ",(d) = 0 
express a force balance (internal forces = external forces; either for an 
increment of loading or for the whole applied load). Th~ matrix K in the 
standard Newton method is the Jacobian of "'; which is the tangential 
stiffness matrix KT = [a",(d(I)/ad] evaluated at the displacements described 
by d(j). 

The modified Newton method works with a variety of approximations to 
K, the most simple of which is the initial elastic stiffness matrix K 0 evaluated 
at the first iteration of the first load increment. 

* The superscripts denote the iteration number. 
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We have adopted standard and modified Newton methods throughout 
this text as they are the most widely used approaches. Though they work 
well they do have certain disadvantages. The initial stiffness method is slow 
to converge in cases in which there is a high degree of nonlinearity. The 
modified Newton methods provide better convergence properties but they 
diverge during elastic unloading and they can lead to ill-conditioned or 
singular Jacobian matrices K near the limit load. 

Newton methods are sometimes employed with a slight modification 
during an iteration in which 

K(t) 6.d(tl = ",(t), 

and in which the new displacement vector is given as 

d(t+ll = d(i)+a(I)l:ld(i), 

(12.20) 

(12.21) 

where we could take a(i) as much less than I for safety or more than 1 for more 
rapid convergence. Nayak(88) introduced an acceleration technique in which 
ali) is replaced by a diagonal matrix. Basu (89) later simplified this technique. 

Although the modified Newton methods with fixed values of a(l) is em
ployed by certain analysts, it has been suggested(90) that we should reject it 
in favour of a modified Newton with a line search which involves finding a 
value of a(O which minimises the total potential energy 7T(d(f+l» or the 
value of 

(12.22) 

12.5.2 Quasi-Newton method 
Over the past twenty years there has been a rapid development of com

puter-oriented, sequential search methods in the fields of optimisation and 
mathematical programming. Of these techniques, the variable metric (Quasi
Newton) method and the method of conjugate gradients show the greatest 
potential in nonlinear finite element analysis. 

The Quasi-Newton method was introduced to finite element computations 
by Matthies and Strang. (91) The main idea is to update the matrix K in a 
simple way after each iteration, rather than to recompute it entirely as in the 
standard Newton method or leave it unchanged as in the modified Newton 
method. Here we consider the update, known as the Broyden-Fletcher
Goldfarb--Shanno (BFGS). It is most conveniently written in terms of K(i+l) 

rather than K(O and has the form 

(12.23) 

The indicated matrix multiplications are never carried out in the computer 
implementation; instead v(O and w(O are stored and used only in computing 
the new search direction 

(12.24) 
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A line search of the form given in (12.21) is adopted. The BFGS formulae 
for 1/(0 and w(tJ are 

(12.25) 

and 

(12.26) 

where 

and 

The method has been successfully implemented and used by Matthies and 
Strang(91) and Geradin and Hogge(92) for both static and transient dynamic 
nonlinear problems. The stability of BFGS with respect to unloading has 
been emphasised by Matthies and Strang.(9l) A related method by Crisfield(93) 
also shows much promise. 

Rather than work with the inverse of K(t) as given in (12.23), Geradin and 
Hogge(92) work with the update formula 

y (Il { y (j) }T 
K(j) = K(I-l) +---

{y(ll}T 15(0 

and use a frontal solution scheme. 

12.5.3 Conjugate gradient methods 

{K(H) J(fl}{K(t-l) J(J)}T 

{J(iJ}T K(j-l) 15(/) 

In the conjugate gradient(94) algorithm we take 

dU+1) = d(tJ+a(tJJ(iJ, 
where 

(12.27) 

(12.28) 

(12.29) 

in which a(t) is chosen using a line search with the criterion that the total 
potential energy 1T(d(t+l» should be minimised. 

Initially, f3(O) is set to zero. We list two possible values for flU): 

(i) The Hestenes-Stiefel(94) (Fletcher-Reeves(95» algorithn 

{",(O F ",(t) 
f3(!) = -----

{",(t-llF ",(t-l) 

(ii) The Polak-Ribiere(96) algorithm 

{",(t)}T y(i) 
fl(j) = -----

{",(t-l)}T ",(i-I) 

(12.30) 

(12.31) 
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The method, which requires modest computer core requirements, has been 
improved by scaling and other techniques. (97-99) The Conjugate-Newton 
method of Irons(100) is also a development of the basic conjugate gradient 
algorithm. 

12.5.4 Other useful solution techniques 
Among the remaining solution procedures, dynamic relaxation (DR) 

methods are quite popular. The main idea in DR originated from the obser
vation that with about 90% of critical damping, an equivalent transient 
dynamic analysis rapidly converges to the steady state, static solution. Recent 
modifications(101-103) of the method have concentrated on finding improved 
replacements for the mass matrix M and the damping matrix C which are 
used in DR. Although DR methods are generally not as powerful as the 
various Newton and conjugate gradient methods, they require very little 
computer core storage and explicit transient dynamic programs such as 
DYNPAK, described in Chapter 10, can be rapidly modified to be used as 
DR solvers for ad hoc .static problems when no other static program is 
available and results are urgently required. 

It is usually difficult to decide on the form of load incrementation to adopt 
for elasto-plastic problems and exploratory analyses are often required. 
The work of Bergan and Soreide(104) in this area appears to be quite promising. 

Schemes which work with local and global modes, several meshes or 
hierarchical representations(105-1111 for the displacements may also prove to 
be of prime importance in nonlinear finite element equation solving. 

12.6 Other enhancements in elasto-plastic analysis 

12.6.1 Substructuring and boundary element methods 
Economies can be made in the numerical solution of elasto-plastic problems 

by the use of substructuring techniques. A substructure analysis generally 
comprises the following steps. (l!2) 

• Separate groups of elements within the solid are collectively identified 
as substructures as indicated in Fig. 12.10. 

• For each substructure, the element stiffness matrices are assembled to 
give the global stiffness matrix of the substructure. 

• The equations relating to the internal nodal points (i.e. nodes not on 
the boundary) are eliminated. This process is known as condensation. 

• Solution of the system of resulting simultaneous equations is obtained 
by assembling all the individual substructures and any remaining 
elements which have not been associated with a substructure. This 
gives the nodal displacements and reactions for all nodal points on 
interfaces between substructures and for nodes of elements which are 
not related to any substructure. 
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• Return to the individual substructures to evaluate the displacements at 
interior nodes and finally obtain the element stresses. 

substructure I \ 
II 

III 

Fig. 12.10 Substructure analysis of elasto-plastic problems. 

The very nature of the frontal equation solution process described in Section 
6.4.12 makes the use of substructure techniques a simple affair, since, when 
the front has advanced into a structure to a certain position, the reduced 
frontal equations are essentially the condensed equations for a substructure 
corresponding to the part of the structure already considered. 

For elasto-plastic problems, the part of the structure which (by physical 
considerations or experience!) is known to remain elastic during the defor
mation process can be defined as one substructure and the remaining elements 
considered individually. Thus during incremental/iterative solution the sub
structure stiffness will remain unaltered, for solution by the tangential 
stiffness method, and the substructure assembly and condensation process 
described above need be performed only once with an equation resolution 
process, necessitating only reduction of the R.H.S. terms being followed 
thereafter. The individual elements not associated with the substructure 
(and which model the elasto-plastic behaviour) are treated in the normal way 
as described in Chapter 7. 

This approach can result in considerable computational economies, 
particularly if the mesh subdivision within the substructure is a fine one. It 
can be argued that a fine mesh subdivision is not warranted for regions where 
elastic behaviour is anticipated, but for structures which are to be subjected 
to more than one type of loading such an optimal mesh grading may not be 
possible. For example, with reference to Fig. 12.10, two stparate loadings 
may cause plastic yielding in substructures II and III respectively and 
consequently a fine mesh grading within each of these regions cannot be 
avoided. 

An extension of the above process is afforded by the use of the boundary 
integral method. (113-115) The boundary integral procedure requires' trial 
functions which satisfy the governing equations directly and then attempt to 
satisfy the boundary conditions by a collocation, least-squares or Galerkin 
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procedure. In order to find trial functions which satisfy the governing 
equations we are, at present, generally confined to linear elastic situations. 
Thus for the solution of e1asto-plastic problems a coupled approach can be 
employed(1l3.115) with the elastic region of the structure being modelled by 
boundary elements and conventional finite elements employed to treat the 
elasto-plastic zones. Such direct coupling leads to nonsymmetric matrices 
which is acceptable if the equation set is dominated by the boundary integral 

• • equations. 
This approach promises efficient numerical solutions particularly for cases 

of limited yielding in three-dimensional solid~ where the surface area/volume 
ratio is relatively small. The process can also be used to advantage in infinite 
domain structures such as rock mass problems or soil/structure interaction 
problems with boundary elements being employed to model the exterior 
domain. 

12.6.2 Interactive computing 
The solution of elasto-plastic problems inevitably requires some degree of 

insight into the structural behaviour before choice of solution parameters, 
such as load increment sizes, can be made. Even then it is difficult, if not 
impossible, to specify the most suitable values of load increments, tolerance 
factors for each load case and also choice of the optimal solution process 
(e.g. initial stiffness, tangential stiffness or some combined algorithm) is 
equally difficult to arrive at. 

To this end, the developments which are currently taking place in inter
active computing will become increasingly important. Here we envisage the 
situation where the results for a particular load increment are held in core 
while the solution is scrutinized. Depending on the convergence character
istics, etc., the load increment size and convergence tolerance factor are then 
input and solution continued for a further increment. If required the non
linear solution process can be redefined at this stage changing, for example, 
from a tangential stiffness to an initial stiffness algorithm if collapse con
ditions are being approached. Furthermore if the numerical process did not 
converge in the previous increment, the calculations could be repeated for 
a smaller load increment size or a different solution algorithm. 

12.6.3 Computational techniques 
Many new and improved programming strategies are developing in 

connection with finite element software and the interested reader is directed 
to the work ofSchrem( 116.11 7) and others(1l8) who are active in this area. 

12.7 Concluding remarks 
Throughout this text we have described numerical techniques and com

puter codes for a variety of engineering applications. Treatment has been 
limited to situations where the finite element method can be used to provide 
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nonlinear solutions with a measure of confidence. In this final chapter we 
have attempted to indicate some areas of further study and here the applica
bility to design problems is not so clear. For example, for soils and concrete 
some divergence of opinion still exists as to selection of an appropriate 
material model. Indeed at the present time it is true to say that numerical 
solution capabilities are in advance of the knowledge of fundamental material 
behaviour. This is particularly true for dynamic problems where there is a 
scarcity of information on material response under transient conditions. 
In this respect it would appear that nonlinear finite element methods offer the 
possibility of conducting 'numerical experiments' to provide insight on 
material behaviour which could not be obtained by experiment alone. 
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Appendix! 

Instructions for preparing input data for 
one-dimensional problems 

In Part I of this text computer codes have been presented for the nonlinear 
analysis of several classes of one-dimensional problems. In Chapter 3 the 
data structure for the following applications was discussed: 

• Direct iteration solution of nonlinear quasi harmonic problems. 
• Use of the Newton-Raphson process for the solution of nonlinear 

quasi harmonic problems. 
• Nonlinear elastic applications. 
• Elasto-plastic material behaviour. 

In Chapter 4 the time transient phenomenon of one-dimensional visco
plasticity was discussed. In Chapter 5 solution techniques were presented 
for elasto-plastic beam bending problems. In this appendix user instructions 
for preparing input data for each of these applications are provided. 

A.l.l Program QVJTER for the solution of nonlinear one-dimensional 
quasiharmonic problems by direct iteration 

CARD SET I TITLE CARD (l2A6)-One card 

Cols. 1-72 Title of the problem-limited to 72 alphanumeric characters. 

CARD SET 2 CONTROL CARD (915)-One card 

Cols. 1-5 NPOIN 
6-10 NELEM 

11-15 NBOUN 

16-20 NMATS 
21-25 NPROP 

26-30 NNODE 
31-35 NINCS 

Total number of nodal points. 
Total number of elements. 
Total number of restrained boundary 
points-nodes at which the value of the 
unknown (e.g. temperature) is prescribed. 
Total number of different materials. 
Number of independent properties per 
material (= 1). 
Number of nodes per element (= 2). 
Number of increments in which the total 
'loading' is to be applied. 
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36-40 NALGO 

41-45 NDOFN 

Nonlinear solution process indicator 
(= l, for solution by direct iteration). 
Number of degrees of freedom per node 
(= l). 

CARD SET 3 MATERIAL CARDS (15, Fl5.5)-One card for each 
different material. Total ofNMATS cards (See Card Set 2). 

Cols. 1-5 JMATS Material identification number. 
6-20 PROPS(JMATS,l) The material coefficient, Ko in (2.27). 

CARD SET 4 ELEMENT CARDS (415)-One card for each element. 
Total ofNELEM cards (See Card Set 2). 

Cols. 1-5 JELEM Element number. 
6-10 LNODS(JELEM,I) 1st nodal connection number. 

II-15 LNODS(JELEM,2) 2nd nodal connection number. 
16-20 MATNO(JELEM) Material property number. 

NOTE: The two nodal connection numbers for an element can be taken in 
any order. 

CARD SET 5 NODAL COORDINATE CARDS (1I0,FI5.5)-One card 
for each node. Total ofNPOIN cards (See Card Set 2). 

Cols. l-IO JPOIN Node number. 
11-25 COORD(JPOIN) The x coordinate of the node. 

Note: The origin of the coordinate system may be arbitrarily located. 

CARD SET 6 RESTRAINED NODE CARDS (IIO,I5,FIO.5)-One card 
for each restrained node. Total ofNBOUN cards (See Card Set 2). 

Cols. 1-10 NODFX 
II-I5 ICODE(I) 
16-25 PRESC(l) 

Restrained node number. 
Condition of restraint( = I). 
The prescribed value of the nodal 
variable. 

CARD SET 7 APPLIED 'LOAD' CARDS (IlO,2FI5.5)-One card for 
each loaded element. 

Cols. 1-10 IELEM 
11-25 RLOAD(IELEM,I) 

26-40 RLOAD(IELEM,2) 

The element ·number. 
The applied load at the 1st node of the 
element. 
The applied load at the 2nd node of the 
element. 

Notes: I) The 1st and 2nd nodes must be taken in the order listed in Card 
Set 4. 

2) This card set must terminate with data for the highest numbered 
element whether it is loaded or not. 
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CARD SET 8 LOAD INCREMENT CONTROL CARDS (2I5,2FI5.5)
One card for each load increment. Total of NINCS cards (See Card Set 2). 

Cols. 1-5 NITER 

6-10 NOUTP 

11-25 FACTO 

26-40 TOLER 

Maximum number of iterations allowed 
for the 'load' increment. 
Output control parameter: 
I-Results output only after the first 

iteration and after convergence, 
2-Results output after each iteration. 
Applied 'load' factor for the increment
specified as a factor of the loading input 
in Card Set 7. 
Convergence tolerance factor.-The term 
TOLER in (3.21). 

Note: The applied loading factors are accumulative. If FACTO is specified 
as 0.6, 0.3, 0.3 for the first three 'load' increments, then the total 
loading acting during the third increment is 1.2 times that specified 
in Card Set 7. 

If the form of the material nonlinearity is to be changed, then FUNCTION 
VARIA must be modified in accordance with the process described in 
Section 3.9.1. 

A.l.2 Program QUNEWT for the solution of nonlinear one-dimeosional 
quasiharmonic problems by the Newton--Raphson process 

Data input for this application is identical to that described in Section A.I.I 
above with the following exceptions: 

CARDSET2 CONTROL CARD 

Cols.21-25 NPROP 

36-40 NALGO 

Number of independent properties per 
material (= 2). 
Nonlinear solution process parameter 
(= 2, for Newton-Raphson solution 
technique). 

CARD SET 3 MATERIAL CARDS (I5,2FI5.5)-One card for each 
different material. 

Cols. 1-5 JMATS 
6-20 PROPS(JMATS,I) 

21-35 PROPS(JMATS,2) 

Material identification number. 
The material coefficient Ko in (2.27). 
The term b in (2.27). 
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A.l.3 Program NONLAS for the solution of one-dimensional nonlinear 
elastic problems 

The input data for this application is again identical to that described in 
Section A.I.I with the following exceptions. The basic nodal variable is now 
the axial displacement. 

CARD SET 2 CONTROL CARD 

Cols.21-25 NPROP 

36-40 NALGO 

Number of independent properties per 
material( = 2). 
Nonlinear solution process indicator: 
1 or 2 Tangential stiffness algorithm. The 

element stiffnesses are recalculated 
for each iteration of the solution 
process. 

3 initial stiffness method. The stiff
nesses are calculated at the begin
ning of the solution process and 
maintained constant thereafter. 

4 Combined algorithm (Version 1). 
The element stiffnesses are recom
puted for the first iteration of each 
load increment. 

S Combined algorithm (Version II). 
The element stiffnesses are recom
puted for the second iteration of 
each load increment. 

CARD SET 3 MATERIAL CARDS (15,2FI5,5)-One card for each 
different material. 

Cols. 1-10 JMATS Material identification number. 
6-20 PROPS(JMATS,I) Elastic modulus, E. 

21-35 PROPS(JMATS,2) Cross-sectional area, A. 

A.l.4 Program ELPLAS for the solution of one-dimensional elastoplastic 
problems 

The input data for this application is again identical to that described in 
Section A.l.1 with the following exceptions. The basic nodal variable is the 
axial displacement. 

CARD SET 2 CONTROL CARD (915) 

Cols.21-25 NPROP 

36-40 NALGO 

Number of independent properties per 
material (= 4). 
Nonlinear solution process indicator: 
I or 2 Tangential stiffness algorithm. 



APPENDIX I 507 

3 Initial stiffness method. 
4 Combined algorithm with stiff

nesses recomputed for the 1 st 
iteration. 

5 Combined algorithm with stiff
nesses recomputed for the 2nd 
iteration. 

CARD SET 3 MATERIAL CARDS (15,4FI5.5)-One card for each 
different material. 

Cols. 1-5 JMATS 
6-20 PROPS(JMATS,I) 

21-35 PROPS(JMATS,2) 
36-50 PROPS(JMATS,3) 
51-65 PROPS(JMATS,4) 

Material identification number. 
Elastic modulus, E. 
Cross-sectional area, A. 
Uniaxial yield stress, ay. 

Linear strain-hardening parameter, H'. 

A.1.5 Program UNVIS for the solution of one-dimeosional elasto
viscoplastic problems 

The input data for this application is once again identical to that described 
in Section A. 1.1 with the following exceptions. The basic nodal variable is the 
axial displacement. 

CARDSET2 CONTROL CARD 

Cols.21-25 NPROP 

36-40 NALGO 

Number of independent properties per 
material (= 5). 
Nonlinear solution process indicator 
(= I, for Euler time stepping scheme). 

CARD SET 3 MATERIAL CARDS (l5,5F15.5)-One card for each 
diffe rent rna teri aI. 

Cols. 1-5 JMATS 
6-20 PROPS(JMATS,I) 

21-35 PROPS(JMATS,2) 
36-50 PROPS(JMATS,3) 
51-65 PROPS(JMATS,4) 
66-80 PROPS(JMATS,5) 

Material identification number. 
Elastic modulus, E. 
Cross-sectional area, A. 
Uniaxial yield stress, ay. 

Linear strain-hardening parameter, H '. 
Fluidity parameter, y. 

CARD SET 8 TIMESTEPPING PARAMETER CARD (3FI5.5)-One 
card. 

Cols. 1-15 TAUFT 

16-30 DTINT 

31-45 FTIME 

The factor T employed to limit the time
step length according to (4.38). 
The initial time step length (required to 
initiate the time stepping process. 
The factor kin (4.39). 
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CARDSET9 LOADINCREMENTCONTROLCARDS 

This card set is identical to Card Set 8, Section A.I.I where the term 
'iteration' is now replaced by 'timestep'. 

A.l.6 Program TIMOSH for the nonlayered elasto-plastic analysis of 
Timoshenko beams 

The input data for this application is identical to that described in Section 
A.l.l with the following exceptions. 

CARD SET 2 CONTROL CARD (915) 

Cols. 21-25 NPROP 

36--40 NALGO 

41--45 NDOFN 

Number of independent properties per 
material (=4) 
Nonlinear solution process indicator: 
1 or 2 Tangential stiffness algorithm. 
3 Initial stiffness method. 
4 Combined algorithm with stiffnesses 

recomputed for the 1st iteration. 
5 Combined algorithm with stiffnesses 

recomputed for the 2nd iteration. 
Number of degrees of freedom per node 
(=2). 

CARD SET 3 MATERIAL CARDS (15, 4FI5.5}-One card for each 
different material.. 

Cols. 6-20 PROPS(JMATS, 1) Flexural rigidity, EI. 
21-35 PROPS(JMATS,2) Shear constant, GAj1.5. 
36-50 PROPS(JMATS,3) Yield moment, Mo. 
51-65 PROPS(JMATS,4) Strain hardening parameter, H'. 

CARD SET 6 RESTRAINED NODE CARDS (110, 2(15, FlO.5)}-One 
card for each restrained node. Total of NBOUN cards. 

Cols. 11-15 ICODE(l) 

16-25 VALUE(I) 

26-30 ICODE(2) 

31--40 VALUE(2) 

Condition of restraint on nodal displace
ment, II'. 

{
O-NO displacement restraint. 
I-Nodal displacement restrained. 
The prescribed vaiue of nodal displace
ment, w. 
Condition of restraint on nodal rotation, O. 

{
O-NO rotation restraint. 
I-Nodal rotation restrained. 
The prescribed value of nodal rotation, O. 
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CARD SET 7 APPLIED LOAD CARDS (IlO, 4FI5.5)-One card for 
each loaded element. 

Cols. 1-10 JELEM Element number. 
11-25 RLOAD(JELEM,l) Transverse load applied at the first node. 
26-40 RLOAD(JELEM,2) Couple applied at the first node. 
41-55 RLOAD(JELEM,3) Transverse load applied at the second 

node. 
56-70 RLOAO(JELEM,4) Couple applied at the second node. 

Note: The last card should be that for the highest numbered element 
whether it is loaded or not. 

A.I.7 Program TIMLA Y for the layered elasto-plastic analysis of 
Timoshenko beams 

The input data for this application is identical to that described in Section 
A.1.6 with the following exceptions. 

CARD SET 2 CONTROL CARD (1015) 

Cols. 21-25 NPROP 

46-50 NLAYR 

Number of independent properties per ma
terial ( =4 + 2 x Total number of layers). 
Total number of layers. 

CARD SET 3 MATERIAL CARDS 

1st Card (15, 4FI5.5) 

Cols. 1-5 
6-20 

21-35 
36-50 
51-65 

NUMAT Material identification number. 
PROPS(NUMAT,I)Young's modulus, E. 
PROPS(NUMAT,2) Modified shear modulus, Gjl.5. 
PROPS(NUMAT,3)Yield stress, ay. 

PROPS(NUMAT,4)Strain hardening parameter, H'. 

2nd and subsequent cards (4FI5.5) 

Cols. 1-15 BRDTH(I) Breadth of the 1 st layer. 
Thickness of the I st layer. 
Breadth of the 2nd layer. 

16-30 THICK(I) 
31-45 BROTH(2) 

BROTH(NLA YR) Breadth of the last layer. 
THICK(NLA YR) Thickness of the last layer. 





Appendix!! 

Instructions for preparing input data for 
plane, axisymmetric and plate bending 

problems 

In this appendix user instructions are provided for the computer programs 
developed in Part II of this text. Chapter 7 dealt with elasto-plastic problems 
in two dimensions and in Chapter 8 the corresponding time-dependent 
situation of elasto-viscoplasticity was discussed. The elasto-plastic behaviour 
of plates in bending was considered in Chapter 9. 

A.2.1 Program PLANET for the elasto-plastic analysis of plane and 
axisymmetric solids 

CARD SET I TITLE CARD (l2A6)-One card. 

Cols. 1-72 Title of the problem-limited to 72 alphanumeric characters. 

CARD SET 2 CONTROL CARD (l1I5)-One card. 

Cois. 1-5 NPOIN Total number of nodal points. 
6--10 NELEM Total number of elements. 

ll-15 NVF1X Total number of restrained boundary 
points----where one or more degrees of 
freedom are restrained. 

16--20 NTYPE 

21-25 NNODE 

26-30 NMATS 
31-35 NGAUS 

Problem type parameter: 
I-Plane stress, 
2-Plane strain, 
3-Axial symmetry. 
Number of nodes per element: 
4-Linear quadrilateral element, 
8-Quadratic Serendipity element, 
9-Quadratic Lagrangian element. 
Total number of different materials. 
Order of integration formula for numeri
cal integration: 
2·-Two point Gauss quadrature rule, 
3-Three point Gauss quadrature rule. 

ill 
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36-40 NALGO 

41-45 NCRlT 

46-50 NINCS 

51-55 NSTRE 

Nonlinear solution parameter: 
I Initial stiffness method. The element 

stiffnesses are calculated at the begin
ning of the solution process and 
remain unchanged thereafter. 

2 Tangential stiffness method. The 
element stiffnesses are recalculated for 
every iteration of each load increment. 

3 Combined algorithm (Version I). The 
element stiffnesses are recalculated for 
the first iteration of each load in
crement only. 

4 Combined algorithm (Version /I). The 
element stiffnesses are recalculated for 
the second iteration of each load 
increment only. 

Yield criterion parameter: 
I-Tresca, 
2-Von Mises, 
3-Mohr-Coulomb, 
4--Drucker -Prager. 
Number of increments in which the total 
loading is to be applied. 
Number of stress components at a point: 
3-Plane stress or plane strain, 
4--Axial symmetry. 

CARD SET 3 ELEMENT CARDS (1lI5)-One card for each element. 
Total ofNELEM cards (See Card Set 2). 

Cols. 1-5 NUMEL Element number. 
6-10 MATNO(NUMEL) Material property number. 

11-15 LNODS(NUMEL,I) 1st Nodal connection number. 
16-20 LNODS(NUMEL,2) 2nd Nodal connection number. 

51-55 LNODS(NUMEL,9) 9th Nodal connection number. 

Notes: 1) Columns 31-55 remain blank for iinear 4-noded elements. 
2) Columns 51-55 remain blank for 8-noded elements. 
3) The nodal connection numbers must be listed in an anti-clockwise 

sequence, starting from any corner node. 

CARD SET 4 NODE CARDS (J5,2FIO.5}---One card for each node whose 
coordinates are to be input. 



Cols. 1-5 
6-15 

16-25 
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IPOIN 
COORD(IPOlN,I) 
COORD(IPOlN,2) 

Nodal point number. 
x (or r) coordinate of the node. 
y (or z) coordinate of the node. 
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Notes: 1) The total number of cards in this set will generally differ from 
NPOIN (see Card Set 2) since for quadratic elements whose sides 
are linear, it is only necessary to specify data for corner nodes, 
intermediate nodal coordinates being automatically interpolated 
if on a straight line. 

2) For Lagrangian elements the coordinates of the 9th (central) node 
are never input. 

3) The coordinates of the highest numbered node must be input 
regardless of whether it is a midside node or not. 

CARD SET 5 RESTRAINED NODE CARDS (IX,I4,5X,I5,5X,2FIO.5)
One card for each restrained node. Total ofNVFIX cards (See Card Set 2). 

Cols. 2-5 NOFIX(IVFIX) Restrained node number. 
II-IS IFPRE Restraint code: 

01 Nodal displacement restrained in the 
x (or r) direction, 

10 Nodal displacement restrained in the 
y (or z) direction, 

II Nodal displacement restrained in both 
coordinate directions. 

21-30 PRESqIVFIX,1) The prescribed value of the x (or r) 
component of nodal displacement. 

31--40 PRESqIVFIX,2) The prescribed value of the y (or z) 
component of nodal displacement. 

CARD SET 6 MATERIAL CARDS 
6(a) CONTROL CARD (l5)-One card. 

Cols. 1-5 NUMAT Material identification number. 

6(b) PROPERTIES CARDS (7FIO.5}-One card for each different material. 

Cols. 1-10 PROPS(NUMAT,I) Elastic modulus, E. 
11-20 PROPS(NUMAT,2) Poisson's ratio, v. 

21-30 PROPS(NUMA T,3) Material thickness, t (leave blank for plane 
strain and axisymmetric problems). 

31-40 PROPS(NUMAT,4) Mass density, p. 

41-50 PROPS(NUMAT,5) Uniaxial yield stress, ay (or cohesion c 

for Mohr-Coulomb or Drucker-Prager 
materials). 

51--60 PROPS(NUMAT,6) Strain hardening parameter, H'. 
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61-70 PROPS(NUMAT,7) Friction angle <p (measured in degrees) for 
Mohr-Coulomb and Drucker-Prager 
materials only). 

Note: This card set to be repeated for each different material. Total of 
NMATS card sets (See Card Set 2). 

CARD SET 7 LOAD CASE TITLE CARD (12A6)-One card. 

Cols. 1-72 TITLE Title of the load case-limited to 72 
alphanumeric characters. 

CARD SET 8 LOAD CONTROL CARD (315}-One card. 
Cols. 1-5 IPLOD Applied point load control parameter: 

o No applied nodal loads to be input, 
I Applied nodal loads to be input. 

6--10 IGRAV Gravity loading control parameter: 
o No gravity loads to be considered, 
I Gravity loading to be considered. 

11-15 lEDGE Distributed edge load control parameter: 
o No distributed edge loads to be input, 
1 Distributed edge loads to be input. 

CARD SET 9 APPLIED LOAD CARDS (15,2F1O.3}-One card for each 
loaded nodal point. 

Cols. 1-5 LODPT 
6--15 POINT(I) 

16--25 POINT(2} 

Node number. 
Load component in x (or r) direction. 
Load component iny (or z) direction. 

Notes: 1) The last card should be that for the highest numbered node 
whether it is loaded or not. 

2) For axisymmetric problems, the loads input should be the total 
loading on the circumferential ring passing through the nodal 
point concerned. 

3) lfIPLOD = 0 in Card Set 8, omit this set. 

CARD SET 10 GRAVITY LOADING CARD (2FlO.3}-Onecard. 

Cols. 1-10 THETA Angle of gravity axis measured from the 
positive y axis (see Fig. 6.7). 

11-20 GRAVY Gravity constant-specified as a mUltiple 
of the gravitational acceleration, g. 

Note: lfIGRA V = 0 in Card Set 8, omit this set. 

CARD SET 11 DISTRIBUTED EDGE LOAD CARDS 
I 1 (a) CONTROL CARD (15}-One card. 

Cols. 1-5 NEDGE Number of element edges on which 
distributed loads are to be applied. 
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ll(b) ELEMENT FACE TOPOLOGY CARD (415) 

Cols. 1-5 NEASS The element number with which the 
element edge is associated. 

6--10 NOPRS(I) 

~ 
List of nodal points, in an anticlockwise 

II-IS NOPRS(2) sequence, of the nodes forming the 
16-20 NOPRS(3) j element face on which the distributed load 

acts. 

Note: For linear 4-noded elements, Cols. 16--20 remain blank. 

II(c) DISTRIBUTED LOAD CARDS (6FIO.3) 

Cols. 1-10 PRESS(I,I) Value of normal component of distri
buted load at node NOPRS(1). 

11-20 PRESS(l,2) Value of tangential component of distri
buted load at node NOPRS(\). 

21-30 PRESS(2,1) Value of normal component of distri
buted load at node NOPRS(2). 

31-40 PRESS(2,2) Value of tangential component of distri
buted load at node NOPRS(2). 

41-50 PRESS(3,1) Value of normal component of distri
buted load at node NOPRS(3). 

51-60 PRESS(3,2) Value of tangential component of distri
buted load at node NOPRS(3). 

Notes: 1) For linear 4-noded elements, Cols. 41-60 remain blank. 
2) Subsets II(b) and l1(c) must be repeated in turn for every 

element edge on which a distributed load acts. The element edges 
can be considered in any order. 

3) If lEDGE = 0 in Card Set 8, omit this card set. 

CARD SET 12 LOAD INCREMENT CONTROL CARDS (2FIO.5,315)
One card for each load increment. Total of NINCS cards (see Card Set 2). 

Cols. 1-10 FACTO 

11-20 TOLER 

21-25 MITER 

26--30 NOUTP(i) 

Applied load factor for this increment
specified as a factor of the loading input 
in Card Sets 8 to 11. 
Convergence tolerance factoL-The term 
TOLER in (3.27). 
Maximum number of iterations allowed 
for the load increment. 
Parameter controlling output of results 
after I st iteration: 
O-No output, 
I-Output displacements, 
2-0utput displacements and reactions, 
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31-35 NOUTP(2) 

3-0utput displacements, reactions and 
stresses. 

Parameter controlling output of the 
converged results: 
O-No output, 
I-Output displacements, 
2-0utput displacements and reactions, 
3-0utput displacements, reactions and 

stresses. 

Note: The applied loading factors are accumulative. If FACfO is specified 
as 0.6, 0.3, 0.2 for the first three load increments, then the total 
loading acting during the third increment is 1.1 times that specified 
in Card Sets 8 to II. 

A.2.2 Program VISCOUNT for the elasto-viscoplastic analysis of plane 
and axisymmetric solids 

The input data for this application is identical to that described in Section 
A.2.1, for elasto-plastic problems, with the following exceptions. 

CARD SET 2 CONTROL CARD (1lI5) 

Cols.36-40 NALGO Equation solution parameter: 
I Explicit time stepping scheme (i.e. 

TIMEX = O-See Card Set 12), 
2 Implicit or Semi-implicit schemes 

(TIMEX =F 0). 

CARD SET 6(b) PROPERTIES CARDS (8FIO.5)-Two cards for each 
different material. 

Identical to Card Set 6(b), Section A.2.l. 
1st Card 
Cols. 1-70 

71-80 PROPS(NUMAT,8) Fluidity parameter, y. 

2nd Card 
Cols. 1-10 PROPS(NUMAT,9) The constant M in (8.8) or constant N in 

(8.9). 
11-20 PROPS(NUMAT,IO)Parameter controlling choice of the flow 

function: 
o Expression (8.8) to be used, 
1 Expression (8.9) to be used. 

CARD SET 12 TIMESTEPPING PARAMETER CARD (4FIO.3)-One 
card. 

Cols. 1-10 TIMEX Timestepping algorithm parameter, e in 
(8.10). 
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11-20 TAUFf 

21-30 DTINT 

31-40 FTIME 

The factor" employed to limit the time 
step length according to (8.29). 
The initial time step length (required to 
initiate the time stepping process). 
The factor k in (8.32). 

CARDSETI3 LOAD INCREMENT CONTROL CARDS 

This card set is identical to Card Set 12, Section A.2.1 where the term 
'iteration' is now replaced by 'timestep'. 

• 

A.2.3 Programs MINDLIN and MINDLA Y for the nonlayered and 
layered elasto-plastic analysis of Mindlin plates 

The input data for this application is identical to that described in Section 
A.2.I, for elasto-plastic plane and axisymmetric solids, with the following 
exceptions. 

CARD SET 2 (l1I5)-One card 

Cols.I6-20 NTYPE 

21-25 NNODE 

31-35 NGAUS 

41-45 NCRIT 

51-55 NLAPS 

Problem type parameter: 
5-for Heterosis element, 
O-for 4- or 8-node elements. 
Number of nodes per element: 
4-Linear 4-node quadrilateral element. 
8-Quadratic 8-node Serendipity element. 
9-Quadratic 9-node Lagrangian element 

or Heterosis element. 
2 for 4-node element, 
3 for 8-, 9-node and Heterosis element. 
(N.B. This is the integration rule to evalu
ate the flexural contribution to the clement 
stiffness matrix. Since selective integration 
is adopted a (NGAUS-l) integration is 
automatically used to evaluate the trans
verse shear contribution to the element 
stiffness matrix.) 
Yield criterion parameter: 
I-Tresca, 
2-Von-Mises. 
(Mohr-Coulomb and Drucker-Prager 
yield criteria are not included.) 
Total number of layers. 
(for program MINDLA Y only-in pro
gram MINDLIN leave blank.) 



518 FINITE ELEMENTS IN PLASTICITY 

CARD SET 5 RESTRAINED NODE CARDS (1 X, 14, 5X, 15, 5X, 3FIO.5) 
One card for each restrained node. Total of NVFIX cards. 

Cols.1l-15 IFPRE Restraint code: 
1 ()() Lateral displacement w restrained. 
010 Rotation Bx restrained. 
()() I Rotation By restrained. 
110 Lateral displacement wand rotation 

B x restrained, etc. 
21-30 PRESC(IVFIX,I) The prescribed value of the lateral nodal 

displacement w. 
31-40 PRESC(IVFIX,2) The prescribed value of the nodal 

rotation Bx. 
41-50 PRESC(IVFIX.3) The prescribed value of the nodal 

rotation By. 

CARD SET 6 MATERIAL CARDS 
6(b) PROPERTIES CARDS (7FIO.5)-One card for each different material. 

Cols.31-40 PROPS(NUMAT,4) Uniform distributed loading value. 
41-50 PROPS(NUMAT,5) Blank. 
51-60 PROPS(NUMAT,6) Uniaxial yield stress, ao. 
61-70 PROPS(NUMAT,7) Strain hardening parameter H'. 

CARD SET 6X CONVERGENCE CHECK CARDS 
6X(a) DISPLACEMENT CHECK CARD (5Il)-One card. 

Cols. 1 IFDIS 1 The displacement check IS to be 
employed. 

2 NCDIS(l) 1 Check based on norm involving w. 
3 NCDIS(2) 1 Check based on norm involving Bx. 
4 NCDIS(3) 1 Check based on norm involving By. 
5 NCDIS(4) I Check based on w, Bx and By. 

6X(b) RESIDUAL FORCE CHECK CARD (51l)-One card. 
Cols. 1 IFRES 1 The residual force check is to be 

employed. 
2 NCRES(l) 1 Check based on norm involving re-

sidual forces associated with w. 
3 NCRES(2) 1 Check based on norm involving re-

sidual forces associated with Bx. 
4 NCRES(3) 1 Check based on norm involving re-

sidual forces associated with By. 
5 NCRES(4) 1 Check based on norm involving re-

sidual forces associated with Iv, Bx 
and By. 

Note: A zero value for any item implies that the check is not being used. 
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CARD SET 8 LOAD CONTROL CARD (I5)-One card. 

Cols. 1-5 IPLOD Applied point load control parameter: 
o No applied nodal loads to be input. 
1 Applied nodal loads to be input. 

6-15 Blank. 

CARD SET 9 APPLIED LOAD CARDS (15, 3FlO.3)-One card for each 
loaded nodal point. 

Cols. 1-5 
6-15 

16-25 
26-35 

LODPT 
POlNT(I) 
POlNT(2) 
POlNT(3) 

Node number. 
Lateral nodal load. 
Nodal couple in xz plane. 
Nodal couple in yz plane. 

Omit CARD SETS 10, l1(a), ll(b) and l1(c). 





Appendix III 

Instructions for preparing input data for 
dynamic transient problems 

The program DYNPAK has been described in Section 10.6 and MIXDYN 
in Section 11.5. These programs perform large displacement or viscoplastic 
or elasto-plastic, transient dynamic analysis of plane stress/strain or axi
symmetric problems respectively. The format of the input data is identical 
for both programs. In this appendix user instructions for preparing input 
data are provided. 

CARD SET 1 DYNAMIC DIMENSIONING (4I5)-One card. 

Cols. 1-5 NPOlN 
6-10 NELEM 

11-15 NDOFN 

16-20 NMATS 

Total number of nodal points. 
Total number of elements. 
Number of degrees of freedom per node 
(= 2). 
Number of different material sets. 

CARD SET 2 TITLE CARD (lOA4}-One card. 

Cols. 1-40 Title of the problem-limited to 40 
alphanumeric characters. 

CARD SET 3 CONTROL CARD (l315)-One card. 

Cols. 1-5 NVFIX 

6-10 NTYPE 

11-15 NNODE 
16-20 NPROP 
21-25 NGAUS 
26-30 NDIME 
31-35 NSTRE 

Total number of nodal points with fixed 
degrees of freedom. 
Type of problem: 
= 1, Plane stress, 
= 2, Plane strain, 
= 3, Axisymmetric problem. 
Number of nodes per element. 
Number of material properties (= 11). 
Integration rule for stiffness matrix. 
Number of coordinate dimensions ( =2). 
Number of stress components (= 3 for 
plane stress/strain, = 4 for axisymmetric). 

521 
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36-40 NCRIT Yield criterion: 
= 1 - Tresca, 
= 2 - Von Mises, 
= 3 - Mohr-Coulomb, 
= 4 - Drucker-Prager. 

41-45 NPREV Indicator for the previous state to be 

46-50 NCONM 

51-55 NLAPS 

56-60 NGAUM 
61-65 NRADS 

read (= 1 for previous state, otherwise, 
= 0). 
Number of concentrated masses (~1 if 
concentrated mass present, otherwise, 
= 0). 
Indicator for large displacement analysis: 
= O-Elastic analysis, 
= l-Elasto-plastic small displacement 

analysis, 
= 2-Elastic large displacement analysis, 
Integration rule for mass matrix. 
= 0, Read (r, z) coordinates for nodes, 
= 1, Read (R, 0) coordinates for nodes 

for axisymmetric analysis. 

CARD SET 4 ELEMENT CARDS (11I5)-One card for each element, 
total of NELEM cards. The node numbers are read in anticlockwise sequence. 
The number of nodes depends upon the type of element. For four and eight 
noded elements read only four and eight nodes respectively. 

Cols. 1-5 IELEM Element number. 
6-10 MATNO Material identification number. 

11-15 LNODS(IELEM,I) 
16-20 LNODS(IELEM,2) 
21-25 LNODS(IELEM,3) 
26-30 LNODS(IELEM,4) 
31-35 LNODS(IELEM,5) Nodal connection numbers. 
36-40 LNODS(lELEM,6) 
41-45 LNODS(IELEM,7) 
46-50 LNODS(IELEM,8) 
51-55 LNODS(IELEM,9) 

CARD SET 5 NODAL COORDINATE CARDS (I5,2FIO.5)-One card 
for each node. Last nodal point (IPOIN = NPOIN) must be read at the end. 
Only corner and central nodes need to be specified. Midside nodes are inter
polated if not specified. For axisymmetric cases, (R, 0) values are read for 
NRADS = 1, and (r, z) coordinates are calculated in the program. 



Cols. 1-5 
6-15 

16-25 

APPENDIX III 

IPOIN 
COORD(IPOIN,I) 
COORD(lPOIN,2) 

CUrrent nodal point. 
x-coordinate. * 
y-coordinate. 
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CARD SET 6 RESTRAINED NODE CARDS (IX,I4,3X,211)-One card 
for each restrained node. Total of NVFIX cards. 

Cols. 2-5 IPOIN Restrained node number. 
9 IFPRE(IVFIX, I) Fixity in x-direction (= 0, Free; = I, 

Fixed). 
10 IFPRE(IVFIX,2) Fixity in y-direction (= 0, Free; = 1, 

Fixed). 

CARD SET 7 MATERIAL CARDS-Three cards for each different 
material, a total ofNMATS*3 cards. 

1st Card MATERIAL IDENTIFICATION CARD (15) 

Cols. 1-5 NUMAT Material identification number. 

2nd Card MATERIAL PROPERTIES CARD--(a) (8EIO.4) 
Cols. 1-10 PROPS(NUMAT,I) Young's Modulus, E. 

11-20 PROPS(NUMAT,2) Poisson's ratio, v. 

21-30 PROPS(NUMAT,3) Thickness for plane stress problem, t. 
31-40 PROPS(NUMAT,4) Mass density per unit volume, p. 

41-50 PROPS(NUMAT,5) Temperature coefficient, at. 

51-60 PROPS(NUMAT,6) Reference yield value 'Fo': 
Von Mises, Fo = uy, 

Fo = uy, 
Fo = c cos </>, 

Tresca, 
Mohr-Coulomb, 
Drucker-Prager, Fo = 6c cos </>1 

h/3(3 -sin </»). 
61-70 PROPS(NUMAT,7) Hardening parameter, H': 

ET 
H' =---, 

l-ETIE 

where ET is the hardening tangent modu-
lus, 

E is the tangent modulus, 
uy is the yield stress, 
c is the cohesion, 
</> is the friction angle. 

71-80 PROPS(NUMAT,8) Friction angle '</>'. 

• For axisymmetric problems x and yare replaced by rand z respectively (or Rand e 
if NRADS = I). 
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3rd Card MATERIAL PROPERTIES CARD-(b) (3EIO.4) 

Cols. 1-10 PROPS(NUMAT,9) Fluidity parameter, y. 
11-20 PROPS(NUMAT,IO)Exponent, S. 
21-30 PROPS(NUMAT,II) NFLOW code 

(NFLOW = I-Power law, 
NFLOW of- I-Exponential law). 

CARD SET 8 TIME INTEGRATION CONTROL CARD (lIl5)-One 
card. 

Cols. 1-5 NSTEP 
6-10 NOUTD 

11-15 NOUTP 

16-20 NREQD 

21-25 NREQS 

26-30 NACCE 

31-35 IFUNC 

36-40 IFIXD 

41-45 MITER 

Total number of time steps. 
Writes displacement and stress history of 
required points on tapes 10 and II 
respectively at NOUTD timesteps. 
Output for displacements and stresses at 
every NOUTP step (NOUTP .;;; 500). 
Number of nodes for selective output of 
displacements at NOUTD steps. 
Number of integration points for selective 
output of stresses at every NOUTP step. 
Number' of acceleration ordinates (If 
IFUNC of- 0, NACCE is not used, then 
leave. blank). 
Time function code: 
IFUNC = 0 Acceleration time history, 
IFUNC = 1 Heaviside function, !(t) = 

1.0, 
IFUNC = 2 Harmonic excitation, fit) 

= ao+bo sinwt. 
Indicator for excitation: 
IFIXD = 0, Horizontal acceleration read 

from tape 7, 
Vertical acceleration read 
from tape 12. 

IFIXD = I, Vertical acceleration read 
from tape 12, 

IFIXD = 2, Horizontal acceleration read 
from tape 7. (IfIFUNC of- 0 
IFIXD is not used, then 
leave blank.) 

Maximum number of iterations .. This 
variable is not used in DYNP AK, so 
leave blank. 



46-50 KSTEP 

51-55 IPRED 
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Number of steps after which the stiffness 
matrix is reformed. Not used in DYN
PAK, leave blank. 
= I Standard algorithm, 
= 2 Modified algorithm. 

CARD SET 9 TIME INTEGRATION PARAMETERS CARD (8FIO.3)
Two cards. 

1st Card 

Cols. 1-10 DTIME 
11-20 DTEND 
21-30 DTREC 
31-40 AALFA 

41-50 BEETA 

51-60 DELTA 

61-70 GAAMA 

71-80 AZERO 

2nd Card 

1-10 BZERO 
11-20 OMEGA 
21-30 TOLER 

Time step length. 
Time at the end of the excitation force. 
Time step of acceleration records. 
ct = Damping parameter, C = ctM, 
ct = 2tiWi' 
{l = Damping parameter, C = {lK. 
(ct+ {lwi2 = 2wdi' not used in DYNPAK) 
Newmark's integration parameter 
(S = 0.25 (y+0.5)2, not used in DYN
PAK). 
Newmark's integration parameter (y~0.5 
for stable solution, not used in DYN
PAK). 

Constants for harmonic excitation 
f(t) = ao+bo sinwt. 

Specified tolerance (Not used in DYN
PAK). 

CARD SET 10 CARD FOR NODAL POINTS FOR WHICH DIS
PLACEMENT HISTORY IS REQUIRED (16I5}-Total ofNREQD nodes. 

Cols. 1-5 NPRQD(l) 

6-10 NPRQD(2) 

11-15 

First nodal point at which displacement 
history is required. 
Second nodal point at which displacement 
history is required. 
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CARD SET 11 CARD FOR INTEGRATION POINTS FOR WHICH 
STRESS HISTORY IS REQUIRED (16I5)--Total of NREQS integration 
points. 

Cols. 1-5 NGRQS(I) 

6-10 NGRQS(2) 

11-15 

First integration point at which stress 
history is required. 
Second integration point at which stress 
history is required. 

CARD SET 12 IMPLICIT-EXPLICIT ELEMENT INDICATOR CARDS 
(1615). Number of cards depends on number of elements. For each 16 
elements one card is needed. In DYNPAK, INTGR(IELEM) is 2 for every 
element. 

INTG R(IELEM) = I, Implicit element. 
INTGR(lELEM) = 2, Explicit element. 

CARD SET 13 INITIAL DISPLACEMENT CARDS (I5,2FIO.5)-One 
card for each node. If all displacements are zero, read data for last node. 

Cols. 1-5 NGASH 
6-15 XGASH 

16-25 YGASH 

Nodal point. 
Initial x-displacement. 
1 nitial y-displacement. 

CARD SET 14 INITIAL VELOCITY CARDS (I5,2FIO.5)-One card for 
each node. If all velocities are zero, read data for last node. 

Cols. 1-5 
6-15 

16-25 

NGASH 
XGASH 
YGASH 

Nodal point. 
Initial x-velocity. 
Initial y-velocity. 

CARD SET 15 PREVIOUS LOAD STATE CARDS (I5,2FlO.3)-One 
card for one node, a total of NNODE cards. Data for the last nodal point 
should always be read even when it is not loaded. If NPR EV = 0 then 
omit this set of data. 

Cols. 1-5 NGASH 
6-15 XGASH 

16-25 YGASH 

Nodal point. 
Equivalent nodal load in x direction. 
Equivalent nodal load in y direction. 

CARD SET 16 PREVIOUS STRESS STATE CARD (l5,4FIO.3)-· One 
card for one integration point. Total of (NELEM*NGAUS*NGAUS) cards. 
If NPREV = 0 omit this set of data. 



Cols. 1-5 KGAUS 
6-15 STRESS(l) 

16-25 STRESS(2) 
26-35 STRESS(3) 
36-45 STRESS(4) 

APPENDIX HI 

Integration point. 
Initial stress, a", or ar. 

I nitial stress, a y or a z. 

Initial stress, y",. or Yrz. 

Initial stress, az or ao. 
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CARD SET 17 LOAD TITLE CARD (1OA4 )-One card. 

Cols. 1-40 Title of load applied-limited to 40 alphanumeric characters. 

CARD SET 18 LOAD INDICATOR CARD (415)-One card. 

Cols. 1-5 IPLOD 
6-10 IGRAV 

11-15 lEDGE 
16-20 ITEMP 

Point load indicator. 
Gravity load indicator. 
Edge load indicator. 
Temperature load indicator. 

CARD SET 19 POINT LOAD CARD (I5,2FIO.3)-One card for each 
node. Data for the last node must be specified at the end. If IPLOD = 0 then 
omit this set of data. 

Cols. 1-5 
6-15 

16-25 

LODPT 
POINT(l) 
POINT(2) 

Node number. 
Load in x-direction. 
Load in y-direction. 

CARD SET 20 GRAVITY LOAD CARD (2FIO.3)-One card only. If 
IGRAV = 0 then omit this set of data. 

Cols. 1-10 THETA 

11-20 GRAVY 

Angle of gravity axis to the positive y 
aXIs. 
Gravity constant. 

CARD SET 21 NUMBER OF PRESSURE EDGE CARD (15)-One 
card. If lEDGE = 0, then omit card sets 21 and 22. 

Cols. 1-5 NEDGE Number of loaded edges. 

CARD SET 22 PRESSURE CARDS-Two cards for each pressure loaded 
edge. 

1st Card PRESSURE NODES CARD (415)-One card for each edge. 
Total of NEDGE cards. 

Cols. 1-5 NEASS 
Cols. 6-10 NOPRS(I) 

II-IS NOPRS(2) 
16-20 NOPRS(3) 

Element number with edge load. 

} Edg,"od,,,,,d;n ,nt;cio,kw;" "q"'"co. 
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2nd Card PRESSURE CARD (6FIO.3)-One card for each edge. Total of 
NEDGE cards. A pressure normal to a face is assumed to be positive if it 
acts in a direction into the element. A tangential load is assumed to be 
positive if it acts in an anticlockwise direction with respect to the 10auedWW 
positive if it acts in an anticlockwise direction with respect to the loaded 
element. 

Cols. 1-10 PRESS(I,I) 
11-20 PRESS(2,1) 
21-30 PRESS(3,1) 
31-40 PRESS(I,2) 
41-50 PRESS(2,2) 
51-60 PRESS(3,2) 

Normal component of edge load for each 
node. 

~ Tangential component of edge load for 
j each node. 

CARD SET 24 TEMPERATURE CARDS (15, FIO.3)-One card for each 
node. The last card must be for the highest numbered node. If ITEMP = 0, 
omit this set of data. 

Cols. 1-5 NODPT 
6-15 TEMPE 

Node number. 
Nodal temperature. 

CARD SET 25 CONCENTRATED MASSES (I5,2FIO.3)-One card for 
each node. Total of NCONM cards. If NCONM = 0, omit this set of data. 

Cols. 1-5 IPOIN Current nodal point with concentrated 
mass. 

6-15 XCMAS Concentrated mass associated with the 
x-direction. 

16-25 YCMAS Concentrated mass associated with the 
y-direction. 



Appendix IV 

Sample input data and line printer output 
for one - and two-dimensional applications 

In this appendix input data and line printer output are provided for a 
selection of the numerical examples presented in the text. This information 
will be of assistance to readers who wish to implement the programs con
tained in the book on their own computer. For economy of space, presen
tation is limited to one example from each area of application. Also in some 
cases the line printer output is edited for the same reason. 

A.4.1 Solution of one-dimensional quasibarmonic problem by direct 
iteration. Example of Section 3.9.3, Fig. 3.3 

Input data 

1-D QUASIHARMONIC EXAMPLE , SECTION 3.9.3 , FIG. 3.3 
11 10 2 1 1 2 1 1 1 

1 10.0 
1 121 
223 1 
334 1 
445 1 
556 1 
667 1 
778 1 
8 8 9 1 
9 9 10 1 

10 10 11 1 
1 0.0 
2 1.0 
3 2.0 
4 3.0 
5 4.0 
6 5.0 
7 6.0 
8 7.0 
9 8.0 

10 9.0 
11 10.0 

1 1 0.0 
l' 1 1.0 
10 0.0 0.0 

20 1 '.0 0.5 
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Line printer output 

1-D QUASlHARMONIC EXAMPLE, SECTION 3.9.3 , FIG. 3.3 
NPOIN = 11 NELEM = 10 NBOUN = 2 NMATS = 1 
NPROP = 1 NNODE = 2 NINCS = 1 NALGO = 1 
NDOFN = 1 

MATERIAL PROPERTIES 
1 10.00000 

EL NODES MAT. 
1 1 2 1 
223 1 
334 1 
445 1 
556 1 
6 6 7 1 
7 7 8 1 
889 1 
9 9 10 1 

10 10 11 1 
NODE COORD. 

1 0.00000 
2 1.00000 
3 2.00000 
4 3.00000 
5 4.00000 
6 5.00000 
7 6.00000 
8 7.00000 
9 8.00000 

10 9.00000 
11 10.00000 

RES. NODE CODE PRES. VALUES 
1 1 0.00000 

11 1 1.00000 
ELEMENT NODAL LOADS 

1 0.00000 0.00000 
2 0.00000 0.00000 
3 0.00000 0.00000 
4 0.00000 0.00000 
5 0.00000 0.00000 
6 0.00000 0.00000 
7 0.00000 0.00000 
8 0.00000 . 0.00000 
9 0.00000 0.00000 

10 0.00000 0.00000 
IINCS = 1 NITER = 20 NOUTP = 1 FACTO = 0.100000E 01 TOLER = 0.500000E 00 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = O.OOOOOOE 00 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.100000E 01 
2 0.100oo0E 00 O.OOOOOOE 00 
3 0.200000E 00 O.OOOOOOE 00 
4 0.300000E 00 O.OOOOOOE 00 
5 0.4oo000E 00 O.OOOOOOE 00 
6 0.500000E 00 O.ooOOOOE 00 
7 0.600000E 00 O.OOOOOOE 00 
8 0.700000E 00 O.OOOOOOE 00 
9 0.800000E 00 O.OOOOOOE 00 

10 0.900000E 00 O.OOOOOOE 00 
11 0.100000E 01 0.100000E 01 

ELEMENT STRESSES PL. STRAIN 
1 O.OOOOOOE 00 O.OOOOooE 00 
2 O.ooOOOOE 00 O.OOOOOOE 00 
3 O.OOOOOOE 00 O.OOOOOOE 00 
4 O.OOOOOOE 00 O.ooOOOOE 00 
5 O.OOOOOOE 00 0.000000£ 00 



6 O. OOOOOOE 00 
7 O.OOOOOOE 00 
8 O. OOOOOOE 00 
9 O.OOOOOOE 00 

10 O.OOOOOOE 00 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
CONVERGENCE CODE = 
NODE DISPL. 

1 O.OOOOOOE 00 
2 0.260555E 00 
3 0.399999E 00 
4 O. 508276E 00 
5 0.599999E 00 
6 0.681025E 00 
7 O. 754400E 00 
8 0.821954E 00 
9 0.884886E 00 

10 0.944031E 00 
11 0.100000E 01 

ELEMENT STRESSES 
1 O.OOOOOOE 00 
2 O.OOOOOOE 00 
3 O.OOOOOOE 00 
4 O.OOOO~E 00 
5 O.OOOOOOE 00 
6 O.OOOOOOE 00 
7 O.OOOOOOE 00 
8 O.OOOOOOE 00 
9 O.OOOOOOE 00 

10 O.OOOOOOE 00 

APPENDIX IV 

O.OOOOOOE 00 
O.OOOOOOE DO 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
1 NORM OF RESIDUAL SUM RATIO = 
1 NORM OF RESIDUAL SUM RATIO = 
1 NORM OF RESIDUAL SUM RATIO = 
1 NORM OF RESIDUAL SUM RATIO = 
1 NORM OF RESIDUAL SUM RATIO = 
1 NORM OF RESIDUAL SUM RATIO = 
1 NORM OF RESIDUAL SUM RATIO = 
1 NORM OF RESIDUAL SUM RATIO = 
o NORM OF RESIDUAL SUM RATIO = 

REACTIONS 
-0.600000E 01 

O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.DOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
0.600000E 01 

PL.STRAIN 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 

0.706275E 02 
0.393376E 02 
0.983804E 01 
0.801219E 01 
0.472308E 01 
0.127390E 01 
0.974302E 00 
0.574815E 00 
0.153335E 00 

A.4.2 Solution of one-dimensional elasto-plastic problem. Example of 
Section 3.12.3, Fig. 3.9 

Input data 

1-D ELASTO-PLASTIC EXAMPLE, SECTION 3.12.3 ,FIG. 3.9 
11 10 2 2 4 2 16 3 1 

1 10000.0 1.0 5.0 1000.0 
2 10000.0 2.0 7.5 2000.0 

1 1 2 1 
2 2 3 1 
3 3 4 1 
4 4 5 1 
5 5 6 1 
6 6 7 2 
7 7 8 2 
8 8 9 2 
9 9 10 2 

10 10 11 2 
1 0.0 
2 1.0 
3 2.0 
4 3.0 
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5 
6 
7 
8 
9 

10 
11 
1 

11 
5 

10 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 
30 2 

4.0 
5.0 
4.0 
3.0 
2.0 
1.0 
0.0 

1 0.0 
1 0.0 

0.0 
0.0 
1.25 
0.25 
0.25 
0.25 
0.25 
0.25 

-3.5 
-0.25 
-0.25 
-0.25 
-0.25 
-0.25 
-0.25 
-0.25 
-0.25 
-0.25 

Line printer output 

10.0 
0.0 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 

1-D ELASTO-PLASTIC EXAMPLE, SECTION 3.12.3 ,FIG. 3.9 
NPOIN = 11 NELEM = 1 0 NBOUN = 2 NMATS = 2 
NPROP = 4 NNODE = 2 NINCS = 16 NALGO = 3 
NDOFN = 1 

MATERIAL PROPERTIES 
1 10000.00000 1.00000 5.00000 1000.00000 
2 10000.00000 2.00000 7.50000 2000.00000 

EL NODES MAT. 
1 121 
223 1 
334 1 
445 1 
556 1 
667 2 
7 7 8 2 
8 892 
9 9 10 2 

10 10 11 2 
NODE COORD. 

1 0.00000 
2 1.00000 
3 2.00000 
4 3.00000 
5 4.00000 
6 5.00000 
7 4.00000 
8 3.00000 
9 2.00000 

10 1.00000 
11 0.00000 

RES. NODE CODE PRES • VALUES 
1 1 0.00000 

11 1 0.00000 
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ELEMENT NODAL LOADS 
1 0.00000 0.00000 
2 0.00000 0.00000 
3 0.00000 0.00000 
4 0.00000 0.00000 
5 0.00000 10.00000 
6 0.00000 0.00000 
7 0.00000 0.00000 
8 0.00000 0.00000 
9 0.00000 0.00000 

10 0.00000 0.00000 
IINCS = 1 NITER = 30 NOUTP = 2 FACTO = 0.125000E 01 TOLER = 0.500000E 00 
ITERATION NUMBER = 1 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 0.629197E-08 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.416667E 01 
2 0.416667E-03 O.OOOOOOE 00 
3 0.833333E-03 O.OOOOOOE 00 
4 0.125000E-02 O.OOOOOOE 00 
5 0.166667E-02 O.OOOOOOE 00 
6 0.208333L-02 O.OOOOOOE 00 
7 0.166667E-02 O.OOOOOOE 00 
8 0.125000E-02 O.OOOOOOE 00 
9 0.833333E-03 O.OOOOOOE 00 

10 0.416667E-03 O.OOOOOOE 00 
11 O.OOOOOOE 00 -0.833333E 01 

ELEMENT STRESSES PL. STRAIN 
1 0.416667E 01 O.OOOOOOE 00 
2 0.416667E 01 O.OOOOOOE 00 
3 0.416667E 01 O.OOOOOOE 00 
4 0.416667E 01 O.OOOOOOE 00 
5 0.416667E 01 O.OOOOOOE 00 
6 0.416667E 01 O.OOOOOOE 00 
7 0.416667E 01 O.OOOOOOE 00 
8 0.416667E 01 O.OOOOOOE 00 
9 0.416667E 01 O.OOOOOOE 00 

10 0.416667E 01 O.OOOOOOE 00 

IINGS = 3 NITER = 30 NOUTP = 2 FACTO = 0.250000E 00 TOLER = 0.500000E 00 
ITERATION NUt'1BER = 1 
CONVERGENCE CODE = 1 NORfl OF RESIDUAL SUM RATIO = O. 490863E 01 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.583333E 01 
2 0.583333E-03 O.OOOOOOE 00 
3 O.116667E-02 D.OOODODE 00 
4 0.175000E-02 O.OOOOOOE 00 
5 0.233333E-02 O.OOOOOOE 00 
6 0.291667E-02 0.000000£ 00 
7 0.233333E-02 O.OOOOOOE 00 
8 O. 175000E-02 o.c)OOOOOE 00 
9 0.116667E-02 O.OOOOOOE 00 

10 0.583333E-03 O.OOOOOOE 00 
11 0.000000£ 00 -0.116667£ 02 

ELEMENT STRESSES PL,STRAIN 
1 0.507576E 01 0.757570E-04 
2 O.507576E 01 0.757576E-04 
3 0.507576£ 01 0.757576E-04 
4 O.507576E 01 0.757576E-04 
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5 0.507576E 01 
6 o. 583333E 01 
7 0.583333E 01 
8 0.583333E 01 
9 0.583333E 01 

10 0.583333E 01 
ITERATION NUMBER = 
CONVERGENCE CODE = 
NODE DISPL. 

1 O.OOOOOOE 00 
2 O. 608586E-03 
3 0.121717E-02 
4 0.182576E-02 
5 0.243434E-02 
6 o. 304293E-02 
7 0.243434E-02 
8 0.182576E-02 
9 0.121717E-02 

10 0.608586E-03 
11 O.OOOOOOE 00 

ELEMENT STRESSES 
1 0.509871E 01 
2 0.509871E 01 
3 0.509871E 01 
4 0.509871E 01 
5 0.509871E 01 
6 0.608586E 01 
7 0.608586E 01 
8 0.608S86E 01 
9 0.608586E 01 

10 0.608586E 01 
ITERATION NUMBER = 
CONVERGENCE CODE = 
NODE DISPL. 

1 O.OOOOOOE 00 
2 0.616238E-03 
3 O. 123248E-02 
4 0.184871E-02 
S 0.246495E-02 
6 0.308119E-02 
7 0.246495E-02 
8 0.184871E-02 
9 O. 123248E-02 

10 0.616238E-03 
11 O.OOOOOOE 00 

ELEMENT STRESSES 
1 0.510567E 01 
2 0.510567E 01 
3 0.510567E 01 
4 0.510567E 01 
5 0.510567E 01 
6 0.616238E 01 
7 0.616238E 01 
8 0.616238E 01 
9 0.616238E 01 

10 0.616238E 01 

etc. 

0.757576E-04 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.DOOOOOE 00 
O.OOOOOOE 00 

2 
1 NORM OF RESIDUAL SUM RATIO = 

REACTIONS 
-0.532828E 01 

O.OOOOOOE 00 
O.DOOOOOE 00 
O.OOOOOOE DO 
O.OOOOOOE 00 
O.DOOOOOE 00 
O.OOOOOOE 00 
O.DOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 

-0.121717E 02 
PL. STRAIN 

0.987144E-04 
0.987144E-04 
0.987144E-04 
0.987144E-04 
0.987144E-04 
O.DOOOOOE 00 
O.DOOOOOE 00 
O.DOOOOOE 00 
O.DOOOOOE 00 
O.OOOOOOE 00 

3 
o NORM OF RESIDUAL SUM RATIO = 

REACTIONS 
-0.517524E 01 

O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.DOOOOOE 00 
O.DOOOOOE 00 

. O. DOOOOOE 00 
O.DOOODOE 00 

-0.123248E 02 
PL.STRAIN 

0.105671E-03 
0.105671 E-03 
O.105671E-03 
0.105671E-03 
0.105671E-03 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 

0.147757E 01 

0.446758E 00 
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A.4.3 Solution of one-dimensional elasto-viscoplastic problem. Example 
of Section 4.12, Fig. 4.6 

Input dutu 

l-D ELASTO VISCO-PLASTIC EXAMPLE. SECTION 4.12 • FIG. 4.6 
2 1 1 5 2 3 1 
1 10000.0 1.0 10.0 
1 1 2 1 

1 0.0 
2 10.0 
1 0.0 
1 0.0 15.0 

0.05 0.025 
90 2 1.0 

Line printl'r output 

l-D ELASTO VISCO-PLASTIC EXAMPLE 
NPOIN = 2 NELEM = 1 NBOUN = 
NPROP = 5 NNODE = 2 NINCS = 
NDOFN = 1 

1 
EL 
1 

MATERIAL PROPERTIES 
10000.00000 
NODES MAT. 
121 

NODE COORD. 
1 0.00000 
2 10.00000 

1.00000 

RES.NODE CODE PRES. VALUES 
1 1 0.00000 

ELEMENT NODAL LOADS 

1.5 
0.1 

• SECTION 4.12 • 
1 NMATS = 
1 NALGO = 

10.00000 

1 0.00000 15.00000 

FIG. 
1 
3 

5000.0 

4.6 

5000.00000 

0.001 

0.00100 

TAUFT = 0.500000E-Ol DTINT = 0.250000E-Ol FTIME = 0.150000E 01 
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IINCS = 1 NSTEP = 90 NOUTP = 2 FACTO = 0.100000E 01 TOLER = 0.100000E 00 
TOTAL TIME = 0.000000£ 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.100000E 03 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.150000E 02 
2 0.150000E-Ol O.OOOOOOE 00 

ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 O.OOOOOOE 00 

TOTAL TIME = 0.250000E-Ol 
CONVERGENCE CODE = 1 NORM Of RESIDUAL SUM RATIO = 0.650000E 02 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.150000E 02 
2 0.162500£-01 O.OOOOOOE 00 

ELEMENT STRESSES PL.STRAIN 
1 0.150000E 02 0.125000E-03 

TOTAL TIME = 0.435714E-Ol 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.682500E 02 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.150000E 02 
2 0.170625E-Ol O.OOOOOOE 00 

ELEMENT STRESSES PL . STRAI N 
1 0.150000E 02 0.206250E-03 

TOTAL TIME = 0.650675E-Ol 
CONVERGENCE CODE = 999 NORM OF RESIDUM" SUM RATIO = 0.716625E 02 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.150000E 02 
2 0.179156E-Ol O.OOOOOOE 00 
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ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 0.291562E-03 

TOTAL TIME = 0.903564E-Ol 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.752456E 02 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -O.150000E 02 
2 0.188114E-Ol O.OOOOOOE DO 

ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 0.381141E-03 

TOTAL TIME = 0.120753E DO 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.790079E 02 
NODE DISPL. REACTIONS 

1 O.OOOOOOE DO -0.150000E 02 
2 0.197520E-Ol O.OOOOOOE 00 

ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 0.475198E-03 

TOTAL TIME = 0.158390E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.829583E 02 
NODE DISPL. REACTIONS 

1 O.OOOOOOE 00 -0.150DOOE 02 
2 0.207396E-Ol O.OOOOOOE 00 

ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 0.573958E-03 

TOTAL TIME = 0.207070E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.871062E 02 
NODE DISPL. REACTIONS 

1 O.DOOOOOE 00 -O.150000E 02 
2 0.217766E-Ol O.OOOOOOE 00 

ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 0.677655E-03 

TOTAL TIME = 0.274627E DO 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.865247E 02 
NODE DISPL. REACTIONS 

1 O.OOOOOOE DO -O.150000E 02 
2 O.228654E-01 O.DOOOOOE 00 

ELEMENT STRESSES PL.STRAIN 
1 0.150DOOE 02 0.786538E-03 

TOTAL TIME = 0.375962E 00 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.640271E 02 
NODE DISPL. REACTIONS 

1 O.DOOOOOE 00 -0.150000E 02 
2 0.239469E-Ol O.OOOOOOE 00 

ELEMENT STRESSES PL.STRAIN 
1 0.150000E 02 0.894694E-03 

TOTAL TIME = o. 527964E DO 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.230485E 02 
NODE DISPL. REACTIONS 

1 O.DOOOOOE 00 -O.150000E 02 
2 0.247473E-Ol O.OOOOOOE DO 

ELEMENT STRESSES PL. STRAIN 
1 0.150000E 02 0.974728E-03 

TOTAL TIME = 0.755969E DO 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = O.OOOOOOE 00 
NODE DISPL. REACTIONS 

1 O.DOOOOOE DO -O.150000E 02 
2 0.250354E-Ol O.OOOOOOE 00 

ELEMENT STRESSES PL.STRAIN 
1 0.150000E 02 0.100354E-02 
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A.4.4 Solution of elasto-plastic layered Timoshenko beam. Example of 
Section 5.5.6, Fig. 5.11 

Input data 

l-D EP TIMOSHENKO LAYERED BEAM EXAMPLE , SECTION 5.5.6 , FIG. 5.11 
11 10 2 1 17 2 14 2 2 6 
1 

210.0 53.8444 0.25000 0.0 
200.0 200.0 20.0 10.0 

40.0 10.0 40.0 10.0 
40.0 10.0 40.0 200.0 
20.0 

1 1 2 1 
2 2 3 1 
3 3 4 1 
4 4 5 1 
5 5 6 1 
6 6 7 1 
7 7 8 1 
8 8 9 1 
9 9 10 1 

10 10 11 1 
1 0.0 
2 300.0 
3 600.0 
4 900.0 
5 1200.0 
6 1500.0 
7 1800.0 
8 2100.0 
9 2400.0 

10 2700.0 
11 3000.0 
1 1 0.0 1 0.0 

11 1 0.0 1 0.0 
1 68.85000 0.00000 68.85000 0.00000 
2 68.85000 0.00000 68.85000 0.00000 
3 68.85000 0.00000 68.85000 0.00000 
4 68.85000 0.00000 68.85000 0.00000 
5 68.85000 0.00000 68.85000 0.00000 
6 68.85000 0.00000 68.85000 0.00000 
7 68.85000 0.00000 68.85000 0.00000 
8 68.85000 0.00000 68.85000 0.00000 
9 68.85000 0.00000 68.85000 0.00000 

10 68.85000 0.00000 68.85000 0.00000 
100 2 0.30 0.50 
100 2 0.20 0.50 
100 2 0.10 0.50 
100 2 0.10 0.50 
100 2 0.05 0.50 
100 2 0.05 0.50 
100 2 0.05 0.50 
100 2 0.05 0.50 
100 2 0.02 0.50 
100 2 0.02 0.50 
100 2 0.02 0.50 
100 2 0.02 0.50 
100 2 0.01 0.50 
100 2 0.01 0.50 
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Line printer output 

1-0 EP TIMOSHENKO LAYERED BEAM EXAMPLE, SECTION 5.5.6 , FIG. 5.11 

NPCIN = 11 NELEM = 10 NBOUN = 2 NMATS = 

NPROP = 17 NNODE = 2 NINCS = 14 NALGO = 2 

NDOFN = 2 NLAYR = 6 
MATERIAL PROPERTIES 

210.00000 
200.00000 
40.00000 
40.00000 
20.00000 

53.84440 
200.00000 

10.00000 
10.00000 

0.25000 
20.00000 
40.00000 
40.00000 

0.00000 
10.00000 
10.00000 

EL NODES MAT. 
1 121 
223 1 
334 1 
445 1 
5 5 6 1 
667 1 
7 7 8 1 
8 8 9 1 
9 9 10 1 

10 10 11 1 
NODE COORD. 

1 0.00000 
2 300.00000 
3 600.00000 
4 900.00000 
5 1200 . 00000 
6 1500 • 00000 
7 1800.00000 
8 2100.00000 
9 2400.00000 

10 2700.00000 
11 3000.00000 

200.00000 

RES.NODE CODE PRES. VALUES CODE PRES. VALUES 
0.00000 
0.00000 

1 1 0.00000 1 
11 1 0.00000 1 

ELEMENT NODAL LOADS 
1 68.85000 
2 68.85000 
3 68.85000 
4 68.85000 
5 68.85000 
6 68.85000 
7 68.85000 
8 68.85000 
9 68.85000 

10 68.85000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

68.85000 
68.85000 
68.85000 
68.85000 
68.85000 
68.85000 
68.85000 
68.85000 
68.85000 
68.85000 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 

IINCS = 1 NITER = 100 NOUTP = 2 FACTO = 0.j00000E 00 
ITERATION NUMBER = 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 0.113611E-07 
NODE DISPLACEMENTS REACTIONS 

TOLER = o. 500000E 00 

1 O.OOOOOOE 00 -0.206550E 03 0.000000£ 00 -0.102242E 06 
2 0.342210E 00 O.OOOOOOE 00 0.156214E-02 O.OOOOOOE 00 
3 0.972874£ 00 O.OOOOOOE 00 0.208286E-02 O.OOOOOOE 00 
4 0.161862£ 01 O.OOOOOOE 00 0.182250E-02 O.OOOOOOE 00 
5 0.208417E 01 O.OOOOOOE 00 0.104143E-02 O.OOOOOOE 00 
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6 0.225237E 01 O.OOOOOOE 00 -0.255548E-12 
7 0.208417E 01 O.OOOOOOE 00 -0.104143E-02 
8 0.161862E 01 O.DOOOOOE 00 -0.182250E-02 
9 0.972874E 00 O.OOOOOOE 00 -0.208286E-02 

10 0.342210E 00 O.OOOOOOE 00 -0.156214E-02 
11 O.DOOOOOE 00 -0.206550E 03 O.OOOOOOE 00 

ELEMENT STRESSES 
1 -0.743580E 05 0.185895E 03 
2 -0.247860E 05 0.144585E 03 
3 0.123930E 05 0.103275E 03 
4 0.371790E 05 0.619650E 02 
5 0.495720E 05 0.206550E 02 
6 0.495720E 05 -0.206550E 02 
7 0.371790E 05 -0.619650E 02 
8 0.123930E 05 -0.103275E 03 
9 -0.247860E 05 -0.144585E 03 

10 -0.743580E 05 -0.185895E 03 

O.OOOOOOE 00 
O.DOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
0.102242E 06 
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IINCS = 6 NITER = 100 NOUTP = 2 FACTO = 0.500000E-01 TOLER = 0.5000DOE 00 
ITERATION NUMBER = 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.464588E 01 
NODE DISPLACEMENTS REACTIONS 

1 O.OOOOOOE 00 -0.550800E 03 O.OOOOOOE 00 -0.272646E 06 
2 0.912561E 00 O.OOOOOOE 00 0.416571E-02 O.OOOOOOE 00 
3 0.259433E 01 O.OOOOOOE 00 0.555429E-02 O.OOOOOOE 00 
4 0.431631E 01 O.OOOOOOE 00 0.486000E-02 O.OOOOOOE 00 
5 0.555778E 01 O.OOOOOOE 00 0.277714E-02 O.OOOOOOE 00 
6 0.600632E 01 O.OOOOOOE 00 -0.645258E-13 O.OOOOOOE 00 
7 0.555778E 01 O.OOOOOOE 00 -0.277714E-02 O.DOOOOOE 00 
8 0.431631E 01 O.OOOOOOE 00 -0.486000E-02 O.OOOOOOE 00 
9 0.259433E 01 O.OOOOOOE 00 -0.555429E-02 O.DOOOOOE 00 

10 0.912561E 00 O.OOOOOOE 00 -0.416571E-02 O.DOOOOOE 00 
11 O.OOOOOOE 00 -0.550800E 03 O.DOOOOOE 00 0.272646E 06 

ELEMENT STRESSES 
1 -0.189331E 06 0.495720E 03 
2 -0.660960E 05 0.385560E 03 
3 0.330480E 05 0.275400E 03 
4 0.991440E 05 0.165240E 03 
5 0.132192E 06 0.550800E 02 
6 0.132192E 06 -0.550800E 02 
7 0.991440E 05 -0.165240E 03 
8 0.330480E 05 -0.275400E 03 
9 -0.660960E 05 -0.385560E 03 

10 -0.189331E 06 -0.495720E 03 
ITERATION NUMBER = 2 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 0.210144E-08 
NODE DISPLACEMENTS . REACTIONS 

1 O.DOOOOOE 00 -0.550800E 03 O.OOOOOOE 00 -0.265108E 06 
2 0.100758E 01 O.OOOOOOE 00 0.479915E-02 O.DOOOOOE 00 
3 0.285562E 01 O.DOOOOOE DO 0.602936E-02 O.OOOOOOE 00 
4 0.469637E 01 O.DOOOOOE DO 0.517672E-02 O.DOOOOOE 00 
5 0.600911E 01 O.OOOOOOE DO 0.293550E-02 O.OOOOOOE 00 
6 0.648140E 01 O.OOOOOOE 00 -0.118097E-12 O.OOOOOOE 00 
7 0.600911E 01 O.DOOOOOE 00 -0.293550E-02 O.OOOOOOE 00 
8 0.469637E 01 O.OOOOOOE 00 -0.517672&~02 O.DOOOOOE 00 
9 0.285562E 01 O.OOOOOOE DO -0.602936E-02 O.OOOOOOE 00 
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10 0.100758E 01 O.ooOOOOE 00 -0.479915E-02 
11 0.000000£ 00 -0.550800£ 03 0.000000£ 00 

ELEMENT STRESSES 
1 -0.190750£ 06 0.495720E 03 
2 -0.585581E 05 0.385560E 03 
3 0.405859E 05 0.275400£ 03 
4 0.106682£ 06 0.165240E 03 
5 0.139730E 06 0.550800£ 02 
6 0.139730£ 06 -0.550800E 02 
7 0.106682E 06 -0. 165240E 03 
8 0.405859E 05 -0.275400E 03 
9 -0.585581E 05 -0.385560£ 03 

10 -0.190750E 06 -0.495720E 03 

O.OOOOOOE 00 
0.265108E 06 

IINCS = 11 NITER = 100 NOUTP = 2 FACTO = 0.200000E-Ol TOLER = 0.500000E 00 
ITERATION NUMBER = 1 
CONVERGENC£ CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.149229£ 01 
NODE DISPLACEMENTS REACTIONS 

1 o.oboooo£ 00 -0.660960£ 03 0.000000£ 00 -0.287981£ 06 
2 0.486620£ 01 O.OOOOOOE 00 0.301397£-01 0.000000£ 00 
3 0.143031£ 02 0.000000£ 00 0.309826E-01 O.OOOOOOE 00 
4 0.235411£ 02 O.OOOOOOE 00 0.293260E-01 0.000000£ 00 
5 0.319556£ 02 O.OOOOOOE 00 0.260032E-Ol 0.000000£ 00 
6 0.358944£ 02 0.000000£ 00 0.210285E-09 0.000000£ 00 
7 0.319556E 02 0.000000£ 00 -0.260032E-01 O.OOOOOOE 00 
8 0.235411E 02 O.OOOOOOE 00 -0.293260E-01 O.OOOOOOE 00 
9 0.143031£ 02 0.000000£ 00 -0.309826£-01 O.OOOOOOE 00 

10 0.486620E 01 O.OOOOOOE 00 -0.301397E-Ol O.OOOOOOE 00 
11 0.000000£ 00 -0.660960E 03 O.OOOOOOE 00 0.287981E 06 

ELEM£NT STR£SSES 
1 -O.196000E 06 0.594864£ 03 
2 -0.401209E 05 0.462672E 03 
3 0.788519E 05 0.330480£ 03 
4 0.158167£ 06 0.198288E 03 
5 0.196000£ 06 0.660960£ 02 
6 0.196000E 06 -0.660960E"02 
7 0.158167£ 06 -0.198288E 03 
8 0.788519E 05 -O.330480E 03 
9 -0.401209E 05 -0.462672£ 03 

10 -0.196000E 06 -0.594864£ 03 
ITERATION NUMBER = 2 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.562938£ 10 
NODE DISPLACEMENTS REACTIONS 

1 0.000000£ 00 -0.656460£ 03 0.000000£ 00 -0.284525E 06 
2 -0.227149E 08 0.000000£ 00 -0.151432£ 06 O.OOOOOOE 00 
3 -0.681446E 08 O.OOOOOOE 00 -0.151432£ 06 0.000000£ 00 
4 -0.113574E 09 0.000000£ 00 -0.151432E 06 O.OOOOOOE 00 
5 -0.159004E 09 O.OOOOOOE 00 -0.151432E 06 O.OOOOOOE 00 
6 -0.163102E 09 O.OOOOOOE 00 0.124115E 06 O.OOOCOOE 00 
7 -0.126424E 09 O.OOOOOOE 00 0.120404E 06 O.OOOOOOE 00 
8 -0.903028E 08 O.ooOOOOE 00 0.120404E 06 0.000000£ 00 
9 -0.541817E 08 0.000000£ 00 0.120404E 06 O.OOOOOOE 00 

10 -0.180606E 08 O.OOOOOOE 00 0.120404E 06 O.OOOOOOE 00 
11 O.OOOOOOE 00 -0.656351E 03 O.OOOOOOE 00 0.284576E 06 

ELEMENT STRESSES 
1 0.719122E 13 0.589934E 03 
2 -0.390314E 05 0.457742E 03 
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3 0.784888E 05 0.327522E 03 
4 0.156624E 06 0.197302E 03 
5 -0.131161E 14 0.684992E 02 
6 0.196000E 06 -0.616594E 02 
7 0.156896E 06 -0.197302E 03 
8 0.787157E 05 -0.325057E 03 
9 -0.388044E 05 -0.458235E 03 

10 0.573122E 13 -0.590427E 03 
ITERATION NUMBER = 3 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.247769E 12 
NODE DISPLACEMENTS REACTIONS 

1 O.OOOOOOE 00 0.386547E 11 O.OOOOOOE 00 0.131941E 14 
2 -0.256689E 18 O.OOOOOOE 00 -0.171126E 16 O.OOOOOOE 00 
3 -0.770066E 18 O.OOOOOOE 00 -0.171126E 16 O.OOOOOOE 00 
4 -0.128344E 19 O.OOOOOOE 00 -0.171126E 16 O.OOOOOOE 00 
5 -0.179682E 19 O.OOOOOOE 00 -0.171126E 16 O.OOOOOOE 00 
6 -0.707142E 18 O.OOOOOOE 00 0.897579E 16 O.OOOOOOE 00 
7 0.559323E 18 O.OOOOOOE 00 -0.532688E 15 O.OOOOOOE 00 
8 o.399516E 18 O.OOOOOOE 00 -0.532688E 15 O.OOOOOOE 00 
9 0.239710E 18 O.OOOOOOE 00 -0.532688E 15 O.OOOOOOE 00 

10 0.799033E 17 O.OOOOOOE 00 -0.532688E 15 O.OOOOOOE 00 
11 O.OOOOOOE 00 0.316249E 09 O.OOOOOOE 00 -0.594731E 13 

ELEMENT STRESSES 
1 0.719122E 13 -0.381105E 11 
2 -0.195980E 06 -0.169380E 11 
3 -0.195887E 06 -0.846899E 10 
4 -0.195820E 06 0.197302E 03 
5 -0.131161E 14 0.684992E 02 
6 0.196000E 06 -0.616594E 02 
7 0.196011E 06 0.148207E 11 
8 0.195954E 06 0.211725E 10 
9 0.195971E 06 0.635174E 10 

10 -0.253560E 23 0.211725E 10 
ITERATION NUMBER = 4 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 0.576146E 14 
NODE DISPLACEMENTS REACTIONS 

1 O.OOOOOOE 00 0.386547E 11 O.OOOOOOE 00 0.131941E 14 
2 0.808314E 27 O.OOOOOOE 00 0.538876E 25 O.OOOOOOE 00 
3 0.808244E 27 O.OOOOOOE 00 -0.538923E 25 O.OOOOOOE 00 
4 -0.940584E 28 O.OOOOOOE 00 -0.627047E 26 O.OOOOOOE 00 
5 -0.116832E 25 O.OOOOOOE 00 0.125402E 27 O.OOOOOOE 00 
6 0.679753E 25 O.OOOOOOE 00 -0.125349E 27 O.OOOOOOE 00 
7 -0.395493E 26 O.OOOOOOE 00 0.125040E 27 O.OOOOOOE 00 
8 0.230105E 27 O.OOOOOOE 00 -0.123243E 27 
9 -0.133880E 28 O.OOOOOOE 00 0.112783E 27 

10 0.778935E 28 O.OOOOOOE 00 -0.519290E 26 
11 O.OOOOOOE 00 -0.198094E 21 O.OOOOOOE 00 

ELEMENT STRESSES 
1 -0.255902E 33 -0.381105E 11 
2 -0.195980E 06 0.241990E 18 
3 -0. 195887E 06 -0.290992E 21 
4 -0.195820E 06 0.197302E 03 
5 0.119358E 35 -0.124894E 21 
6 -0.119186E 35 -0.254618E 21 
7 0.196011E 06 -0.109122E 21 
8 0.195954E 06 0.109122E 21 
9 0.195971E 06 0.145496E 21 

10 -0.253560E 23 0.211725E 10 

O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
0.507119E 23 
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A.4.5 Solution of two-dimensional elasto-plastic problem. Example of 
Section 7.9, Fig. 7.12 

Input data 

2-D ELASTO-PLASTIC EXAMPLE , 
51 12 18 2 8 1 

1 1 1 8 12 13 
2 1 3 9 14 15 
3 1 5 10 16 17 
4 1 12 19 23 24 
5 1 14 20 25 26 
6 1 16 21 27 28 
7 1 23 30 34 35 
8 1 25 31 36 37 
9 1 27 32 38 39 

10 1 34 41 45 46 
11 1 36 42 47 48 
12 1 38 43 49 50 
1 100.0 0.0 
2 96.592 25.882 
3 86.602 50.0 
4 70.710 70.710 
5 50.0 86.602 
6 25.882 96.592 
7 0.0 100.0 
8 110.0 0.0 
9 95.263 55.0 

10 55.0 95.263 
11 0.0 110.0 
12 120.0 0.0 
13 115.911 31.058 
~~ 103.923 60.0 
15 84.853 84.853 
f6~ 60.0 103.923 
17 31.058 115.911 
18 0.0 120.0 
19 130.0 0.0 
20 112.583 65.0 
21 65.0 112.583 
22 0.0 130.0 
23 140.0 0.0 
24 135.230 36.234 
25 121.243 70.0 
26 98.995 98.995 
1 01 0.0 
7 10 0.0 
8 01 0.0 

11 10 0.0 
12 01 0.0 
18 10 0.0 
19 01 0.0 
22 10 0.0 
23 01 0.0 
29 10 0.0 
30 01 0.0 
33 10 0.0 
34 01 0.0 
40 10 0.0 
41 )1 0.0 
44 10 0.0 
45 01 0.0 
51 10 0.0 

SECTION 7.9 , FIG 7.12 
22213 

14 9 3 2 
16 10 5 4 
18 " 7 6 
25 20 14 13 
27 21 16 15 
29 22 18 17-
36 31 25 24 
38 32 27 26 
40 33 29 28 
47 42 36 35 
49 43 38 37 
51 44 40 39 
27 70.0 12r.243 
28 36.234 135.230 
29 0.0 140.0 
30 155.0 0.0 
31 134.234 77.5 
32 77.5 134.234 
33 0.0 155.0 
34 170.0 0.0 
35 164.207 43.999 
36 147.224 85.0 
37 120.208 120.208 
38 85.0 147.224 
39 43.999 164.207 
40 0.0 170.0 
41 185.0 0.0 
42 160.215 92.5 
43 92.5 160.215 
44 0.0 185.0 
45 200.0 0.0 
46 193.185 51.764 
47 173.205 100.0 
48 141.421 141.421 
49 100.0 173.205 
50 51.764 193.185 
51 0.0 200.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
o.o~ 



APPENDIX IV 543 
, 
1 

i21()00-:D1 ro. 3 
INTERlfAt. PRESSURE, 

0.0 0.0 24.0 0.0 0.0 -+.-0 

_0, 0 1 
_3, f.i' 
1 3 2 

20.0 0.0 20.0 0.0 20.0 0.0 
2 5 4 3 

20.0 0.0 20.0 0.0 20.0 0.0 
3 7 6 5 

20.0 0.0 20.0 0.0 20.0 0.0, 
0.7 1.0 130 

---
3 3 

Line printer output 

2-D ELASTO-PLASTIC EXAMPLE , SECTION 7. 9 , FIG 7.12 
NPOIN = 51 NELEM = 12 NVFIX = 18 NTYPE = 2 NNODE = 8 
NMATS = 1 NGAUS = 2 NEVAB = 16 NALGO = 2 
NCRIT = 2 NINeS = 1 NSTRE = 3 
ELEMENT PROPERTY NODE NUMBERS 

1 1 1 8 12 13 14 9 3 2 
2 1 3 9 14 15 16 10 5 4 
3 1 5 10 16 17 18 11 7 6 
4 1 12 19 23 24 25 20 14 13 
5 1 14 20 25 26 27 21 16 15 
6 1 16 21 27 28 29 22 18 17 
7 1 23 30 34 35 36 31 25 24 
8 1 25 31 36 37 38 32 27 26 
9 1 27 32 38 39 40 33 29 28 

10 1 34 41 45 46 47 42 36 35 
11 1 36 42 47 48 49 43 38 37 
12 1 38 43 49 50 51 44 40 39 

NODE x Y 
1 100.000 0.000 27 70.000 121.243 
2 96.592 25.882 28 36.234 135.230 
3 86.602 50.000 29 0.000 140.000 
4 70.710 70.710 30 155.000 0.000 
5 50.000 86.602 31 134.234 77.500 
6 25.882 96.592 32 77.500 134.234 
7 0.000 100.000 33 0.000 155.000 
8 110.000 (J-.OOO 34 170.000 0.000 
9 95.263 55.000 35 164.207 43.999 

10 55.000 95.263 36 147.224 85.000 
11 0.000 110.000 37 120.208 120.208 
12 120.000 0.000 38 85.000 147.224 
13 115.911 31.058 39 43.999 164.207 
14 103.923 60.000 40 0.000 170.000 
15 84.853 84.853 41 185.000 0.000 
16 60.000 103.923 42 160.215 92.500 
17 31.058 115.911 43 92.500 160.215 
18 0.000 120.000 44 0.000 185.000 
19 130.000 0.000 45 200.000 0.000 
20 112.583 65.000 46 193.185 51. 764 
21 65.000 112.583 47 173.205 100.000 
22 0.000 130.000 48 141.421 141.421 
23 140.000 0.000 49 100.000 173.205 
24 135.230 36.234 50 51. 764 193.185 
25 121.243 70.000 51 0.000 200.000 
26 98.995 98.995 



NODE CODE FIXED VALUES 
1 1 0.000000 0.000000 
7 10 0.000000 0.000000 
8 1 0.000000 0.000000 

11 10 0.000000 0.000000 
12 1 0.000000 0.000000 
18 10 0.000000 0.000000 
19 1 0.000000 0.000000 
22 10 0.000000 0.000000 
23 1 0.000000 0.000000 
29 10 0.000000 0.000000 
30 1 0.000000 0.000000 
33 10 0.000000 0.000000 
3q 1 0.000000 0.000000 
40 10 0.000000 0.000000 
41 1 0.000000 0.000000 
4q 10 0.000000 0.000000 
45 1 0.000000 0.000000 
51 10 0.000000 0.000000 

NUMBER ELEMENT PROPERTIES 
1 0.210000E 05 0.300000E 00 O.OOOOOOE 00 O.OOOOOOE 00 0.240000E 02 O.OOOOOOE 00 O.OOOOOOE 00 

MAXIMUM FRONTWIDTH ENCOUNTERED = 24 
INTERNAL PRESSURE 

o 0 1 
NO. OF LOADED EDGES = 3 
LIST OF LOADED EDGES AND APPLIED LOADS 
132 1 

20.000 0.000 20.000 0.000 20.000 0.000 
2 543 

20.000 0.000 20.000 0.000 20.000 0.000 
3 165 

20.000 0.000 20.000 0.000 20.000 0.000 
TOTAL NODAL FORCES FaR EACH ELEMENT 

0.1784E 03 0.1800E 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

2 0.1541E 03 0.8989E 02 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.DOOOE 00 O.OOOOE 00 

3 0.885qE 02 0.1549E 03 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

4 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.DOOOE 00 
0.15q9E 03 0.885QE 02 0.6667E 03 0.1786E 03 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.8989E 02 0.1541E 03 0.Q880E 03 0.Q880E 03 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.7800E 00 0.178QE 03 0.1786E 03 0.6667E 03 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

:!! 
z 
-i 
tTl 

tTl 
r 
tTl 
s:: 
tTl 
Z 
c;l -Z 
." 
r 
;l>
en 
:l 
n 
::j 
-< 



O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
5 O.DOOOE 00 O.DOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.DOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
6 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
7 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
8 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
9 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
10 O.OOOOE 00 O.DOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
11 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.QOOOE 00 O.OOOOE 00 O.DOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 O.DOOOE 00 O.OOOOE 00 O.DOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
12 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.DOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 ;J> 
INCREMENT NUMBER 1 'tI 

LOAD FACTOR = 0.70000 CONVERGENCE TOLERANCE = 1.00000 MAX. NO. OF ITERATIONS = 30 'tI 
tTl 

INITIAL OUTPUT PARAMETER = 3 FINAL OUTPUT PARAMETER = 3 Z 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.336960E 02 MAXIMUM RESIDUAL = O.155988E 03 0 , 

DISPLACEMENTS 
...... 
X 

NODE X-DISP. Y-DISP. 
1 0.127198E 00 O.OOOOOOE 00 18 O.OOOOOOE 00 0.110185E 00 < 
2 0.122734E 00 0.328811E-01 19 0.103925E 00 O.OOOOOOE 00 
3 0.110156E 00 0.636002E-01 20 0.900022E-01 0.519632E-01 
4 0.898486E-01 0.898486E-01 21 0.519632E-01 0.900022E-01 
5 0.636002E-01 O. 110156E 00 22 O.OOOOOOE 00 0.103925E 00 
6 0.328871E-01 0.122734E 00 23 0.981414E-01 O.OOOOOOE 00 
7 O.OOOOOOE 00 0.127198E 00 24 0.953363E-01 0.255449E-01 
8 0.111195E 00 O.OOOOOOE 00 25 0.855186E-01 0.493145E-01 
9 0.102014E 00 0.588984E-01 26 0.691915E-01 0.691915E-01 

10 0.588984E-01 0.102014E 00 27 0.493145E-01 0.855186E-01 
11 O.OOOOOOE 00 0.117195E 00 28 0.255449E-01 0.953363E-01 
12 0.110185E 00 O.OOOOOOE 00 29 O.OOOOOOE 00 0.981474E-01 
13 0.106396E 00 0.285087E-01 30 0.924750E-01 O.OOOOOOE 00 
14 0.954232E-01 0.550931E-01 31 0.800863E-01 o .462379E-01 
15 0.718815E-01 0.718875E-01 32 o . 46237 9E-0 1 0.800863E-01 
16 0.550931E-01 0.954232E-01 33 O.DOOOOOE 00 0.924750E-01 VI 

~ 
17 0.285087E-01 0.106396E 00 34 0.876445E-01 O.OOOOOOE 00 VI 



35 0.846176E-01 0.226732E-01 RE:ACTIONS IJ\ 

36 0.759029E-01 0.438226E-01 NODE X-REAC. Y-RE:AC. ~ 
37 0.619449E-01 0.619449E-01 1 O.OOOOOOE 00 -0.761999E 02 
38 0.438226E-01 0.759029E-01 7 -0.761999E 02 O.OOOOOOE 00 
39 0.226732E-01 0.846176E-01 8 O.OOOOOOE 00 -0.269921E 03 
40 O.OOOOOOE 00 0.876445E-01 11 -0.269921E 03 O.OOOOOOE 00 
41 0.838477E-01 O.OOOOOOE 00 12 O.OOOOOOE 00 -0.116327E 03 
42 0.726148E-01 0.419240E-01 18 -0.116327E 03 O.OOOOOOE 00 
43 0.419240E-01 0.726148E-01 19 O.OOOOOOE 00 -O.210260E 03 
44 O.OOOOOOE 00 0.838477E-01 22 -0.210260E 03 O.OOOOOOE 00 
45 0.808966E-01 O.OOOOOOE 00 23 O.OOOOOOE 00 -0.117156E 03 ." 
46 0.781269E-01 0.209340E-01 29 -0.117156E 03 O.OOOOOOE 00 -
47 0.700591E-01 0.404483E-01 30 O.OOOOOOE 00 -0.250153E 03 Z -48 0.571933E-01 0.571933E-01 33 -0.250153E 03 O.OOOOOOE 00 -l 

49 0.404483E-01 0.700591E-01 34 O.OOOOOOE 00 -0.110283E 03 m 

50 0.209340E-01 0.781269E-01 40 -0. 110283E 03 O.OOOOOOE 00 m 
r 

51 O.OOOOOOE 00 0.808966E-01 41 O.OOOOOOE 00 -0.203189E 03 m 
44 -0.203189E 03 O.OOOOOOE 00 3: 
45 O.OOOOOOE 00 -0.465120E 02 m 
51 -0.465120E 02 O.OOOOOOE 00 Z 

-l 
G.P. XX-STRESS IT-STRESS XY-STRESS ZZ-STRESS MAX P.S. MIN P.S. ANGLE E.P.S. en 

ELEMENT NO. = 1 Z 1 -0.893805E 01 0.180284E 02 -0.307422E 01 0.304329E 01 0.183744E 02 -0.928408E 01 6.422 0.240602E-03 
2 -0.485865E 01 0.139487E 02 -0.101400E 02 0.304318E 01 0.183743E 02 -0.928420E 01 23.579 0.240580E-03 "tl 

r 
3 -0.880961E 01 0.181337E 02 -0.306125E 01 0.280970E 01 0.184771E 02 -0.915305E 01 6.401 0.770100E-05 > 
4 -0.472518E 01 0.140487E 02 -0.101362E 02 0.280953E 01 0.184768E 02 -0.915334E 01 23.599 0.770430E-05 en 

ELEMENT NO. = 2 :l 
1 0.465341E 00 0.862395E 01 -0. 132139E 02 0.304290E 01 0.183739E 02 -0.928461E 01 36.422 0.240568E-03 n -2 0.862395E 01 0.465341E 00 -0.132139E 02 0.304290E 01 0.183739E 02 -0.928461E 01 -36.422 o . 24056 8E-03 -l 

3 0.577107E 00 0.874645E 01 -0.131974E 02 0.280952E 01 0.184769E 02 -0.915330E 01 36.401 0.768219E-05 -< 
4 0.874645E 01 0.577107E 00 -0.131974E 02 0.280952E 01 0.184769E 02 -0.915330E 01 -36.401 0.768219E-05 

ELEMENT NO. = 3 
1 0.139487E 02 -0.48~865E 01 -0.101400E 02 0.304318E 01 0.183743E 02 -0.928420E 01 -23.579 0.240580E-03 
2 0.180284E 02 -0.89j805E 01 -0.307422E 01 0.304329E 01 0.183744E 02 -0.928408E 01 -6.422 0.240602E-03 
3 0.140487E 02 -0.472518E 01 -0.101362E 02 0.280953E 01 0.184768E 02 -0.915334E 01 -23.599 0.770431E-05 
4 0.181337E 02 -0.880961E 01 -0.306125E 01 0.280970E 01 0.184771E 02 -0.915305E 01 -6.401 0.770100E-05 

ELEMENT NO. = 4 
1 -O.713097E 01 0.164644E 02 -0.267828E 01 0.280004E 01 0.167646E 02 -0.743116E 01 6.395 O.OOOOOOE 00 
2 -0.355180E 01 0.128851E 02 -0.887785E 01 0.280000E 01 0.167646E 02 -0.743124E 01 23.604 O.OOOOOOE 00 
3 -0.520488E 01 0.145383E 02 -0.224680E 01 0.280002E 01 0.147907E 02 -0.545735E 01 6.411 O.OOOOOOE 00 



4 -0.221523£ 01 0.115483£ 02 -0.742551E 01 0.279991E 01 0.147906E 02 -0.545755E 01 23.588 O.OOOOOOE 00 
ELEMENT NO. = 5 

1 0.108723E 01 0.824570E 01 -0.115562E 02 0.279988E 01 0.167643E 02 -0.743133E 01 36.395 0.000000£ 00 
2 0.824570E 01 0.108723E 01 -0.115562E 02 0.279988E 01 0.167643E 02 -0.743133£ 01 -36.395 O.OOOOOOE 00 
3 0.167670£ 01 0.765648£ 01 -O.967249E 01 0.279995E 01 0.147906E 02 -0.545747£ 01 36.411 O.OOOOOOE 00 
4 0.765648E 01 0.167670£ 01 -0.967249£ 01 0.279995E 01 0.147906£ 02 -0.545747£ 01 -36.411 O.OOOOOOE 00 

ELEMENT NO. = 6 
1 0.128851E 02 -0.355180E 01 -0.887785£ 01 0.280000£ 01 0.167646E 02 -0.743124E 01 -23.604 0.000000£ 00 
2 0.164644£ 02 -0.713097£ 01 -0.267828£ 01 0.280004E 01 0.167646E 02 -0.743116E 01 -6.395 O.OOOOOOE 00 
3 0.115483£ 02 -0.221523£ 01 -0.742551£ 01 0.279991E 01 0.147906E 02 -0.545755E 01 -23.588 O.OOOOOOE 00 
4 0.145383£ 02 -0.520488£ 01 -0.224680E 01 0.280002E 01 0.147907E 02 -0.545735£ 01 -6.411 O.OOOOOOE 00 

ELEMENT NO. = 7 
1 -0.383616E 01 0.131694E 02 -0.193148£ 01 0.279998E 01 0.133861E 02 -0.405278£ 01 6.399 O.OOOOOOE 00 
2 -0. 125760E 01 0.105909E 02 -0.639778E 01 0.279999E 01 0.133861E 02 -0.405277£ 01 23.600 O.OOOOOOE 00 
3 -0.212632E 01 0.114596E 02 -0.154577E 01 0.279997E 01 0.116332E 02 -0.229997E 01 6.410 O.OOOOOOE 00 
4 -0.686952E-01 0.940184E 01 -0.510990E 01 0.279994E 01 0.116332E 02 -0.230005E 01 23.590 O.OOOOOOE 00 

ELEMENT NO. = 8 :> 
1 0.208787E 01 0.724522E 01 -0.832942£ 01 0.279993E 01 0.133860E 02 -0.405291E 01 36.399 0.000000£ 00 "0 

2 0.724522E 01 0.208787£ 01 -0.832942E 01 0.279993E 01 0.133860E 02 -0.405291E 01 -36.399 O.OOOOOOE 00 "0 
m 

3 0.260888E 01 0.672438E 01 -0.665579E 01 0.279998E 01 0.116333E 02 -0.229999E 01 36.410 O.OOOOOOE 00 Z 
4 0.672438E 01 0.260888E 01 -0.665579£ 01 0.279998E 01 0.116333E 02 -0.229999E 01 -36.410 O.OOOOOOE 00 0 -ELEMENT NO. = 9 X 
1 0.105909E 02 -0.125760E 01 -0.639778E 01 0.279999E 01 0.133861E 02 -0.405277E 01 -23.600 O.OOOOOOE 00 -2 0.131694£ 02 -0.383616E 01 -0.193148E 01 0.279998£ 01 0.133861E 02 -0.405278E 01 -6.399 O.OOOOOOE 00 < 
3 0.940184E 01 -0.686952E-01 -0.510990£ 01 0.279994E 01 0.116332E 02 -0.230005E 01 -23.590 O.OOOOOOE 00 
4 0.114596E 02 -0.212632E 01 -0.154577£ 01 0.279997E 01 0.116332E 02 -0.229997E 01 -6.410 O.OOOOOOE 00 

ELEMENT NO. = 10 
1 -0.118841E 01 0.105216E 02 -0. 132981E 01 0.279995E 01 0.106707E 02 -0.133753E 01 6.398 O.OOOOOOE 00 
2 0.587478E 00 0.874580E 01 -0.440564E 01 0.279998E 01 0.106707E 02 -0. 133746E 01 23.602 O.OOOOOOE 00 
3 -0.186150E 00 0.951929E 01 -0.110110E 01 0.279994E 01 0.964264E 01 -0.309504E 00 6.392 O.OOOOOOE 00 
4 0.128661E 01 0.804648E 01 -0.365206E 01 0.279993E 01 0.964263E 01 -0.309548E 00 23.608 O.OOOOOOE 00 

EL£MENT NO. = 11 
1 0.289070E 01 0.644254E 01 -0.573552£ 01 0.279997E 01 0.106708£ 02 -0. 133755E 01 36.398 O.OOOOOOE 00 
2 0.644254£ 01 0.289070E 01 -0.573552E 01 0.279997E 01 0.106708£ 02 -0.133755E 01 -36.398 O.OOOOOOE 00 
3 0.319390£ 01 0.613950E 01 -0.475323E 01 0.280002E 01 0.964288£ 01 -0.309476E 00 36.392 O.OOOOOOE 00 
4 0.613950£ 01 0.319390E 01 -0.475323E 01 0.280002E 01 0.964288£ 01 -0.309476E 00 -36.392 O.OOOOOOE 00 

£L£MENT NO. = 12 
1 0.874580E 01 0.587478£ 00 -0.440564E 01 0.279998E 01 0.106707£ 02 -0. 133746E 01 -23.602 0.000000£ 00 
2 0.105216E 02 -0.118841E 01 -0.132981E 01 0.279995£ 01 0.106707E 02 -0.133753E 01 -6.398 0.000000£ 00 v. 

3 0.804648£ 01 0.128661E 01 -0.365206£ 01 0.279993E 01 0.964263E 01 -0.309548E 00 -23.608 O.OOOOOOE 00 
.j:o 
--J 



4 0.951929E 01 -0.186150E 00 -0.110110E 01 0.279994E 01 0.964264E 01 -0.309504E 00 -6.392 O.OOOOOOE 00 VI 

CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 0.118830E 02 MAXIMUM RESIDUAL = 0.416687E 02 ",. 
00 

CONVERGENCE CODE = 1 NORM.OF RESIDUAL SUM RATIO = 0.556571E 01 MAXIMUM RESIDUAL = 0.222848E 02 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = O.297375E 01 MAXIMUM RESIDUAL = 0.127533E 02 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = O.165985E 01 MAXIMUM RESIDUAL = 0.728396E 01 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 0.939223E 00 MAXIMUM RESIDUAL = 0.415713E 01 

DISPLACEMENTS 
NODE X-DISP. Y-DISP. 

1 0.139121 E 00 O.OOOOOOE 00 37 0.665485E-01 0.665485E-01 
2 0.134201E 00 0.359609E-01 38 0.470796E-01 0.815441E-01 
3 0.120482E 00 0.695626E-01 39 0.243581E-01 0.909056E-01 'T1 4 0.982428E-01 0.982428E-01 40 O.OOOOOOE 00 0.941578E-01 
5 0.695626E-01 0.120482E 00 41 0.900786E-01 O.OOOOOOE 00 Z 
6 0.359609E-01 0.134201E 00 42 0.780114E-01 0.450397E-01 ::j 

7 O.OOOOOOE 00 0.139121E 00 43 0.450397E-01 0.780114E-01 tTl 

8 0.127126E 00 O.OOOOOOE 00 44 O.OOOOOOE 00 0.9007 86E-0 1 tTl 
r 

9 0.110094E 00 0.635643E-01 45 O.869080E-01 O.OOOOOOE 00 tTl 
10 0.635643E-01 0.110094E 00 46 0.839328E-01 0.224896E-01 3:: 
11 O.OOOOOOE 00 0.127126E 00 47 0.752657E-01 0.434542E-01 tTl 

12 0.118379E 00 O.OOOOOOE 00 48 0.614439E-01 0.614439E-01 Z 
-I 

13 O. 114299E 00 0.306268E-01 49 0.434542E-01 0.752657E-01 V> 

14 0.102520E 00 0.591908E-01 50 0.224896E-01 0.839328E-01 -
15 0.836738E-01 0.836738E-01 51 O.OOOOOOE 00 0.869080E-01 Z 

16 0.591908E-01 0.102520E 00 REACTIONS "C 

17 0.306268E-01 0.114299E 00 NODE X-REAC. Y-REAC. r 
;l;> 

18 O.OOOOOOE 00 0.118379E 00 1 O.OOOOOOE 00 -0.464276E 02 V> 

19 0.111650E 00 O.OOOOOOE 00 7 -0.464276E 02 O.OOOOOOE 00 :l 
20 0.966928E-01 0.558264E-01 8 O.OOOOOOE 00 -0.220459E 03 (') -21 0.558264E-01 0.966928E-01 11 -0.220459E 03 O.OOOOOOE 00 -I 
22 O.OOOOOOE 00 0.11165QE 00 12 O.OOOOOOE 00 -0.125854E 03 -< 
23 0.106084E 00 O.OOOOOO~ 00 18 -0.125854E 03 O.OOOOOOE 00 
24 0.102421E 00 0.~4436E ... 01 19 O.OOOOOOE 00 -0.225928E 03 
25 0.918730E-01 0.530435E-01 22 -0.225928E 03 O.OOOOOOE 00 
26 0.749788E-01 0.749788E-01 23 O.OOOOOOE 00 -0.125859E 03 
27 0.530435E-01 0.918730E-01 29 -0. 125859E 03 O.OOOOOOE 00 
28 0.274436E-01 0.102421E 00 30 O.OOOOOOE 00 -0.268735E 03 
29' O.OOOOOOE 00 0.106084E 00 33 -0.268735E 03 O.OOOOOOE 00 
30 0.993465E-01 O.OOOOOOE 00 34 O.OOOOOOE 00 -0.118479E 03 
31 0.860377E-01 0.496741E-01 40 -0.118479E 03 O.OOOOOOE 00 
32 0.496741E-01 0.860377E-01 41 O.OOOOOOE 00 -0.218290E 03 



33 O.OOOOOOE 00 0.993465E-01 44 -0.218290E 03 O.OOOOOOE 00 
34 0.941578E-01 o.ooOOOOE 00 45 O.OOOOOOE 00 -0.499673E 02 
35 0.909056E-01 0.243581E-01 51 -0.499673E 02 O.OOOOOOE 00 
36 0.815441E-01 0.470796E-01 

G.P. XX-STRESS IT-STRESS r:f-STRESS ZZ-STRESS MAX P.S. MIN P.S. ANGLE E.P.S. 
ELEMENT NO. = 1 

1 -0. 123717E 02 0.146473E 02 -0.308107E 01 0.117112E 01 0.149941E 02 -0. 127186E 02 6.424 0.451304E-03 
2 -0.828491E 01 0.105605E 02 -0.101593E 02 0.117110E 01 0.149942E 02 -0. 127186E 02 23.577 0.451255E-03 
3 -0.948121E 01 0.174939E 02 -0.306568E 01 0.257060E 01 0.178380E 02 -0.982523E 01 6.403 0.108534E-03 
4 -0.539247E 01 0.134047E 02 -0.101479E 02 0.257044E 01 0.178377E 02 -0.982547E 01 23.598 0.108528E-03 

ELEMENT NO. = 2 
1 -0.294888E 01 0.522409E 01 -0. 132401E 02 0.117090E 01 0.149940E 02 -0.127188E 02 36.424 0.451200E-03 
2 0.522409E 01 -0.294888E 01 -0. 132401E 02 O. 117090E 01 0.149940E 02 -0.127188E 02 -36.424 0.451200E-03 
3 -0. 825393E-01 0.809511E 01 -0.132134E 02 0.257046E 01 0.178379E 02 -0.982530E 01 36.403 0.108473E-03 
4 0.809511E 01 -0.825394E-01 -0.132134E 02 0.257046E 01 0.178379E 02 -0.982530E 01 -36.403 0.108473E-03 

ELEMENT NO. = 3 
1 0.105605E 02 -0.828491E 01 -0.101593E 02 0.117110E 01 0.149942E 02 -0.127186E 02 -23.577 0.451255E-03 ;l> 
2 0.146473E 02 -0.123717E 02 -0.308107E 01 0.117112E 01 0.149941E 02 -0. 127186E 02 -6.424 0.451304E-03 "C 

3 0.134047E 02 -0.539247E 01 -0.101479E 02 0.257044E 01 0.178377E 02 -0.982547E 01 -23.598 o. 108528E-03 "C 
I'll 

4 0.174939E 02 -0.948121E 01 -0.306568E 01 0.257060E 01 0.178380E 02 -0.982523E 01 -6.403 0.108534E-03 Z 
ELEMENT NO. = 4 0 

1 -0.766058E 01 0.176878E 02 -0.287878E 01 0.300817E 01 0.180106E 02 -0.798341E 01 6.398 O.OOOOOOE 00 -X 
~ -0.381672E 01 0.138438E 02 -0.953667E 01 0.300813E 01 0.180105E 02 -0.798344E 01 23.601 O.OOOOOOE 00 -
3 -0.559170E 01 0.156189E 02 -0.241350E 01 0.300815E 01 0.158900E 02 -0.586286E 01 6.410 0.900000E 00 < 
4 -0.237967E 01 0.124063E 02 -0.797755E 01 0.300798E 01 0.158898E 02 -0.586315E 01 23.589 O.OOOOOOE 00 

ELEMENT NO. = 5 
1 0.116933E 01 0.885683E 01 -0. 124153E 02 0.300785E 01 0.180098E 02 -0.798366E 01 36.399 O.OOOOOOE 00 
2 0.885683E 01 0.116933E 01 -0. 124153E 02 0.300785E 01 0.180098E 02 -0.798366E 01 -36.399 O.OOOOOOE 00 
3 0.180098E 01 0.822568E 01 -0.103912E 02 0.300800E 01 0.158897E 02 -0.586305E 01 36.411 O.OOOOOOE 00 
4 0.822568E 01 0.180098E 01 -0.103912E 02 0.300800E 01 0.158897E 02 -0.586305E 01 -36.411 O.OOOOOOE 00 

ELEMENT NO. = 6 
1 0.138438E 02 -0.381672E 01 -0.953667E 01 0.300813E 01 0.180105E 02 -0.798344E 01 -23.601 O.OOOOOOE 00 
2 0.176878E 02 -0.766058E 01 -0.287878E 01 0.300817E 01 0.180106E 02 -0.798341E 01 -6.398 O.OOOOOOE 00 
3 0.124063E 02 -0.237967E 01 -0.797755E 01 0.300798E 01 0.158898E 02 -0.586315E 01 -23.589 O.OOOOOOE 00 
4 0.156189E 02 -0.559170E 01 -0.241350E 01 0.300815E 01 0.158900E 02 -0.586286E 01 -6.410 O.OOOOOOE 00 

ELEMENT NO. = 7 
1 -0.412127E 01 0.141482E 02 -0.207478E 01 0.300809E 01 0.143809E 02 -0.435393E 01 6.398 O.OOOOOOE 00 
2 -0. 135088E 01 0.113778E 02 -0.687337E 01 0.300808E 01 0.143809E 02 -0.435393E 01 23.601 O.OOOOOOE 00 
3 -0.228431E 01 0.123112E 02 -0. 166069E 01 0.300806E 01 0.124977E 02 -0.247088E 01 6.410 O.OOOOOOE 00 V\ 

4 -0.738630E-01 0.101006E 02 -0.548958E 01 0.300802E 01 0.124977E 02 -0.247098E 01 23.589 O.OOOOOOE 00 
-I>-

"" 



ELEMENT NO. = 8 
1 0.224272£ 01 0.778385£ 01 -0.894834£ 01 0.300797£ 01 0.143807£ 02 -0.435415£ 01 36.398 0.000000£ 00 
2 0.778385£ 01 0.224272E 01 -0.894834E 01 0.300797E 01 0.143807£ 02 -0.435415E 01 -36.398 O.OOOOOOE 00 
3 0.280277£ 01 0.722406E 01 -0.715043E 01 0.300805E 01 0.124978E 02 -0.247095E 01 36.410 0.000000£ 00 
4 0.722406E 01 0.280277E 01 -0.715043E 01 0.300805E 01 0.124978E 02 -0.247095E 01 -36.410 O.OOOOOOE 00 

ELEM£NT NO. = 9 
1 0.113778E 02 -0.135088E 01 -0.687337E 01 0.300808E 01 0.143809E 02 -0.435393E 01 -23.601 O.OOOOOOE 00 
2 0.141482E 02 -0.412127E 01 -0.207478£ 01 0.300809E 01 0.143809E 02 -0.435393£ 01 -6.398 O.OOOOOOE 00 
3 0.101006E 02 -0.738630E-Ol -0.548958E 01 0.300802E 01 0.124977E 02 -0.247098E 01 -23.589 O.OOOOOOE 00 
4 0.123112£ 02 -0.228431£ 01 -0.166069E 01 0.300806E 01 0.124977E 02 -0.247088E 01 -6.410 0.000000£ 00 

ELEMENT NO. = 10 
1 -0.127671E 01 0.113035E 02 -0.142867E 01 0.300803E 01 0.114637E 02 -0.143691E 01 6.398 O.OOOOOOE 00 
2 0.631079£ 00 0.939580E 01 -0.473299E 01 0.300806E 01 0.114637E 02 -0. 143686E 01 23.601 O.OOOOOOE 00 
3 -0.199987E 00 0.102267E 02 -0.118290E 01 0.300800E 01 0.103592E 02 -0.332502E 00 6.392 O.OOOOOOE 00 
4 0.138223E 01 0.864445E 01 -0.392346E 01 0.300800E 01 0.103592E 02 -0.332548E 00 23.608 O.OOOOOOE 00 

ELEMENT NO. = 11 
1 0.310555E 01 0.692130E 01 -0.616178E 01 0.300805E 01 0.114638E 02 -0.143697E 01 36.398 O.OOOOOOE 00 
2 0.692130E 01 0.310555E 01 -0.616178E 01 0.300805E 01 0.114638E 02 -0.143697E 01 -36.398 o • 000000 E 00 
3 0.343125E 01 0.659581E 01 -0.510649E 01 0.300812E 01 0.103595E 02 -0.332480E 00 36.392 O.OOOOOOE 00 
4 0.659581E 01 0.343125E 01 -0.510649E 01 0.300812E 01 0.103595E 02 -0.332480E 00 -36.392 O.OOOOOOE 00 

ELEMENT NO. = 12 
1 0.939580E 01 0.631079E 00 -O.473299E 01 0.300806£ 01 0.114637£ 02 -0.143686£ 01 -23.601 O.OOOOOOE 00 
2 0.113035E 02 -0.127671E 01 -0.142867E 01 0.300803E 01 0.114637E 02 -0. 143691E 01 -6.398 O.OOOOOOE 00 
3 0.864445E 01 0.138223E 01 -0.392346E 01 0.300800E 01 0.103592E 02 -0.332548E 00 -23.608 O.OOOOOOE 00 
4 0.102267E 02 -0.199987E 00 -0.118290E 01 0.300800E 01 0.103592E 02 -0.332502E 00 -6.392 O.OOOOOOE 00 

A.4.6 Solution of two-dimensional flasto-\,iscoplastic problem. Example 
of Section 8.16, Fig. 8.10 ' 

Input data 

2-D £LASTO - VISCOPLASTIC EXAMPLE , 
51 12 18 2 8 1 2 2 

SECTION 8.16 , 
2 1 3 

FIG. 8.10 

1 1. 1 8 12 13 14 9 3 2 
2 1 3 9 14 15 16 10 5 4 
3 1 5 10 16 17 18 11 7 6 
4 1 12 19 23 24 25 20 14 13 



5 1 14 20 25 26 27 21 16 15 
6 1 16 21 27 28 29 22 18 17 
7 1 23 30 34 35 36 31 25 24 
8 1 25 31 36 37 38 32 27 26 
9 1 27 32 38 39 40 33 29 28 

10 1 34 41 45 46 47 42 36 35 
11 1 36 42 47 48 49 43 38 37 
12 1 38 43 49 50 51 44 40 39 
1 100.0 0.0 27 70.0 121.243 
2 96.592 25.882 28 36.234 135.230 
3 86.602 50.0 29 0.0 140.0 
4 70.710 70.710 30 155.0 0.0 
5 50.0 86.602 31 134.234 77.5 
6 25.882 96.592 32 77.5 134.234 
7 0.0 100.0 33 0.0 155.0 
8 110.0 0.0 34 170.0 0.0 
9 95.263 55.0 35 164.207 43.999 > 

10 55.0 95.263 36 147.224 85.0 "0 

11 0.0 , 10.0 37 120.208 120.208 "0 
tTl 

12 120.0 0.0 38 85.0 147.224 Z 
13 115.911 31.058 39 43.999 164.207 0 
14 103.923 60.0 40 0.0 170.0 -X 
15 84.853 84.853 41 185.0 0.0 -
1~ 60.0 103·923 42 160.215 92.5 < 
17 31.058 115.911 43 92.5 160.215 
18 0.0 120.0 44 0.0 185.0 
19 130.0 0.0 45 200.0 0.0 
20 112.583 65.0 46 193.185 51.764 
21 65.0 112.583 47 173.205 100.0 
22 0.0 130.0 48 141.421 141.421 
23 140.0 0.0 49 100.0 173.205 
24 135.230 36.234 50 51.764 193.185 
25 121.243 70.0 51 0.0 200.0 
26 98.995 98.995 

1 01 0.0 0.0 
7 10 0.0 0.0 
8 01 0.0 0.0 

11 10 0.0 0.0 VI 

12 01 0.0 0.0 VI 

18 10 0.0 0.0 



19 01 0.0 0.0 VI 

22 10 0.0 0.0 VI 
N 

23 01 0.0 0.0 
29 10 0.0 0.0 
30 01 0.0 0.0 
33 10 0.0 0.0 
34 01 0.0 0.0 
40 10 0.0 0.0 
41 01 0.0 0.0 
44 10 0.0 0.0 
45 01 0.0 0.0 

'T1 51 10 0.0 0.0 -1 Z -21000.0 0.3 0.0 0.0 24.0 0.0 0.0 0.001 -I 
1.0 1.0 tTl 

INTERNAL PRESSURE tTl 
r a 0 1 tTl 

3 s:: 
1 3 2 1 tTl 

Z 20.0 0.0 20.0 0.0 20.0 0.0 -I 
2 5 4 3 ell 

20.0 0.0 20.0 0.0 20.0 0.0 -
3 7 6 5 Z 

20.0 0.0 20.0 0.0 20.0 0.0 '1l 

0.0 0.05 0.1 1.5 r 
;J> 

0.7 0.1 50 10 10 ell 
-I 

Line printer output 
n 
:j 

2-D ELASTO - VISCOPLASTIC EXAMPLE, SECTION 8.16 , FIG. 8.10 -< 
NPOIN = 51 NELEM = 12 NVFIX = 18 NTYPE = 2 NNODE = 8 
NMATS = 1 , NGAliS = 2 NEVAB = 16 NALGO = 2 

, 

NCRIT = 2 , NINCS = 1 NSTRE = 3 
ELEMENT PRO~ERTY NODE NUMBERS 

1 1 1 8 12 13 14 9 3 2 
2 1 3 9 14 1~ 16 10 5 4 
3 1 5 10 16 17 18 11 7 6 
4 1 12 19 23 24 25 20 14 13 
5 1 14 20 25 ;:>6 27 21 16 15 
6 1 16 21 27 28 29 22 18 17 



1 1 23 30 34 35 36 31 25 24 
8 1 25 31 36 31 38 32 21 26 
9 1 21 32 38 39 40 33 29 28 

10 1 34 41 45 46 41 42 36 35 
11 1 36 42 41 48 49 43 38 31 
12 1 38 43 49 50 51 44 40 39 

NODE X Y 
1 100.000 0.000 21 10.000 121.243 
2 96.592 25.882 28 36.234 135.230 
3 86.602 50.000 29 0.000 140.000 
4 10.110 ~0.110 30 155.000 0.000 
5 50.000 6.602 31 134.234 11.500 
6 25.882 96.592 32 11.500 134.234 
1 0.000 100.000 33 0.000 155.000 
8 110.000 0.000 34 110.000 0.000 
9 95.263 55.000 35 164.201 43.999 

10 55.000 95.263 36 141.224 85.000 :> 
11 0.000 110.000 31 120.208 120.208 "Il 

12 120.000 0.000 38 85.000 141.224 "Il 
tTl 

13 115.911 31.058 39 43·999 164.207 Z 
14 103.923 60.000 40 0.000 110.000 " 15 84.853 84.853 41 185.000 0.000 -X 

< 16 60.000 103.923 42 160.215 92.500 
43 92.500 160.215 -. 11 31.058 115.911 < 

18 0.000 120.000 44 0.000 185.000 
19 130.000 0.000 45 200.000 0.000 
20 112.583 65.000 46 193.185 51.164 
21 65.000 112.583 41 173.205 100.000 
22 0.000 130.000 48 141.421 141.421 
23 140.000 0.000 49 100.000 113 .205 
24 135.230 36.234 50 51.764 193.185 
25 121.243 10.000 51 0.000 200.000 
26 98.995 98.995 

NODE CODE FIXED VALUES 
1 1 0.000000 0.000000 
7 10 0.000000 0.000000 
8 1 0.000000 0.000000 

11 10 0.000000 0.000000 
12 1 0.000000 0.000000 v. 
18 10 0.000000 0.000000 v. 

"" 



19 
22 
23 
29 
30 
33 
34 
40 
41 
44 
45 
51 

1 0.000000 0.000000 
10 0.000000 0.000000 
1 0.000000 0.000000 

10 0.000000 0.000000 
1 0.000000 0.000000 

10 0.000000 0.000000 
1 0.000000 0.000000 

10 0.000000 0.000000 
1 0.000000 0.000000 

10 0.000000 0.000000 
1 0.000000 0.000000 

10 0.000000 0.000000 
ELEMENT PROPERTIES NUMBER 

1 0.210000E 05 0.300000E 00 O.OOOOOOE 00 
0.100000E 01 0.100000E 01 

O.OOOOOOE 00 0.240000E 02 O.OOOOOOE 00 O.OOOOOOE 00 0.100000E-02 

MAXIMUM FRONTWIDTH ENCOUNTERED = 24 
INTERNAL PRESSURE 

o 0 1 
NO. OF LOADED EDGES = 3 
LIST OF LOADED EDGES AND APPLIED LOADS 

1 3 2 1 
20.000 0.000 20.000 0.000 20.000 0.000 

0.000 
2 543 

20.000 0.000 20.000 0.000 20.000 
3 7 6 ~ 

20.000 0.000 20.000 0.000 20.000 0.000 

2 

3 

4 

5 

6 

7 

TOTAL NODAL FORCES FOR EACH ELEMENT 
0.1784E 03 0.7800E 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.1541E 03 0.8989E 02 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.8854E 02 0.1549E 03 O.OOOOE 00 
O.OejOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOCE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.1549E 03 0.8854E 02 0.6667E 03 0.1786E 03 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.8989E 02 0.1541E 03 0.4880E 03 0.4880E 03 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.7800E 00 0.1784E 03 0.1786E 03 0.6667E 03 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOODE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 

U\ 

¥: 

::!l 
z 
=i 
tTl 

tTl 
r 
tTl 
s: 
tTl 
Z 
;;l -Z 

~ 
> 
'" ::! 
("J --l 
-< 



8 

9 

10 

11 

12 

O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.oooOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 

TIME STEPPING PARAMETER = 
INITIAL TIME STEP LENGTH = 

INCREMENT NUMBER 1 

O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE DO O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 O.OOOOE 00 
0.000 TIME STEP STABILITY FACTOR = 0.05000 

0.10000 TIME STEP INCREMENT PARAMETER = 1.50000 

O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 
O.OOOOE 00 

LOAD FACTOR = 0.70000 
INITIAL OUTPUT PARAMETER = 10 

CONVERGENCE TOLERANCE = 0.10000 
FINAL OUTPUT PARAMETER = 10 

MAX. NO. OF ITERATIONS = 50 

TOTAL TIME = O. OOOOOOE 00 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.100000E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.250000E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.475000E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.812500E 00 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.125353E 01 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.184786E 01 
CONVERGENCE CODE = 999 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.273772E 01 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.407250E 01 
CONVERGENCE CODE = 1 NORM OF RESIDUAL SUM RATIO = 

TOTAL TIME = 0.607467E 01 
CONVERGENCE CODE = 0 NORM OF RESIDUAL SUM RATIO = 

DISPLACEMENTS 
NODE X-DISP. 

1 0.139590E 00 
2 0.134655E 00 

Y-DISP. 
O.OOOOOOE 00 
0.360826E-Ol 

0.100000E 03 

0.148250E 03 

0.207778E 03 

0.280997E 03 

0.313019E 03 

0.340506E 03 

0.377261E 03 

0.345160E 03 

0.213414E 03 

O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O. OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

MAXIMUM RESIDUAL = O.OOOOOOE 00 

3 0.120888E 00 0.697974E-Ol 
4 0.985748E-Ol 0.985748E-Ol 

;I> 
'tl 
'tl 
tTl 
Z 
a -x 
< 



5 0.697974E-01 O. 120888E 00 39 0.244471E-01 0.912376E-01 VI 

6 0.360826E-01 0.134655E 00 40 O.OOOOOOE 00 0.945016E-01 
VI 

'" 7 O.OOOOOOE 00 0.139590E 00 41 0.904075E-01 O.OOOOOOE 00 
8 0.127595E 00 O.OOOOOOE 00 42 0.782963E-01 0.452042E-01 
9 0.110501E 00 0.637993E-01 43 0.452042E-01 0.782963E-01 

10 0.637993E-01 O. 110501E 00 44 O.OOOOOOE 00 0.904075E-01 
11 O.OOOOOOE 00 0.127595E 00 45 0.872253E-01 O.OOOOOOE 00 
12 0.118811E 00 O.OOOOOOE 00 46 0.842393E-01 0.225717E-01 
13 0.114717E 00 0.307387E-01 47 0.755406E-01 0.436128E-01 
14 0.102894E 00 0.594071 E-01 48 0.616684E-01 0.616684E-01 
15 0.839794E-01 0.839794E-01 49 0.436128E-01 0.755406E-01 
16 0.594071E-01 0.102894E 00 50 0.225717E-01 0.842393E-01 ." 

17 0.307387E-01 0.114717E 00 51 O.OOOOOOE 00 0.872253E-01 Z 

18 O.OOOOOOE 00 0.118811E 00 REACTIONS -l 

19 0.112058E 00 O.OOOOOOE 00 NODE X-REAC. Y-REAC. m 

20 0.970459E-01 0.560303E-01 1 O.OOOOOOE 00 -0.456968E 02 m 
7 -0.456968E 02 O.OOOOOOE 00 r 

21 0.560303E-01 O. 97045~E-01 m 
22 O.OOOOOOE 00 0.11205 E 00 8 O.OOOOOOE 00 -0.217851E 03 ~ 
23 0.106472E 00 O.OOOOOOE 00 11 -0.217851E 03 O.OOOOOOE 00 m 
24 O. 1 027~6E 00 0.275438E-01 12 O.OOOOOOE 00 -0. 125513E 03 Z 

25 0.9220 5E-01 0.532372E-01 18 -0.125513E 03 O.OOOOOOE 00 -l 
en 

26 0.752527E-01 0.752527E-01 19 O.OOOOOOE 00 -0.226754E 03 -
27 0.532372E-01 0.922085E-01 22 -0.226754E 03 O.OOOOOOE 00 Z 
28 0.275438E-01 0.102796E 00 23 O.OOOOOOE 00 -0.126319E 03 "C 

29 O.OOOOOOE 00 0.106472E 00 29 -0.126319E 03 O.OOOOOOE 00 r 

30 0.~97092E-01 o .~OOOOOE 00 30 O.OOOOOOE 00 -0.269717E 03 :> 
en 

31 O. 63519E-01 0.498555E-01 33 -0.269717E 03 O.OOOOOOE 00 -l 

32 0.498555E-01 0.863519E-01 34 O.OOOOOOE 00 -0.118912E 03 n 
33 O.OOOOOOE 00 0.997092E-01 40 -0.118912E 03 O.OOOOOOE 00 =l 
34 0.945016E-01 O.OOOOOOE 00 41 O.OOOOOOE 00 -0.219087E 03 -< 
35 0.912376E-01 0.244471E-01 44 -0.219087E 03 O.OOOOOOE 00 
36 0.818419E-01 0.472516E-01 45 O.OOOOOOE 00 -0.501497E 02 
37 0.~791GE-01 0.667916E-01 51 -0.501497E 02 O.OOOOOOE 00 
38 O. 72516E-01 0.818419E-01 

G.P. XX-STRESS IT-STRESS XY-STRESS ZZ-STRESS MAX P.S. MIN P.S. ANGLE E.P.S. 
ELEMENT NO. = 1 

1 -0:125015E 02 0.145585E 02 -0.308575E 01 0.617103E 00 0.149059E 02 -0. 128489E 02 6.424 0.452901 E-03 
2 -0.840843E 01 0.104656E 02 -0.101747E 02 0.617146E 00 0.149060E 02 -0.128488E 02 23.577 0.452852E-03 
3 -0.959430E 01 0.174053E 02 -0.306854E 01 0.234329E 01 0.177496E 02 -0.993866E 01 6.403 0.112244E-03 
4 -0.550191E 01 0.133124E 02 -0.1C1570E 02 0.234314E 01 0.177494E 02 -0.993889E 01 23.598 0.112237E-03 



ELEMENT NO. = 2 
1 -0.306428E 01 0.512105E 01 -0.132601E 02 0.617031E 00 0.149057E 02 -0.128490E 02 36.424 0.452796E-03 
2 0.512105E 01 -0.306428E 01 -0.132601E 02 0.617031E 00 0.149057E 02 -0. 128490E 02 -36.424 0.452796E-03 
3 -0.187011E 00 0.799786E 01 -0.132254E 02 0.234325E 01 0.177495E 02 -0.993866E 01 36.403 0.112182E-03 
4 0.799786E 01 -0.187011E 00 -0.132254E 02 0.234325E 01 0.177495E 02 -0.993866E 01 -36.403 0.112182E-03 

1 
ELEMENT NO. = 3 

0.104656E 02 -0.840843E 01 -0.101747E 02 0.617146E 00 0.149060E 02 -0.128488E 02 -23.577 0.452852E-03 
2 0.145585E 02 -0.125015E 02 -0.308575E 01 0.617103E 00 0.149059E 02 -0. 128489E 02 -6.424 0.452901E-03 
3 0.133124E 02 -0.550191E 01 -0.101570E 02 0.234314E 01 0.177494E 02 -0.993889E 01 -23.598 0.112237E-03 
4 0.174053E 02 -0.959430E 01 -0.306854E 01 0.234329E 01 0.177496E 02 -0.993866E 01 -6.403 O. 112244E-03 

ELEMENT NO. = 4 
1 -0.768855E 01 0.177524E 02 -0.288931E 01 0.301916E 01 0.180764E 02 -0.801257E 01 6.398 O.OOOOOOE 00 
2 -0.383066E 01 0.138944E 02 -0.957149E 01 0.301912E 01 0.180763E 02 -0.801259E 01 23.601 O.OOOOOOE 00 
3 -0.561211E 01 0.156759E 02 -0.242231E 01 0.301914E 01 0.159481E 02 -0.588426E 01 6.410 O.OOOOOOE 00 
4 -0.238836E 01 0.124516E 02 -0.800669E 01 0.301897E 01 0.159478E 02 -0.588457E 01 23.589 O.OOOOOOE 00 

ELEMENT NO. = 5 
1 0.117360E 01 0.888913E 01 -0. 124607E 02 0.301882E 01 0.180756E 02 -0.801283E 01 36·399 O.OOOOOOE 00 > 
2 0.888913E 01 0.117360E 01 -0. 124607E 02 0.301882E 01 0.180756E 02 -0.801283E 01 -36.399 O.OOOOOOE 00 "C 

3 0.180755E 01 0.825572E 01 -0.104291E 02 0.301898E 01 0.159477E 02 -0.588446E 01 36.411 O.OOOOOOE 00 "C 
tTl 

4 0.825572E 01 0.180755E 01 -0.104291E 02 0.301898E 01 0.159477E 02 -0.588446E 01 -36.411 O.OOOOOOE 00 Z 
ELEMENT NO. = 6 0 

0.138944E 02 -0.383066E 01 -0.957149E 01 0.301912E 01 0.180763E 02 -0.801259E 01 -23.601 O.OOOOOOE 00 ->< ; 2 0.177524E 02 -0.768855E 01 -0.288931E 01 0.301916E 01 . 0.180764E 02 -0.801257E 01 -6.398 O.OOOOOOE 00 -3 0.124516E 02 -0.238836E 01 -0.800669E 01 0.301897E 01 0.159478E 02 -0.588457E 01 -23.589 O.OOOOOOE 00 < 
4 0.156759E 02 -0.561211E 01 -0.242231E 01 0.301914E 01 0.159481E 02 -0.588426E 01 -6.410 O.ooOOOOE 00 

ELEMENT NO. = 7 
1 -0.413632E 01 0.141999E 02 -0.208235E 01 0.301908E 01 0.144334E 02 -0.436983E 01 6.398 O.OOOOOOE 00 
2 -0.135581E 01 0.114194E 02 -0.689847E 01 0.301907E 01 0.144334E 02 -0.436983E 01 23.601 O.OOOOOOE 00 
3 -0.229264E 01 0.123561E 02 -0. 166675E 01 0.301905E 01 0.125434E 02 -0.247990E 01 6.410 O.OOOOOOE 00 
4 -0.741370E-01 0.101375E 02 -0.550962E 01 

ELEMENT NO. = 8 
0.301901E 01 0.125434E 02 -0.248000E 01 23.589 O.OOOOOOE 00 

1 0.225090E 01 0.781227E 01 -0.898102E 01 0.301895E 01 0.144332E 02 -0.437006E 01 36.398 O.OOOOOOE 00 
2 0.781227E 01 0.225090E 01 -0.898102E 01 0.301895E 01 0.144332E 02 -0.437006E 01 -36.398 O.OOOOOOE 00 
3 0.281300E 01 0.725044E 01 -0.717655E 01 0.301903E 01 0.125434E 02 -0.247998E 01 36.410 O.OOOOOOE 00 
4 0.725044E 01 0.281300E 01 -0.717655E 01 0.301903E 01 0.125434E 02 -0.247998E 01 -36.410 O.OOOOOOE 00 

ELEMENT NO. = 9 
1 0.114194E 02 -0.135581E 01 -0.689847E 01 0.301907E 01 0.144334E 02 -0.436983E 01 -23.601 O.OOOOOOE 00 
2 0.141999E 02 -0.413632E 01 -0.208235E 01 0.301908E 01 0.144334E 02 -0.436983E 01 -6.398 O.OOOOOOE 00 
3 0.101375E 02 -0.741370E-01 -0.550962E 01 0.301901E 01 0.125434E 02 -0.248000E 01 -23.589 O.OOOOOOE 00 V> 
4 0.123561E 02 -0.229264E 01 -0. 166675E 01 0.301905E 01 0.125434E 02 -0.24799OE 01 -6.410 O.OOOOOOE 00 v. 

-.J 



ELEMENT NO. = 10 
1 -0.128137E 01 0.113448E 02 -0.143389E 01 0.301902E 01 0.115056E 02 -0.144216E 01 6.398 
2 0.633380E 00 0.943011E 01 -0.475026E 01 0.301905E 01 0.115056E 02 -0.144210E 01 23.601 
3 -0.20071bE 00 0.102640E 02 -0.118721E 01 0.301699E 01 0.103970E 02 -0.333716E 00 6.392 
4 0.13672E01 0.867602E 01 -0.393779E 01 0.301699E 01 0.103971E 02 -0.333762E 00 23.606 

ELEMENT NO. = 11 
1 0.31168§E 01 0.6946~8E 01 -0.618428E 01 0.301904E 01 0.115057E 02 -0.144222E 01 36.398 
2 0.69465 E 01 0.3116 9E 01 -0.618428E 01 0.301904E 01 0.115057E 02 -0.144222E 01 -36.398 
3 0.344379E 01 0.661991E 01 -0.512514E 01 0.301911E 01 0.103974E 02 -0.333695E 00 36.392 
4 0.661991E 01 0.344379E 01 -0.512514E 01 0.301911E 01 0.103974E 02 -0.333695E 00 -36.392 

ELEMENT NO. = 12 
1 0.943011E 01 0.633380E 00 -0.475028E 01 0.301905E 01 0.115056E 02 -0.144210E 01 -23.601 
2 0.113448E 02 -0.12813~E 01 -0.143389E 01 0.301g02E 01 0.115056E 02 -0.144216E 01 -6.398 
3 0.867602E 01 0.13672 E 01 -0.393779E 01 0.301 99E 01 0.103971E 02 -0.333762E 00 -23.608 
4 0.102640E 02 -0.200717E 00 -0.118721E 01 0.301899E 01 0.103970E 02 -0.333716E 00 -6.392 

A.4.7 Solution of a non-layered elasto-plastic Mindlin plate. Example of 
Section 9.7, Fig. 9.6 

Input data 

MINDLIN NON-LAYERED EXAMPLE, 
25 4 1 5 9 1 
1 1 123 8 
2 1 3 4 5 -10 
3 1 11 12 13 18 
4 1 13 14 15 20 
1 0.0 0.0 
3 0.25 0.0 
5 0.5 0.0 

11 0.0 0.25 
13 0.25 0.25 
15 0.50 0.25 
21 0.0 0.50 
23 0.25 0.50 
25 0.50 0.50 

1 111 
2 110 

SECTION 9.7, 
3 2 
13 12 
15 14 
23 22 
25 24 

FIG. 9.6 
1 39 0 
11 6 7 
13 8 9 
21 16 17 
23 18 19 

O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 

O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 

O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 
O.OOOOOOE 00 

'Tl -Z -;;:J 
rn 
l"" 
rn 
3:: 
rn 
Z 
;:;l -Z 
"'C 
l"" 
;J> 
Vl 
-I -n 
::j 
-< 



3 110 
4 110 
5 110 
6 101 

10 010 
11 101 
15 010 
16 101 
20 010 
21 101 
22 001 
23 001 
24 001 
25 011 

1 
10.92 0.3 0.01 1.0 0.04 

1111 > 
1111 "t! 

"t! UNIFORMLY DISTRIBUTED LOADING INTENSITY -O.OlLB1SQ INCH m 
0 Z 

0.5 0.1 60 0 3 0.005 0.1 60 0 3 1:1 -0.02 0.1 60 0 3 0.002 0.1 60 0 3 >< 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 -0.02 0.1 60 0 3 0.002 0.1 60 0 3 < 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.02 0.1 60 0 3 0.002 0.1 60 0 3 
0.01 0.1 60 0 3 0.002 0.1 60 0 3 
0.01 0.1 60 0 3 0.002 0.1 60 0 3 VI 

0.005 0.1 60 0 3 0.002 0.1 60 0 3 VI 
-.0 

0.005 0.1 60 0 3 0.002 0.1 60 0 3 
0.005 0.1 60 0 3 0.002 0.1 60 0 3 



Line printer output VI 
g; 

MINDLIN NON-LAYERED EXAMPLE, SECTION 9.7, FIG. 9.6 
NPOIN = 25 NELEM = 4 NVFIX = 16 NTYPE = 5 NNODE = 9 
NMATS = 1 NGAUS = 3 NEVAB = zr NALGO = 2 
NCRIT = 1 NINCS = 39 NLAPS = a NSWIT = a 
ELEMENT PROPERTY NODE NUMBERS 

1 1 1 2 3 8 13 12 11 6 7 
2 1 3 4 5 10 15 14 13 8 9 
3 1 11 12 13 18 23 22 21 16 17 
4 1 13 14 15 20 25 24 23 18 19 .." 

NODE X Y -
1 0.00000 0.00000 

z -
2 .12500 0.00000 

-; 
tTl 

3 .25000 0.00000 
4 .37500 0.00000 

tTl 
r' 

5 .50000 0.00000 tTl 

6 0.00000 .12500 3: 
7 0.00000 0.00000 tTl 

8 .25000 .12500 
Z -; 

9 0.00000 0.00000 til 

10 .50000 .12500 -Z 
11 0.00000 .25000 
12 .12500 .25000 'tI 

r' 
13 .25000 .25000 > 
14 .37500 .25000 til 

-; 
15 .50000 .25000 -
16 0.00000 .37500 -

(j -
17 0.00000 0.00000 

-; 
-< 

19 .25000 .37500 
19 0.00000 0.00000 
20 .50000 .37500 
21 0.00000 .50000 
22 .12~ .50000 
23 .250 a .50000 
24 .37 00 .50000 
25 .50000 .50000 

NODE CODE nXED VALUES 
1 111 0.000000 0.000000 0.000000 
2 110 0.000000 0.000000 0.000000 
3 110 0.000000 0.000000 0.000000 



4 110 0.000000 
5 110 0.000000 
6 101 0.000000 

10 10 0.000000 
11 101 0.000000 
15 10 0.000000 
16 101 0.000000 
20 10 0.000000 
21 101 0.000000 
22 1 0.000000 
23 1 0.000000 
24 1 0.000000 
25 11 0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

NUMBER ELEMENT PROPERTIES 
3 .4472 .0528 . 14846E-01 
4 .4472 .1972 .20658E-02 
5 .3750 .1250 .93182E-02 
6 .3750 .2218 • 16282E-01 
7 .4718 .0282 . 32303E-02 
8 .4718 .1250 .10243E-01 
9 .4718 .2218 .16015E-01 

ELEMENT NO. = 3 
• 0528 .3028 

'? .0528 .4472 
j .1972 .3028 
4 .1972 .4472 
5 .1250 .3750 
6 .1250 .4718 
7 .2218 .2782 
8 .2218 .3750 
9 .2218 .4718 

1 
2 
3 
4 
5 
6 
7 
8 
9 

ELEMENT NO. = 4 
.3028 .3028 
.3028 .4472 
.4472 .3028 
.4472 .4472 
. 3750 .3750 
.3750 .4718 
. 4718 .2782 
.4718 .3750 
• 4718 .4718 

. 42854E-02 

.21696E-02 

. 51552E-02 

. 94492E-02 

.10703E-01 

.11671 E-01 
• 14812E-01 
. 19151E-01 
.17815E-01 

.17182E-01 

.18488E-01 

.21135E-01 
• 18023E-01 
.20733E-01 
.22807E-01 
.19267E-01 
.22787E-01 
• 23695E-01 

.14812E-01 -.67909E-02 O. 
.21696E-02 -.51738E-02 O. 
.10703E-01 -.45473E-02 O. 
.19151E-01 -.37263E-02 O. 
.51552E-02 -.17322E-02 O. 
.11671E-01 -.53073E-03 O. 
.17815E-01 -.10205£-02 O. 

.24316E-02 -.83085E-02 O • 

.20658E-02 -.51738E-02 O. 

.32303E-02 -.17322E-02 O . 

.83078E-02 -.85898E-02 O. 

.93182E-02 -.45473E-02 O. 

.10243E-01 -.53073E-03 O. 

.14846E-01 -.67909E-02 O • 

.16282E-01 -.37263E-02 O . 

.16015E-01 -.10205E-02 O. 

.17182E-01 -.45805E-02 O. 

.18023E-01 -.33076E-02 O. 

.19267E-01 -.13109E-02 O • 
• 18488E-01 -.33076E-02 O. 
• 20733 E-O 1 -.17880E-02 O • 
• 22787E-01 -.23644E-03 O . 
.21135E-01 -.13109E-02 O. 
.22807E-01 -.23644E-03 O • 
.23695E-01 .17833E-03 O • 

:> 
~ 
~ 
tTl 
Z 
o .... 
X 
.... 
< 



INCREMENT NUMBER 30 
~OAD FACTOR = .85600 CONVERGENCE TOLERANCE = .10000 

INITIAL OUTPUT PARAMETER = 0 FINAL OUTPUT PARAMETER = 3 
IN CONVER ITERATION NUMBER 1 
DISPLACEMENT CHANGE NORM 

• 282E+oO • 280E+OO • 280E+OO 
TOTAL 

-.281E+00 
RESIDUAL NORM 

• 182E-l0 . 896E-06 . 896E-06 
TOTAL 

-.605E-07 
CONVERGENCE CODE 
IN CONVER ITERATION NUMBER 2 
DISPLACEMENT CHANGE NORM 

• 293E-06 . 294E-06 . 294E-06 
TOTAL 

-.294E-06 
RESIDUAL NORM 

.183E-ll .266E-ll .245E-ll 
TOTAL 

-.183E-ll 
CONVERGENCE CODE 0 

DISPLACEMENTS 
NODE DISP. XZ-ROT. YZ-ROT. 

1 O. O. O. 
2 O. O. . 455052E+04 
3 o. o. . 879322E+04 
4 O. O. .106738E+05 
5 o. o. . 118879E+05 
6 q. .455052E+04 o. 
7 o. .410180E+03 .410180E+03 
8 .101997E+04 . 289215E+04 .742347E+04 
9 o. . 984409E+02 .623582E+03 

10 • 139568E+o4 O. .102627E+05 
11 O. . 879322E+04 O. 
12 .101997E+04 .742347E+04 .289215E+04 
13 • 183493E+04 . 557560E+04 .557560E+04 
14 .235881E+04 .275674E+04 .688004E+04 
15 .252626E+04 o. .772635E+04 

MAX. NO. OF ITERATIONS = 60 

'TI -Z -iri 
ttl 
r 
ttl 
:s: 
ttl 
Z 
;;j 



16 o. .106138E+05 o. 
17 o. .623582E+03 • 984409E+02 
18 .235881E+04 • 688004E+04 • 275674E+04 
19 o. • 230744E+03 .230744E+03 
20 • 325803E+04 O. .389260E+04 
21 O • • 118879E+05 O. 
22 • 139568E+04 • 102627E+05 o . 
23 • 252626E+04 .772635E+o4 o . 
24 .325803E+04 • 389260E+04 o . 
25 • 349631E+04 o. O. 

REACTIONS 
NODE FORCE XZ-MOMENT YZ-MOMENT 

1 .254174E-01 -.405413E-03 -.405413E-03 
2 -.704030E-01 -.474595E-02 o . 
3 • 489298E-01 -.861086E-03 O. 
4 -.130462E+OO -.178824E-02 o. 
5 .322264E-01 -.228435E-02 o. )-

6 -.704030E-01 o. -.474595E-02 '"tl 

10 O. -.368943E-02 O. 
'"tl 
tTl 

11 • 489298E-01 O. -.861086E-03 Z 
15 o. -.181699E-02 o. 0 -16 -. 130462E+00 o. -.178824E-02 >< 
20 o. -.720662E-02 o. -21 • 322264E-01 o. -.228435E-02 < 
22 O. O. -.368943E-02 
23 o. o. -.181699E-02 
24 O. O. -.720662E-02 
25 O. -.132398E-02 -.132398E-02 

STRESSES 
G.P. X-COORD. Y-CooRD. X-MOMENT Y-MOMENT XY-MCMENT EFF. PL.SfRAIN 

ELEMENT NO. = 1 
1 .0528 .0528 -.99908E-03 -.99908E-03 -.23087E-01 .57698E+04 
2 .0528 .1972 .51873E-03 .14760E-02 -.23082E-01 .26193E+04 
3 .1972 .0528 .80061E-02 .59482E-02 -.20218E-01 O. 
4 .1972 .1972 .14760E-02 .51873E-03 -.23082E-01 .26193E+04 
5 .1250 .1250 • 86235E-02 .86235E-02 -.20786E-01 o . 
6 .1250 .2218 .15459E-01 • 16648E-01 -.16501E-01 o . 
7 .2218 .0282 • 59482E-02 . 80061E-02 -.20218E-01 o . 
8 .2218 • 1250 • 16648E-01 .15459E-01 -.16501E-01 o . V> 

9 .2218 .2218 .21010E-01 .21010E-01 -.14518E-01 o. a-..., 



ELEMENT NO. = 2 
1 .3028 .0528 
2 .3028 .1972 
3 .4472 .0528 
4 .4472 .1972 
5 .3150 .1250 
6 .3750 .2218 
1 .4718 .0282 
8 .4118 .1250 
9 .4718 .2218 

ELEMENT NO. = 3 
1 .0528 .3028 
2 .0528 .4412 
3 .1972 .3028 
4 .1972 .4472 
5 .1250 .3750 
6 .1250 .4718 
7 .2218 .2782 
8 .2218 .3750 
9 .2218 .4718 

ELEMENT NO. = 4 

• 43611E-02 
• 14580E-01 
. 25755E-01 
. 36231E-02 
. 16121E-01 
• 28118E-01 
. 55108E-02 
• 17512E-01 
• 27549E-01 

.71168E-02 
• 39462E-02 
. 88899E-02 
. 16625E-01 
.18645E-01 
. 20166E-Ol 
. 25762E-Ol 
. 33194E-Ol 
.30853E-Ol 

1 .3028 .3028 .29634E-01 
2 .3028 .4472 .31762E-01 
3 .4472 .3028 .36223E-01 
4 .4472 .4472 .31040E-01 
5 .3150 .3750 .35776E-01 
6 .3750 .4118 .39413E-01 
7 .4718 .2782 .33145E-01 
8 .4718 .3750 . 39460E-01 
9 .4718 .4718 • 39997E-01 
1 • 109200E+02' .300000E+OO 

CONVERGENCE PARAMETERS 
IrnIS = 1 !.CDIS =1110 
IFRES = 1 NCRES =1110 

.71168E-02 -.14262E-Ol O . 

.16625E-Ol -.14808E-Ol O • 

.25162E-Ol -.11744E-01 O • 

.39462E-02 -.88176E-02 O . 

.18645E-Ol -.18343E-02 O . 

.33194E-01 -.64813E-02 O . 

.88899E-02 -.29126E-02 O • 

.20166E-Ol -.91283E-03 O • 

.30853E-01 -.11952E-02 O • 

.43617E-02 -.14262E-01 O. 

.36231E-02 -.88176E-02 O • 

.55108E-02 -.29126E-02 O. 

.14580E-01 -.14808E-Ol O • 

.16121E-Ol -.78343E-02 O. 

.17512E-Ol -.91283E-03 O • 

.25155E-01 -.11144E-01 O. 

.28118E-01 -.64813E-02 O • 

.27549E-01 -.11952E-02 O. 

.29634E-01 -.19751E-02 O. 

.31040E-01 -.51935E-02 O. 

.33145E-01 -.23092E-02 O. 

.31762E-01 -.51935E-02 O. 

.35176E-01 -.31804E-02 O. 

.39460E-01 -.46572E-03 O. 
• 36223 E-01 -.23092E-02 O. 
.39413E-01 -.46512E-03 O. 
. 39991E-01 .26371E-03 . 19186E+04 
.100000E-Ol .100000E+Ol O. 

UNIFORMLY DISTRIBUTED LOADING INTENSITY -O.OlLB/SQ INCH 
o 

TOTAL NODAL FORCES FOR EACH ELEMENT 
-.5208E-02 O. O. 
O. .2083E-Ol O. 

.2083E-Ol 
O. 

O. O. 
-.5208E-02 O. 

.400000E-01 O. 

-.5208E-02 
O. 

O. O. -.520BE-02 O. O. .2083E-Ol O. 

O. 
.2083E-01 

O. 

o. 

::!l 
z 
-I 
tTl 

tTl 
r 
tTl 
5: 
tTl 
Z 
CiJ -Z 
"'0 
r 
> 
~ -o 
-I 
-< 



2 

3 

4 

.Z718E-Ol 
-.5208E-02 
O. 
O. 

• 2778E-Ol 
-.5208E-02 
O. 
O. 

. 2778E-Ol 
-.5208E-02 
O. 
O. 

O. 
O. 

.2083E-Ol 
O. 
O. 
O. 

.2083E-Ol 
O. 
O. 
O. 

.2083E-Ol 
O • 

• 2778E-Ol O. 
INCREMENT NUMBER 

O. 
O. 
O. 
-.5208E-02 
O. 
O. 
O. 
-.5208E-02 
O. 
O. 
O. 
-.5208E-02 
O. 

.2083E-Ol 
O. 
O • 

.2083E-Ol 
O. 
O • 

O. 
-.5208E-02 
O. 

O. 
-.5208E-02 
O. 

.2083E-Ol O. 
O. -. 5208E-02 
O. O. 

LOAD FACTOR = .50000 CONVERGENCE TOLERANCE = 
INITIAL OUTPUT PARAMETER = 0 FINAL OUTPUT PARAMETER = 

.10000 
3 

IN CONVER ITERATION NUMBER 1 
DISPLACEMENT CHANGE NORM 

.lOOE+03 .100E+03 
TOTAL 

-.100E+03 
RESIDUAL NORM 

.845E-08 
, TOTAL 

• 662E-08 

-.845E-08 
CONVERGENCE CODE 1 

.100E+03 

• 628E-08 

IN CONVER ITERATION NUMBER 2 
DISPLACEMENT CHANGE NORM 

.918E-08 .908E-08 
TOTAL 

-.903E-08 
RESIDUAL NORM 

.265E-ll 
TOTAL 

-.265E-ll 

.200E-ll 

CONVERGENCE CODE 0 
DISPLACEMENTS 

NODE DISP. 
1 O. 
2 O. 

O. 
O. 

• 897E-08 

.295E-ll 

XZ-ROT. YZ-ROT. 
O. 

.261614E+o4 

O. -.5208E-02 O. 
O. O. .2083E-Ol 

.2083E-Ol O. O. 

O. -.5208E-02 O. 
O. O. .2083E-Ol 

.2083E-Ol o. O. 

O. -.5208E-02 O. 
o. o . .2083E-Ol 

• 2083E-Ol O. O. 

MAX. NO. OF ITERATIONS = 60 

-< 

VI 

'" VI 



3 o. O. .505686E+OII 

" O. O. .615962E+04 
v. a-

5 O. O. .687815E+OII a-

6 O. .2616111E+OII O. 
7 o. • 230 157E+03 .230157E+03 
8 .5879111E+03 • 167781E+OII .428957E+OII 
9 O • .639453E+02 .36227 IIE+03 

10 • 8072311E+03 O. • 593553E+04 
11 O. .505686E+04 O. 
12 • 581914E+03 .II28957E+04 • 167781E+04 
13 .105976E+04 .323511E+OII .323511 E+o4 ." 
14 • 136395E+04 .160213E+OII .398110E+04 -
15 • 146134E+04 O. .447417E+04 Z -16 O. .615962E+04 O. -l 

11 O. .362274E+03 .639453E+02 
tTl 

18 . 136395E+04 .398710E+04 .160213E+OII tTl 

19 O. .132888E+03 .132888E+03 l;t 
20 • 188400 E+04 O. .224070E+04 3': 
21 O. .687815E+04 O. tTl 

22 .807234E+03 . 593553E+04 o. Z 
-l 

23 .14613'4E+04 .447411E...o4 O. rJl 

24 .188400E+04 • 224010E+04 O • -
25 .202089E+04 O. O. Z 

REACTIONS "'CI 

NODE FORCE XZ-MOMENT YZ-MOMENT 
t"" 
:> 

1 • 124667E-01 -.351591E-03 -.351591E-03 Vl 

2 -.399935E-01 -.292695E-02 O. -l -
3 .280665E-01 -.486232E-03 O. (j -4 -.154754E-01 -.103874E-02 O. -l 
5 .186691E-01 -.132162E-02 O. -< 
6 -.399935E-\)1 O. -.292695E-02 

10 O. -.215061E-02 O • 
11 • 2Y0665E-01 O. -.II86232E-03 
15 O. -.105925E-02 O. 
16 -.754754E-Ol O. -.103814E-02 
2!J O. -.1I17385E-02 Q • 
21 • 186691 E-01 O. -.132162E-02 
22 O. O. -.215061E-02 
23 O. O. -.105925E-02 
24 O. O. -.411385E-02 
25 O. - .7 83B42E-03 -.783842E-03 



STRESSES 
G.P. X-COORD. Y-COORD. X-MOMENT Y-MOMENT XY-MOMENT EFF.PL.STRAIN 

ELEMENT NO. = 1 
1 .0528 .0528 -.61926E-03 -.61926E-03 -.15278E-01 O. 
2 .0528 .1972 • 27063E-03 .86852E-03 -.14197E-01 o. 
3 .1972 .0528 .44517E-02 .33436E-02 -.11677E-01 O. 
4 .1972 .1972 • 86852E-03 .27063E-03 -.14197E-01 O. 
5 .1250 .1250 . 48794E-02 .48794E-02 -.12011E-01 O. 
6 .1250 .2218 . 87584E-02 .94485E-02 -.95831E-02 O. 
7 .2218 .0282 .33436E-02 .44517E-02 -.11677E-01 O. 
8 .2218 .• 1250 . 94485E-02 .87584E-02 -.95B31E-02 O. 
9 .221B .2218 .11999E-01 .11999E-01 -.B445BE-02 O. 

ELEMENT NO. = 2 
1 .302B .0528 .24316E-02 .42854E-02 -.83085E-02 O. 
2 .3028 .1972.8307 8E-02 .94492E-02 -. 85898E-02 O. 

etc. 

A.4.8 Solution of dynamic transient elasto-piastic problem by explicit 
time integration. Example of Section 10.7.2, Fig. 10.3 

Input data 

53 10 2 1 
SPHERICAL CAP EXAMPLE ,DYNPAK 
6 3 8 11 2 2 
1 1 1 467 
2 1 6 9 11 12 
3 111 14 16 17 
4 1 16 19 21 22 
5 1 21 24 26 27 
6 1 26 29 31 32 
7 1 31 34 36 37 
8 1 36 39 41 42 
9 1 41 44 46 47 

10 1 46 49 51 52 
1 22.27 0.0000 
4 22.27 1.3335 
6 22.27 2.6670 
9 22.27 4.0005 

, SECTION 10.7.2 ,FIG. 10.3 
4 2 0 0 2 3 
8 5 3 2' 

13 10 8 7 
18 15 13 12 
23 20 18 17 
28 25 23 22 
33 30 28 27 
3B 35 33 32 
43 40 38 37 
48 45 43 42 
53 50 48 47 
32 22.475 16.0020 
37 22.475 18.6690 
42 22.475 21.3360 
47 22.475 24.0030 

> 
"a 
." 
t'I'l 
Z o ..... 
X 
..... 
< 

V> 

'" ..... 



11 22.27 5.3340 52 22.475 26.6700 VI 
0-14 22.27 6.6675 3 22.68 00.0000 00 

16 22.27 8.0010 5 22.68 1.3335 
19 22.27 9.3345 8 22.68 2.6670 
21 22.27 10.6680 10 22.68 4.0005 
24 22.27 12.0015 13 22.68 5.3340 
26 22.27 13.3350 15 22.68 6.6675 
29 22.27 14.6685 18 22.68 8.0010 
31 22.27 16.0020 20 22.68 9.33115 
34 22.27 17.3355 23 22.68 10.6680 
36 22.27 18.6690 25 22.68 12.0015 "11 
39 22.27 20.0025 28 22.68 13.3350 -41 22.27 21.3360 30 22.68 14.6685 z -44 22.27 22.6695 33 22.68 16.0020 -! 
46 22.27 24.0030 35 22.68 17 .3355 til 

49 22.27 25 .3365 38 22.68 18.6690 ~ 
51 22.27 26 .6700 40 22.68 20.0025 til 
2 22.475 00.0000 43 22.68 21.3360 3: 
7 22.475 2.6670 45 22.68 22 .6695 til 

12 22.475 5.3340 48 22.68 24.0030 Z 
-! 

17 22.475 8.0010 50 22.68 25.3365 til 

22 22.475 10.6680 53 22.68 26 .6700 -
27 22.475 13.3350 Z 

1 10 "'CI 
r 2 10 ;I>-

3 10 til 
-! 51 11 -52 11 (') -53 11 -! 

1 >< 
10500000.00.3 0.0 0.000245 0.0 24000.0 214285.71 0.0 
10000.0 1.0 6 1.0 

500 10 25 1 1 1 1 a a 0 1 
0.0000004 0.001 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 

1 
1 
2 2 2 2 2 2 2 2 2 2 

53 0.0 
53 0.0 



DISTRIBUTED STEP PRESSURE P=600LBIIN sQ. 
0 0 1 0 

10 
1 8 5 3 

600.0 600.0 600.0 0.0 0.0 
2 13 10 8 

600.0 600.0 600.0 0.0 0.0 
3 18 15 13 

600.0 600.0 600.0 0.0 0.0 
4 23 20 18 

600.0 600.0 600.0 0.0 0.0 
5 28 25 23 

600.0 600.0 600.0 0.0 0.0 
6 33 30 28 

600.0 600.0 600.0 0.0 0.0 
7 38 35 33 

600.0 600.0 600.0 0.0 0.0 
8 43 40 38 

600.0 600.0 600.0 0.0 0.0 
9 48 45 43 

600.0 600.0 600.0 0.0 0.0 
10 53 50 48 

600.0 600.0 600.0 0.0 0.0 
; 

Line printer output 

SPHERICAL CAP EXAMPLE ,DYNPAK ,SECTION 10.7.2 
CONTROL PARAMETERS 

NPOIN = 53 
NTYPE = 3 
NHATS = 1 
NDIME = 2 
NPREV = 0 
NGAUH = 3 

NELEM = 
NNODE = 
NPROP = 
NSTRE = 
NCONH = 
NRADS = 

10 
8 

11 
4 
o 
1 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

,FIG. 10.3 

NVFIX = 
NDOFN = 
NGAUS = 
NCRIT = 
NLAPS: 

6 
2 
2 
2 
2 

> 
." 
." 
III z 
t:7 ->< 
<1 

v. 
$ 



ELEMENT PROPERTY NODE NUMBERS VI ..... 1 1 1 4 6 7 8 5 3 2 0 
2 1 6 9 11 12 13 10 8 7 
3 1 11 14 16 17 18 15 13 12 
4 1 16 19 21 22 23 20 18 17 
5 1 21 24 26 27 28 25 23 22 
6 1 26 29 31 32 33 30 28 27 
7 1 31 34 36 37 38 35 33 32 
8 1 36 39 41 42 43 40 38 37 
9 1 41 44 46 47 48 45 43 42 

10 1 46 49 51 52 53 50 48 47 
!! 1 22.270 0.000 NODE X Y 

4 22.270 1.334 1 0.000 22.270 z 
6 22.270 2.667 2 0.000 22.475 -I 

rn 9 22.270 4.001 3 0.000 22.680 
rn 11 22.270 5.334 4 .518 22.264 r 14 22.270 6.668 5 .528 22.674 rn 

16 22.270 8.001 6 1.036 22.246 ~ 
19 22.270 9.335 7 1.046 22.451 rn 
21 22.270 10.668 8 1.055 22.655 z 

-I 24 22.270 12.002 9 1.554 22.216 ~ 

26 22.270 13.335 10 1.582 22.625 -29 22.270 14.669 11 2.070 22.174 Z 
31 22.270 16.002 12 2.089 22.378 "" r 34 22.270 17 .336 13 2.108 22.582 ;l> 
36 22.270 18.669 14 2.586 22.119 ~ 

-I 39 22.270 20 .003 15 2.633 22.527 -41 22.270 21 .336 16 3.100 22.053 n 
44 22.270 22.670 17 3.128 22.256 ::j 
46 22.270 2l".003 18 3.157 22.459 -< 
49 22.270 25.337 19 3.612 21.975 
51 22.~, 26.670 20 3.679 22.380 
2 22.4 0.000 21 4.123 21.885 
7 22.475 2.667 22 4.161 22.087 

12 22.475 5.334 23 4.198 22.288 
17 . 22.475 8.001 24 4.631 21. 783 
22 22.475 10.668 25 4.716 22.184 
27 22.475 13.335 26 5.136 21.670 
32 22.475 16.002 27 5.184 21 .869 
37 22.475 18.669 28 5.231 22.069 



42 22.475 21.336 29 5.639 21.544 
47 22.475 24.003 30 5.743 21. 941 
52 22.475 26 .670 31 6.139 21.407 
3 22.680 0.000 32 6.196 21.604 
5 22.680 1.334 33 6.252 21.801 
8 22.680 2.667 34 6.636 21 .258 

10 22 .680 4.001 35 6.758 21.650 
13 22.680 5.334 36 7.129 21.098 
15 22.680 6.668 37 7.194 21.292 
18 22.680 8.001 38 7.260 21.487 
20 22.680 9.335 39 7.618 20.927 
23 22.680 10.668 40 7.758 21.312 
25 22.680 12.002 41 8.103 20.744 
28 22.680 13.335 42 8.177 20.935 
30 22.680 14.669 43 8.252 21.126 
33 22.680 16.002 44 8.583 20.549 
35 22.680 17.336 45 8.741 20.928 ;l> 
38 22.680 18.669 46 9.059 20.344 .. 
40 22.680 20.003 47 9.142 20.531 .. rn 
43 22.680 21.336 48 9.226 20.719 Z 
45 22.680 22.670 49 9.530 20.128 " -48 22.680 24.003 50 9.706 20.498 >< 
50 22.680 25.337 51 9.996 19.901 -< 
53 22.680 26.670 52 10.088 20.084 

53 10.180 20.267 
NODE CODE 

1 10 13 00 25 00 37 00 49 00 
2 10 14 00 26 00 38 00 50 00 
3 10 15 00 27 00 39 00 51 11 
4 00 16 00 28 00 40 00 52 11 
5 00 17 00 29 00 41 00 53 11 
6 00 18 00 30 00 42 00 
7 00 19 00 31 00 43 00 
8 00 20 00 32 00 44 00 
9 00 21 00 33 00 45 00 

10 00 22 00 34 00 46 00 
11 00 23 00 35 00 47 00 
12 00 24 00 36 00 48 00 VI .... 



MATERIAL PROPERTIES 
MATERIAL NO 1 
YOUNG MODULUS .1050E+o8 
POISSON RATIO .3000 
THICKNESS O. 
MASS DENSITY .2450E-03 
ALPHA TEMPR o. 
REFERENCE FO .2400E+05 
HARDENING PAR .2143E+o6 
FRICT ANGLE o. 
FLUIDITY PAR .1000E+05 
EXP DELTA 1.000 
NFLOW CODE 1.000 
TIME STEPPING PARAMETERS 
NSTEP: 500 NOUTD: 10 
NREQD: 1 NREQS: 1 
IFUNC: 1 IFIXD: 0 
KSTEP: 0 IPRED= 1 
DTIME: .4000E-06 DTEND:. 1000E-02 
AALFA: O. BEETA: O. 
GAAHA: O. AZERO: O. 
OMEGA: O. TOLER: O. 

SELECTIVE OUTPUT REQUESTED FOR FOLLOWING 
NODES 1 
G.P. 1 

TYPE OF ELEMENT, IMPLICIT:1,EXPLICIT:2 
2 2 2 2 2 2 222 

NODE INITIAL X-DISP. INITIAL Y-DISP. 
53 o. O. 

NODE INITIAL X-VELD. INITIAL Y-VELO. 
53 o. o. 

2 

NOUTP= 
NACCE: 
MITER: 

250 
1 
o 

DTREC: O. 
DELTA: o. 
BZERO: O. 

LOAD CASE TITLE - DISTRIBUTED STEP PRESSURE p=600LB/IN 
LOAD INPUT P~AMETERS 
POINT LOADS 0 
GRAVITY 0 
EDGE LOAD 1 
TEMPERATURE 0 

NO. OF LOADED EDGES = 10 
LIST OF LOADED EDGES AND APPLIED LOADS 
185 3 



600.000 600.000 600.000 0.000 0.000 0.000 
2 13 10 8 

600.000 600.000 600.000 0.000 0.000 0.000 
3 18 15 13 

600.000 600.000 600.000 0.000 0.000 0.000 
4 23 20 18 

600.000 600.000 600.000 0.000 0.000 0.000 
5 28 25 23 

600.000 600.000 600.000 0.000 0.000 0.000 
6 33 30 28 

600.000 600.000 600.000 0.000 0.000 0.000 
7 38 35 33 

600.000 600.000 600.000 0.000 0.000 0.000 
8 43 40 38 

600.000 600.000 600.000 0.000 0.000 0.000 
9 48 45 43 

600.000 600.000 600.000 0.000 0.000 0.000 
10 53 50 48 > 

600.000 600.000 600.000 0.000 0.000 0.000 :g 
NODAL LUMPED MASSES III 

1 .10000E+31 2 .90632E-05 3 .10000E+31 4 • 36354E-04 5 .10000E+31 6 .91129E-05 z 
tl 

7 .72039E-04 8 .72039E-04 9 .73~65E-04 10 .73~65E-04 11 .54175E-04 12 .54175E-04 >l 
13 • 29072E-03 14 • 29072E-03 15 .54 38E-04 16 .54 38E-04 17 .21596E-03 18 .21596E-03 
19 .21994E-03 20 .21994E-03 21 .10823E-03 22 .10823E-03 23 .58081E-03 24 .58081E-03 < 
25 .10956E-03 26 .10956E-03 27 .~941E-03 28 'ij5941E-03 29 • 36603E-03 30 • 36603E-03 
31 .16206E-03 32 .16206E-03 33 • 965E-03 34 • 6965E-03 35 • 16404E-03 36 • 16404E-03 
37 .50209E-03 38 .50209E-03 39 .51133E-03 40 .51133E-03 41 .21553E-03 42 .21553E-03 
43 • 11566E-02 44 .11566E-02 45 .21816E-03 46 .21816E-03 47 .64368E-03 48 .64368E-03 
49 • 65553E-03 50 • 65553E-03 51 . 26853E-03 52 • 26853E-03 53 .14410E-02 54 .141110E-02 
55 • 27182E-03 56 .27182E-03 57 .78387E-03 58 .78387E-03 59 .79830E-03 60 .79830E-03 
61 • 32096E-03 62 • 32096E-03 63 • 17224E-02 64 .1722I1E-02 65 • 32488E-03 66 • 321188E-03 
67 • 92236E-03 68 • 92236E-03 69 • 93934E-03 70 • 93934E-03 71 • 37268E-03 72 .37268E-03 
73 .20000E-02 74 .20000E-02 75 . 37724E-03 76 • 37724E-03 77 .10589E-02 78 .10589E-02 
79 .10784E-02 80 .10784E-02 81 • 42360E-03 82 • 42360E-03 83 • 22732E-02 84 .22732E-02 
85 • 42879E-03 86 • 42879E-03 87 .11931E-02 88 .11931E-02 89 .12150E-02 90 • 12150E-02 
91 .47361E-03 92 .47361E-03 93 .25415E-02 94 • 25415E-02 95 • 47940E-03 96 • 47940E-03 
97 . 13247E-02 98 .13247E-02 99 .13491E-02 100 • 13491E-02 101 .10000E+31 102 .10oooE+31 

103 .10000E+31 104 .10000E+31 105 .10000E+31 106 .10000E+31 
DISPLACEMENTS AT TIME STEP 250 TIME .10000000000E-03 VI 

NNODE X-DISP Y-DISP NNODE X-DISP Y-DISP NNODE X-DISP Y-DISP 
..... 
w 



1 -.80211E-36 -.24592E-01 2 .16169E-37 -.24444E-01 3 .80603E-36 -.24218E-01 V\ .... 
4 -.48654E-03 -.24318E-Ol 5 -.47049E-03 -.24082E-01 6 -.10211E-02 -.24452E-01 .,.. 
1 -.95811E-03 -.24211E-01 8 -.89235E-03 -.24136E-01 9 -.16051E-02 -.24657E-01 

10 -.12991E-02 -.24370E-01 11 -.21111E-02 -.25054E-01 12 -.19625E-02 -.24901E-01 
13 -.18113E-02 -.24753E-01 14 -.24614E-02 -.25202E-01 15 -.24494E-02 -.24886E-01 
16 -.21549E-02 -.24939E-01 11 -.29046E-02 -.24767E-01 18 -.30484E-02 -.24575E-01 
19 -.31689E-02 -.24317E-01 20 -.34286E-02 -.23956E-01 21 -.38241E-02 -.23993E-01 
22 -.37338E-02 -.23818E-01 23 -.36581E-02 -.23704E-01 24 -.46693E-02 -.24321E-01 
25 -.39541E-02 -.24145E-01 26 -.55750E-02 -.25293E-01 21 -.50210E-02 -.25239E-01 
28 -.44904E-02 -.25223E-01 29 -.63674E-02 -.26563E-01 30 -.53025E-02 -.26494E-01 
31 -.68354E-02 -.21549E-01 32 -.65796E-02 -.21490E-01 33 -.63050E-02 -.21373E-01 

::l 34 -.68148E-02 -.21616E-01 35 -.72371E-02 -.21120E-01 36 -.61813E-02 -.26275E-01 
37 -.10445E-02 -.25897E-01 38 -.78104E-02 -.25402E-01 39 -.49243E-02 -.23242E-01 Z -40 -.18642E-02 -.21832E-01 41 -.31809E-02 -.18638E-01 42 -.51813E-02 -.11801E-01 -I 
43 -.11315E-02 -.16814E-01 44 -.13257E-02 -.13014E-01 45 -.55830E-02 -.10958E-01 tTl 

46 .15858E-03 -.12532E-02 41 -.16481E-02 -.63066E-02 48 -.35144E-02 -.55039E-02 tTl 
r 49 .11545E-03 -.26453E-02 50 -.14109E-02 -.13718E-02 51 .17196E-33 -.61122E-33 tTl 

52 .47545E-33 • 53008E-33 53 -.45643E-33 -.26351E-33 54 o. O. s: 
STRESSES tTl 

G.P. RR-STRESS ZZ-STRESS RZ-STRESS TI-STRESS MAX P.S. MIN P.S. ANGLE P.S. Z 
-I ELEMENT NO. = 1 Vl 

1 -.142403E+05 -.105408E+04 . 188251 E+04 -.141343E+05 - .190586E+03 -.145038E+05 -1.968 O. -2 -.131416E+05 -.359556E+03 .115180E+04 -.138344E+05 -.132611E+03 -.139146E+05 -7.351 O. Z 
3 -.141863E+05 -.306845E+03 .360317 E+03 -.144528E+05 -.291881E+03 -.141952E+05 -1.425 O. "'0 
4 -.130724E+05 -.794640E+03 .369614E+03 -.134549E+05 -.183523E+03 -.130835E+05 -1.123 O. r 

;I> 
ELEMENT NO. = 2 Vl 

1 -.152116E+05 -.416614E+03 • 112943E+04 -.149803E+05 -.390986E+03 -.153633E+05 -4.339 O • -I 
2 -.123991E+05 -.419294E+03 .854064E+03 -.129006E+05 -.358713E+03 -.124596E+05 -4.051 O. n 
3 -.139919E+05 -.424122E+03 • 544093E+03 -.146986E+05 -.402341E+03 -.140191E+05 -2.292 O. :j 
4 -.131154E+05 -.101621E+03 .580061E+03 -.133125E+05 -.769561E+02 -.131401E+05 -2.435 O. -< 

ELEMENT NO. = 3 
1 -.120725E+O~ .859252E+02 .104211 E+04 -.131897E+05 • 174599E+03 -.121612E+05 -4.864 O • 
2 -.155,??6E+05 -.612336E+03 . 121601E+04 -.144822E+05 -.573651E+03 -.156563E+05 -4.640 O. 
3 -.115151E+05 - .154333E+02 • 151423E+04 -.131835E+05 .121596E+03 -.117121E+05 -1.414 O. 
4 -.158138E+05 -.995668E+03 . 202146E+04 

EL~MENT NO. = 4 
- . 149137E+05 -.123212E+03 -.160862E+05 -1.652 O . 

1 -.133486E+05 -.146264E+03 .285461E+04 -.135909E+05 -.129186E+03 -.139651E+05 -12.186 O. 
2 -.133564E+05 -.136688E+03 . 284714E+o4 -.14080

A
E+05 -.123832E+03 -.139692E+05 -12.145 O. 

3 -.161873E+05 -.716272E+03 • 322161E+04 -. 14509 E+05 -.698999E+02 -.168331E+05 -11.324 O. 
4 -.105957E+05 -.963920E+03 .210077 E+04 -.129019E+05 -.525664E+03 -.110339E+05 -11.184 O. 



ELEMENT NO. = 5 
1 -.168527E+05 -.712967E+03 • 355630 E+04 -.151044E+05 • 358997E+02 -.176015E+05 -11.891 o. 
2 -.965035E+04 -.718838E+03 . 203275E+04 -.122643E+05 -.277959E+03 -.100912E+05 -12.237 o . 
3 -.157929E+05 -.601834E+03 .309818E+04 -.154933E+05 .573147E+Ol -.164005E+05 -11.095 o. 
4 -.109494E+05 -.556352E+03 • 189021 E+04 -.127634E+05 -.223251E+03 -. 112825E+05 -9.994 O. 

ELEMENT NO. = 6 
1 -.136993E+05 -.430264E+03 .276735E+04 -.153917E+05 .123755E+03 -.142533E+05 -11.321 O. 
2 -.130603E+05 -.829663E+03 • 258448E+04 -.139319E+05 - .305957E+03 -.135840E+05 -11.455 o. 
3 -.100891 E+05 -.428639E+03 • 185225 E+04 -.146315E+05 -.856752E+02 -.104321E+05 -10.490 o. 
4 -.167170E+05 -.106309E+04 • 358040E+04 -.158653E+05 -.283044E+03 -.174970E+05 -12.291 o. 

ELEMENT NO. = 7 
1 -.748198E+04 -.154126E+03 .155617E+04 -.136080E+05 .162653E+03 -.779876E+04 -11.506 O. 
2 -.188538E+05 -.1~'938E+04 .502§82E+04 -.172146E+05 -.354022E+03 -.202192E+05 -15.199 o. 
3 -.498918E+04 -.2 3243E+03 .123 02E+04 -.118093E+05 .225769E+02 -.529500E+04 -13.876 o. 
4 -.211022E+05 -.239729E+04 .599980E+04 -.181324E+05 -.638225E+03 -.228613E+05 -16.340 o. 

ELEMENT NO. = 8 
.292698E+03 1 -.421590E+04 -.332032E+03 .167829E+04 -.101971 E+05 -.484063E+04 -20.417 O. 

2 -.203671 E+05 -.292740E+04 • 739486E+04 -.175571 E+05 -.213976E+03 -.230805E+05 -20.150 o. 
3 -.579043E+04 -.191795E+04 .260848E+04 -.859256E+04 -.605623E+03 -.710276E+04 -26.707 o. > 

." 
4 -.179717E+05 -.280583E+04 .716447E+04 -.151334E+05 .434134E+02 -.208210E+05 -21.687 o. ." 

til 
ELEMENT NO. = 9 z 

, 1 -.808480E+04 -.179792E+04 .441523E+04 -.705104E+04 • 478552E+03 -.103613E+05 -27.275 o. " -2 -.138434E+05 -.337445E .. 04 .706677E+04 -. 122206 E+05 .185344E+03 -.174031E .. 05 -26.736 o. )< 

3 -.126711 E+05 -.279604E .. 04 • 796~13E+04 -.613091E+04 • 164120E+04 -.171083E+05 -29.109 o. -< 4 -.825151E+04 -.490425E+04 .337 93E+04 -.813863E+04 -.280717 E+04 -.103486E+05 -31.825 o. 
ELEMENT NO. = 10 

1 -.175308E+05 -.460688E+04 .983514E..o4 -.674090E+04 .699203E+03 -.228369E+05 -28.347 o. 
2 -.149784E..o4 -.237914E+04 .298633E+04 -.325566E+04 .108018E .. 04 -.495715E+04 40.803 o. 
3 -.253662E+05 -.151577E+05 .109573E..o5 -.118829E+05 -.817417E .. 04 -.323498E+05 -32.511 o • 
4 • 721668E+04 .453440E .. 04 .661719E..o3 . 320558E+04 .737105E+04 .438003E+04 13.131 o. 

etc. 



A.4.9 Solution of dynamic transient elasto-piastic problem by implicit/explicit 
approach. Example of Section 11.6.1, Fig. 11.4 

Input data 

53 10 2 1 
SPHERICAL CAP EXAMPLE ,MIXDYN ,SECTION 11.6.1 ,FIG. 11.4 
6 3 8 11 2 2 4 2 0- 0 2 3 
1 1 1 4 6 7 8 5 3 2 
2 1 6 9 11 12 13 10 8 7 
3 1 11 14 16 17 18 15 13 12 
4 1 16 19 21 22 23 20 18 17 
5 1 21 24 26 27 28 25 23 22 
6 1 26 29 31 32 j~ 30 28 27 
7 1 31 311 36 37 35 33 32 
8 1 36 39 41 42 43 lfO 38 37 
9 1 41 44 46 47 48 45 43 42 

10 1 46 49 51 52 53 50 48 lI7 

1 22.27 26 0.0000 22.27 lUg~ 4 22.27 1.3335 29 22.27 
6 22.27 2.6670 31 22.27 16.0020 
9 22.27 4.0005 34 22.27 lt~g§6 11 22.27 5.3340 36 22.27 

14 22.27 6.6~5 39 22.27 20.0025 
16 22.27 / 8.0010 41 22.27 21.~~60 
19 22.27 ' 9.3345 44 22.27 22. 95 
21 22.27 10.6680 46 22.27 24.0030 
24 22.27 12.0015 49 22.27 25.3365 

51 2£.27 26.6700 

"Tl -Z -..,) 
tn 
tn r 
tn 
~ 
tn 
Z 
..,) 
til -Z 
." r 
> 
til 
..,) -n -..,) 
-< 



2 22.475 00.0000 15 22.68 6.6675 
7 22.475 2.6670 18 22.68 8.0010 

12 22.475 5.3340 20 22.68 9.3345 
17 22.475 8.0010 23 22.68 10.6680 
22 22.475 10.6680 25 22.68 12.0015 
zr 22.475 13.3350 28 22.68 13.3350 
32 22.475 16.0020 30 22.68 14.6685 
37 22.475 18.6690 33 22.68 16.0020 
42 22.475 21.3360 35 22.68 1~.3355 
47 22.475 24.0030 38 22.68 1 .6690 
52 22.475 26.6700 40 22.68 20.0025 
3 22.68 00.0000 43 22.68 21.3360 
5 22.68 1.3335 45 22.68 22.6695 
8 22.68 2.6670 48 22.68 24.0030 

10 22.68 4.0005 50 22.68 25.3365 
13 22.68 5.3340 53 22.68 26.6700 

1 10 > 
2 10 :: 

t!I 
3 10 Z 

51 11 0 -, 52 11 >< 
. 53 11 < 1 

10500000.00.3 0.0 0.000245 0.0 24000.0 214285.71 0.0 
10000.0 1.0 1.0 

200 1 20 1 1 1 1 0 5 201 2 
0.0000050 0.001 0.0 0.0 0.0 0.2500 0.50 0.0 
0.0 0.0 0.00010000 

1 
1 
1 1 1 1 1 1 

53 0.0 
53 0.0 
DISTRIBUTED STEP PRESSURE P=600LB/IN SQ. 
0 a 1 0 

10 
1 8 5 3 

600.0 600.0 600.0 0.0 0.0 0.0 Vl 
-.J 

2 13 10 8 -.J 



600.0 600.0 600.0 0.0 0.0 0.0 V> 
-...I 

3 18 15 13 00 

600.0 600.0 600.0 0.0 0.0 0.0 
4 23 20 18 

600.0 600.0 600.0 0.0 0.0 0.0 
5 28 25 23 

600.0 600.0 600.0 0.0 0.0 0.0 
6 33 30 28 

600.0 600.0 600.0 0.0 0.0 0.0 
7 38 35 33 

600.0 600.0 600.0 0.0 0.0 0.0 
8 43 40 38 

"'I1 -600.0 600.0 600.0 0.0 0.0 0.0 Z -9 48 45 43 ~ 

600.0 600.0 600.0 0.0 0.0 0.0 ttl 

10 53 50 48 ttl 

600.0 600.0 600.0 0.0 0.0 0.0 t"'" 
ttl 
:::: 
ttl 

Line printer output Z 
~ en 

SPHERICAL CAP EXAMPLE, MIXDYN ,SECTION 11.6.1 ,FIG. 11.4 -CONTROL PARAMETERS Z 
NPOIN = 53 NELEM = 10 NVFIX = 6 .." 

NTYPE = 3 NNODE = 8 NDOFN= 2 r 

NMATS = 1 NPROP = 11 NGAUS = 2 > en 
NDIME = 2 NSTRE = 4 NCRIT = 2 ~ -NPREV = 0 NCONM = 0 NLAPS = 2 n -NGAUM = 3 NRADS = 1 ~ 

ELEMENT PROPERTY NODE NUMBERS 0<: 

1 1 1 4 6 7 8 5 3 2 
2 1 6 9 11 12 13 10 8 7 
3 1 - 11 14 16 17 18 15 13 12 
4 V 16 19 21 22 23 20 18 17 
5 21 24 26 27 28 25 23 22 
6 1 26 29 31 32 33 30 28 27 
7 1 31 34 36 37 38 35 33 32 
8 1 36 39 41 4<! 43 40 38 37 
9 1 41 44 46 47 48 45 43 42 

10 1 46 49 51 52 53 50 48 47 



1 22.270 0.000 32 22.~75 16.002 
~ 22.270 1.334 37 22.475 18.669 
6 22.270 2.667 ~2 22.475 21.336 
9 22.270 4.001 ~7 22.~75 24.003 

11 22.270 5.334 52 22.~75 26.670 
14 22.270 6.668 3 22.680 0.000 
16 22.270 8.001 5 22.680 1.33~ 
19 22.270 9.335 8 22.680 2.667 
21 22.270 10.668 10 22.680 ~.001 
2~ 22.270 12.002 13 22.680 5.334 
26 22.270 13.335 15 22.680 6.668 
29 22.270 14.669 18 22.680 8.001 
31 22.270 16.002 20 22.680 9.335 
34 22.270 17.336 23 22.680 10.668 
36 22.270 18.669 25 22.680 12.002 
39 22.270 20.003 28 22.680 13.335 
~1 22.270 21.336 30 22.680 14.669 
44 22.270 22.670 33 22.680 16.002 )-... 
46 22.270 24.003 35 22.680 17.336 ... 
~9 22.270 25.337 38 22.680 18.669 til z 
51 22.270 26.670 ~O 22.680 20.003 0 -2 22.~75 0.000 ~3 22.680 21.336 >< 
7 22.~75 2.667 ~5 22.680 22.670 -12 22.~75 5.33~ 48 22.680 24.003 < 

17 22.475 8.001 50 22.680 25.337 
22 22 .475 10.668 53 22.680 26.670 
27 22.475 13.335 

NODE X Y 
1 0.000 22.270 13 2.108 22.582 
2 0.000 22.475 14 2.586 22.119 
3 0.000 22.680 15 2.633 22.527 
11 .518 22.264 16 3.100 22.053 
5 .528 22.674 17 3.128 22.256 
6 1.036 22.246 18 3.157 22.459 
7 1.046 22.451 19 3.612 21.975 
8 1.055 22.655 20 3.679 22.380 
9 1.554 22.216 21 4.123 21.885 

10 1.582 22.625 22 4.161 22.087 
11 2.070 22.174 23 4.198 22.288 VI .... 
12 2.089 22.378 24 4.631 21.783 -0 



4.716 22.184 7.758 VI 25 40 21.312 co 
26 5.136 21.670 41 8.103 20.744 0 

27 5.184 21.869 42 8.177 20.935 
28 5.231 22.069 43 8.252 21.126 
29 5.639 21.544 44 8.583 20.549 
30 5.743 21.941 45 8.741 20.928 
31 6.139 21.407 46 9.059 20.344 
32 6.196 21.604 47 9.142 20.531 
33 6.252 21.801 48 9.226 20.719 
34 6.636 21.258 49 9.530 20.128 
35 6.758 21.650 50 9.706 20.498 "r1 -36 7.129 21.098 51 9.996 19.901 Z 
37 7.194 21.292 52 10.088 20.084 -o-j 
38 7.260 21.487 53 10.180 20.267 ttl 
39 7.618 20.927 ttl 

NODE CODE r" 
37 00 ttl 1 10 19 00 

3: 2 10 20 00 38 00 
tTl 

3 10 21 00 39 00 Z 
4 00 22 00 40 00 o-j 

41 00 CIl 
5 00 23 00 ... 
6 00 24 00 42 00 Z 
7 00 25 00 43 00 

"= 8 00 26 00 44 00 r" 
9 00 27 00 45 00 > 

46 00 CIl 10 00 28 00 -I 47 00 ... 11 00 29 00 (') 
00 30 00 48 00 -12 o-j 

13 00 31 00 49 00 -< 
14 00 32 00 50 00 
15 00 33 00 51 11 
16 00 34 00 52 11 
17 00 35 00 53 11 
18 00 / 36 00 

MATERIAL PROPERTIES 
MATERIAL ,NO 1 
YOONG MODULUS .1050E+o8 
POISSON RATIO .3000 
THICKNESS O. 



MASS DENSITY .2450E-03 
ALPHA TEHPR 0 • 
REFERENCE FO • 2400E+05 
HARDENING PAR .2143E+06 
FRICT ANGLE O. 
FWIDITY PAR .1000E+05 
EXP DELTA 1.000 
NFLOW CODE 1.000 
TIME STEPPING PARAMETERS 
NSTEP= 200 NOUTD: 1 
NREQD= 1 NREQS: 1 
IFUNC= 1 IFIXD: 0 
KSTEP: 201 IPRED: 2 
DTIME= .5000E-05 DTEND: .1000E-02 
AALFA: O. BEETA: O. 
GAAMA= .5000 AZERO: O. 
OMEGA= O. TOLER: .1000E-03 

SELECTIVE OUTPUT REQUESTED FOR FOLLOWING 
NODES 1 
G.P. 1 

TYPE OF ELEMENT, IMPLICIT=1,EXPLICIT:2 
111111111 

;NODE INITIAL X-DISP. INITIAL Y-DISP. 
53 o. O. 

NODE INITIAL X-VELO. INITIAL Y-VELO. 
53 o. o. 

NOllTP: 
NACCE: 
MITER: 

DTREC: 
DELTA: 
BZERO: 

1 

20 
1 
5 

O. 
.2500 

o. 

LOAD CASE TITLE - DISTRIBUTED STEP PRESSURE P:600LB/IN 
LOAD INPUT PARAMETERS 
POINT LOADS 0 
GRAVITY 0 
EllGE LOAD 1 
TEMPERATURE 0 

NO. OF LOADED EDGES: 10 
LIST OF LOADED EDGES AND APPLIED LOADS 
185 3 

600.000 600.000 600.000 
2 13 10 8 

600.000 600.000 600.000 
3 18 15 13 

600.000 600.000 600.000 
4 23 20 18 

0.000 

0.000 

0.000 

0.000 0.000 

0.000 0.000 

0.000 0.000 

» .., .., 
ttl 
Z 
o ->< 

VI 
00 



600.000 600.000 600.000 
5 28 25 23 

600.000 600.000 600.000 
6 33 30 28 

600.000 600.000 600.000 
7 38 35 33 

600.000 600.000 600.000 
8 43 40 38 

600.000 600.000 600.000 
9 48 45 43 

600.000 600.000 600.000 
10 53 50 48 

600.000 600.000 600.000 
NEQNS= 97 NWMTL= 1045 

1 2 4 7 11 16 
162 176 191 207 214 222 
392 406 421 437 444 452 
622 636 651 667 674 682 
852 866 881 897 904 912 

1 2 4 7 11 16 
162 176 191 207 214 222 
392 406 421 437 444 452 
622 636 651 667 674 682 
852 866 881 897 904 912 

INITIAL ACCELERATION 

0.000 0.000 

0.000 0.000 

0.000 0.000 

0.000 0.000 

0.000 0.000 

0.000 0.000 

0.000 0.000 
NWKTL= 1045 
22 29 37 

231 241 252 
461 471 482 
691 701 712 
921 931 942 
22 29 37 

231 241 252 
461 471 482 
691 701 712 
921 931 942 

46 
264 
494 
724 
954 
46 

264 
494 
724 
954 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

56 
277 
507 
737 
967 

56 
277 
507 
737 
967 

67 
291 
521 
751 
981 
67 

291 
521 
751 
981 

79 92 99 107 116 126 
306 322 329 337 346 356 
536 552 559 567 576 586 
766 782 789 797 806 B16 
996 1012 1019 1027 1036 1046 
79 92 99 107 116 126 

306 322 329 337 346 356 
536 552 559 567 576 586 
766 782 789 797 806 816 
996 1012 1019 1027 1036 1046 

137 
367 
597 
827 

137 
367 
597 
827 

149 
379 
609 
839 

149 
379 
609 
839 

-.lB236E+08 .91173E+07 -.54133E+D8 -.35754E+D6 -.18247E+D8 -.13920E+07 -.54061E+D8 -.9301BE+D6 -.18228E+D8 
.91132E+D7 -.23578E+D7 -.54047E+08 -.12424E+07 -.18205E+08 -.38329E+07 -.53943E+D8 -.17443E+07 -.18168E+D8 
.9QB30E+D7 -.49321E+D7 -.53867E+OB -.21006E+07 -.lB128E+08 -.63175E+07 -.53711E+08 -.25752E+07 -.18076E+DB 
.g0371E+07 -.74684E+07 -.53581E+D8 -.29436E+07 -.18003E+08 -.87955E+07 -.53354E+08 -.33945E+07 -.17917E+D8 
.89579E+07 -.99591E+07 -.53151E+D8 -.37934E+07 -.17869E+08 -.11275E+D8 -.52913E+D8 -.42561E+07 -.17812E+D8 
.89049E+07 -.12464E+D8 -.52692E+D8 -.45797E+D7 -.17590E+OB -.136B1E+OB -.52254E+DB -.49619E+07 -.17373E+D8 
.86861E+07 -.14781E+D8 -.51805E+D8 -.55366E+07 -.17632E+08 -.16247E+D8 -.51858E+D8 -.62011E+07 -.17977E+08 
.89849E+07 -.17535E+D8 -.51741E+DB -.58186E+07 -.1631BE+D8 -.18180E+D8 -.50157E+OB -.57372E+07 -.15178E+08 
.75929E+D7 -.18229E+D8 -.47544E+08 -.82556E+07 -.192B3E+DB -.22510E+DB -.53199E+08 -.1226BE+DB -.26298E+OB 
.13102E+DB -.238?1E+D8 -.53089E+08 -.20703E+07 -.50752E+07 -.19969E+OB -.42545E+D8 

266 5 5 5 5 5 4 4 4 4 4 3 4 4 4 4 3 4 
DISPLACEMENTS AT TIME STEP 20 TIME .10000000000E-03 

NNODE X-DISP Y-DISP NNODE X~DISP Y-DISP NNODE X-DISP Y-DISP 
1 O. -.24848E-Ol 2 O. -.24695E-Ol 3 o. -.24531E-Ol 
4 -.49085E-03 -.24866E-Oi 5 -.47375E-03 -.24549E-01 6 -.10248E-02 -.24900E-Ol 

• 46432E+D6 
.87161E+D6 
• 12872E+07 
• 16969E+07 
.21275E+07 
• 24809E+07 
.30987E+07 
.28705E+D7 
.61105E+D7 



7 -.96448E-D3 -.24721E-01 8 -.90720E-03 -.24585E-01 9 -.16044E-02 -.25115E-01 
10 -.13198E-02 -.24815E-D1 11 -.20699E-02 -.25440E-01 12 -.19725E-02 -.25296E-01 
13 -.18734E-02 -.25137E-01 14 -.23709E-02 -.25414E-D1 15 -.25289E-02 -.25071E-01 
16 -.26710E-02 -.24905E-01 17 -.28704E-D2 -.24721E-01 18 -.30683E-02 -.24530E-01 
19 -.31289E-02 -.24240E-01 20 -.33998E-02 -.23877E-01 21 -.37999E-02 -.23915E-01 
22 -.37049E-02 -.23738E-01 23 -.36218E-02 -.23626E-01 24 -.46539E-D2 -.24268E-01 
25 -.39278E-02 -.24100E-01 26 -.55678E-02 -.25249E-01 27 -.50092E-02 -.25194E-01 
28 -.44634E-02 -.25182E-01 29 -.63749E-02 -.26559E-01 30 -.52828E-02 -.26501E-01 
31 -.68507E-02 -.27577E-01 32 -.65811E-02 -.27518E-01 33 -.62954E-02 -.27401E-01 
34 -.68161E-02 -.27664E-01 35 -.72519E-02 -.27166E-01 36 -.61665E-02 -.26284E-01 
31 -.10310E-02 -.25898E-01 38 -.78691E-02 -.25398E-01 39 -.49158E-02 -.23247E-01 
40 -.18646E-02 -.21836E-01 41 -.31688E-02 -.18623E-01 42 -.51681E-02 -.11788E-01 
43 -.11196E-02 -.16855E-01 44 -.13242E-02 -.13015E-01 45 -.557B2E-02 -.10963E-01 
46 .15487E-03 -.72526E-02 47 -.16405E-02 -.62975E-02 48 -.35098E-02 -.54896E-02 
49 .71525E-03 -.26446E-02 50 -.14080E-02 -.13752E-02 51 o. O. 
52 o. o. 53 o. o. 54 O. O. 

STRESSES 
G.P. RR-STRESS ZZ-STRESS RZ-STRESS IT-STRESS MAX P.S. MIN P.S. ANGLE P.S. > .. 

ELEMENT NO. ~ 1 .. 
1 -. 140401 &1-05 -.297607E+03 .102996E+02 -.139518E+05 -.297599E+03 -.140401E+05 -.043 O. 

tTl 
Z 

2 -.137677E .. 05 -.163963E+03 -.597302E+01 -.138441 E+05 -.163961E+03 -.137677E+05 .025 O. Ij -
3 -.144323E .. 05 .442655E+03 .738033E+03 -.141613E+05 .479184£+03 -. 1446 88E+OS -2.834 O. >e 

# -.133330E .. 05 -.936998E+03 .632685 E+03 -.136731E+05 -.904790E+03 -.133652E+05 -2.914 O. -<: 
~ ELEMENT NO. ~ 2 
1 -.152286E->D5 -.445944E .. 02 • 890663E+03 -.148846E+D5 • 747159E+01 -.152807E+05 -3.346 o . 
2 -.125683E+05 -.S04156E+03 .703159E+D3 -.130704E+05 -.463311E+03 -.126091 E+OS -3.324 O • 
3 -.135150E:"05 -.291803E+D3 • 500085E+D3 -.144196E+D5 -.272918E+D3 -.13S339E+05 -2.163 O. 
4 -.143944E->D5 -.155896E+03 .601210E+03 -.137405E+05 -.130555E+03 -.144197E+OS -2.414 O. 

ELEMENT NO. = 3 
1 -.114077E->D5 .321093£+03 .890750E+D3 -.133350E+05 .388356E+D3 -.114749E->D5 -4.318 o . 
2 -.163302E..a5 -.869776 E+03 • 130850E+04 -.149798E+05 -.759812E+03 -.164402E+D5 -4.804 O. 
3 -.119282E->DS -.302176E+02 .202031E+D4 -.130545E+OS .303478E+03 -.122619E->D5 -9.379 O. 
4 -.153434E->D5 -.105963E+04 .231258E+D4 -.149313E+05 -.694548E+03 -.157084E+D5 -8.971 O. 

ELEMENT NO. = 4 
1 -. 140507 E+05 -.635684E+03 • 272355E+D4 -.136019E+OS -.103829E+03 -.145826E+D5 -1'.0S0 O. 
2 -.129503E+05 -.771685E+D3 .251263E+04 -.139120E+05 -.273660E+D3 -.134483E+05 -11.211 O. 
3 -.162765E+D5 -.534438E+03 .331560E+04 -.144035E+05 .135395E+D3 -.169463E+05 -11.421 O • 
4 -.105661E+05 -.107081E+04 • 217283E+04 -.128314E->D5 -.597214E+03 -.110397E+05 -12.296 O. 

v. 
ELEMENT NO. = 5 00 

-.169374E+05 - .616907E+03 • 343220E+o4 -.150478E .. 05 .7 5S061 E+02 -.176298E+05 -11.406 O. w 



2 -.985701 E+OII - • 929878E+03 .189549E+04 -.123230E+05 -.544081E+03 -.102428E+05 -11.504 O. VI 
00 

3 -. 158004 E+05 -.584241E+03 • 320362 E+04 -.154607E+05 • 627411E+02 -.164474E+05 -11.418 O • .I> 

4 -.109975E+05 -.917806E+03 .197734E+04 -.128391 E+05 -.543789E+03 -.113715E+05 -10.711 O. 
ELEMENT NO. = 6 

1 -.137487E+05 -.310136E+03 .270211E+04 -.153590E+05 .212832E+03 -.142716E+05 -10.954 O. 
2 -.131377E+05 -.977521E+03 .241519E+04 -.139613E+05 -.515392E+03 -.135998E+05 -10.832 O. 
3 -.100168E+05 -.385414E+03 • 191198E+04 -.146078E+05 -. 197 402E+02 -.103824E+05 -10.827 O • 
4 -.167785E+05 -.117197E+04 • 363810E+04 -.159001 E+05 -.365543E+03 -.175849E+05 -12.498 O • 

ELEMENT NO. = 7 
1 -.722734E+04 .11-1484E+03 .143221 E+04 -. 134652E+05 .381084E+03 -.749694E+04 -10.661 O. 
2 -.192763E+05 -.178155E+04 • 4920 1 0 E+04 -.173694E+05 -.492791E+03 -.205651E+05 -14.678 O. 
3 -.1I78449E+04 - .226073E+03 · 14021 9E+04 -.117250E+05 • 17070gE+03 -.518127E+04 -15.800 O • "rl -4 -.209663E+05 - . 258450 E+04 .619192E+04 -.181578E+05 - . 693317E+03 -.228575E+05 -16.984 O. Z -ELEMENT NO. = 8 .....j 

1 -.437572E+04 -.157141E+03 .160307E+04 -.101811E+05 • 382891E+03 -.491516E+04 -18.618 O. tTl 

2 -.205255E+05 -.290008E+04 .124227E+04 -.175949E+05 -. 306030 E+03 -.231196E+05 -19.707 O. tTl 
r-

3 - .569981E+04 -.196356E+04 .272300E+04 -.856168E+01I -.5291186E+03 -.113394E+01I -27.1111 O. tTl 
4 -.118661E+05 -.303932E+04 .125350E+04 -.151639E+05 -.811257E+02 -.208249E+05 -22.181 O. 3: 

ELEMENT NO. = 9 tTl 
1 -.820383E+04 -.168373E+04 • 434615E+04 -.104395E+04 .489113E+03 -.103161E+05 -26.563 O. Z 

.....j 
2 -.140012E+05 -.338911E+04 .689124E+o4 -.122639E+05 • 945125E+OO -.173913E+05 -26.195 O. en 
3 -.124091E+05 -.260385E+04 .801119E+04 -.598991E+04 .194216E+04 -.169551E+05 -29.312 O. -4 -.832578E+04 -.512213E+04 . 347110E+04 -.822056E+04 -.289508E+04 -.105528E+05 -32.635 O. Z 

ELEMENT NO. = 10 't:I 
1 -.115228E+05 -.441212E+04 • 989584E+04 -.661527E+04 .9026 88E+03 -.228376E+D5 -28.239 O. r-

> 2 -. 153824E+04 -.224010E+04 .286990E+04 '-. 322046 E+04 .100211 E+04 -.418044E+04 41.514 O. en 
3 -.253810E+05 -. 152556 E+05 .109131E+05 -.119169E+05 -.823306E+04 -.324035E+05 -32.611 O. .....j -4 .108111E+04 .431688E+04 • 684627 E+03 .310099E+04 .124144E+04 .415661 E+04 13.175 O. (j -.....j 

-<: 

etc. 
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SUBJECT INDEX 

Accelerogram, 399, 425, 427 
Ahmad elements, 489 
Alternative form of the yield criterion, 

229 
Alternative material models, 465 
Array initialisation, 238, 297 
Associated plasticity, 224, 273 
Axisymmetric Mindlin plates, 372 
Axisymmetric problems, one dimension, 

92 
Axisymmetric solids, elastic expressions, 

165 

Back substitution, 45, 48 
Backward difference method, 274 
Banded equations, 45, 58 
Bauschinger effect, 90, 222, 309 
Beams on elastic foundations, 151 
Berg yield criterion, 265 
BFGS procedures, 491 
Bingham plastic, 483 
Body forces, 1 M 
Boundary data, 38, 206 
Boundary element methods, 493 
Boundary tractions, 164 
Buffer area, 195 

Central difference time stepping scheme, 
388 

Circular plate, elasto-plastic, 264 
Cohesion, 219 
Combined initial/tangential algorithm, 

21,41,206 
Computational techniques, 495 
Concrete nonlinearity, 477 
Conditional stability, 276, 302, 391, 437 
Conjugate gradient method, 492 
Consistent load vector, 173, 183, 188, 

214 

Constitutive matrix, D: 
Dynamic applications, 413 
Elastic, 163, 165, 167, 169, 192, 193, 

232,233 
Elasto-plastic, 227, 244 
E1asto-plastic Mindlin plates, 326 
Visco-plastic, 274, 286 

Convergence, 14, 21, 65, 72, 109, 212, 
267, 297, 336,451 

Coupled-field problems, 487 
Crack tip elements in plasticity, 487 
Creep buckling, 317 
Critical state model, 476 
Cylinder: 

Elasto-plastic, 262 
E1asto-viscoplastic, 310 

Damping forces, 379, 390 
Deformation Jacobian matrix, 382,404 
Diagonal mass matrix, 389, 392,410 
Distortional strain energy, 219, 265 
Distributed edge loading, 184 
Drucker-Prager yield criterion, 220, 230 
Dynamic dimensioning, 174, 238, 396 
Dynamic equilibrium equations, 378 
Dynamic relaxation, 493 
Dynamic transient analysis; 377 

Discretisation by isoparametric el-
ements, 379 

Equilibrium equations, 378 
Geometric nonlinearity, 382 
Modelling of nonlinearities, 381 

Effective, generalised or equivalent plas
tic strain, 223 

Effective, generalised or equivalent 
stress, 218 

Effective stiffness matrix, implicit dy
namic, 435 

E/IiPlctive stress level, 239 

589 



590 SUBJECT INDEX 

Elasto-plastic general solution process, 
235 

Elasto-pJastic one-dimensional prob
lems,26 

Elasto-plastic stress/strain relation, 224 
Elasto-plasticity, matrix formulation, 

227 
Elasto-plasticity, two-dimensional, 232 
Element, one-dimensional, 24, 25, 100 
Element shape functions, 24, 158, 159, 

160, 179 
Endochronic theory, 479 
Equation assembly and solution, 42, 194 
Equation reduction or elimination, 45 
Equation resolution, 21, 57, 194 
Equation solution, numerical example, 

43 
Equilibrium correction, 101, 107, 276, 

289 
Equilibrium equations, 13,236,275,321 
Error diagnostics, 200, 202, 214, 360 
Euler-Bernoulli beam theory, 121 
Euler's rule, 99, 273 
Explicit time stepping, 273, 302, 377, 

378,431 

Failure criterion, 223 
Flow problems, 480 
Flow rule, 224 
Flow vector, 227, 233, 241, 338, 419 
Fluidity parameter, 97, 273 
Forward difference method, 273 
Fracture mechanics, 484 
Friction slider, 95 
Frontal equation solution, 194 
Further applications, 465 . 

Galerkin process, 23, 29 
Gas diffusion, 22, 68 
Gaussian direct elimination, 45 
Gaussian quadrature data, 179 
Geometric data, 36, 206 
Geometric nonlinearity, 274, 316, 382 
Global shape functions, 23 
Gravity dam, seismic example, 424 
Gravity loading, 183 
Green strains, 383 
Groundwater flow problems, 90 

Heat conduction, 22, 29, 66 
Heterosis element, 319, 325, 370 
Hierarchical formulation, 325 
Hyperelastic problems, 25 

Implicit/explicit time stepping, 377, 431, 
434 

Implicit time stepping, 274, 302, 377,431 
Implicit trapezoidal time stepping 

scheme, 274, 302 
Improved numerical techniques, 466, 

490 
Incrementation of load, 60, 110, 210 
Inertia forces, 379 
Initial stiffness method, 20, 29, 41, 206 
In-plane deformation in plates, 372 
Input data, 35, 205, 281, 399 
Instructions for preparing input data 

for dynamic transient problems: 
Programs DYNPAK and MIXDYN, 

521 
r nstructions for preparing input data 

for one-dimensional problems: 
Program ELPLAS, 506 
Program NONLAS, 506 
Program QUITER, 503 
Program QUNEWT, 505 
Program TIMLA Y, 509 
Program TfMOSH, 508 
Program UNVIS, 507 

Instructions for preparing input data 
for plane, axisymmetric and plate 
bending problems: 

Programs MINDLIN and MIND
LAY, 517 

Program PLANET, 511 
Program VISCOUNT, 516 

Interactive computing, 495 
Internal friction angle, 219 
Isoparametric elements: 

Lagrangian 9-node, 5, 157 
Linear 4-node, 5, 157 
Serendipity, 8-node, 5, 157 

Isoparametric finite element represen
tation, 169 

Isotropic hardening, 222 

J contour integral, 485 
Jacobian matrix, 17,24, 171, 181 

Kinematic hardening, 222, 309 
Kirchhoff thin plate theory, 319 

Lagrangian description, 382 
List of computer programs, 466 
List of subroutines: 

One-dimensional applications, 467 
Two-dimensional applications, 469 
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Load factor, 60, 210 
Load vector, 13,24, 183, 188,405 
Locking material, 30, 92 
Lumped mass matrix, 389, 392,410 

Material properties, 37, 207, 281 
Mathematical theory of plasticity, 215 
Matrix inversion, 288 
Maxwell model, 117, 302, 305 
Mechanical sublayer method, 304 
Metal forming problems, 482 
Method of direct iteration, 14, 24,40,63 
Method of successive approximations, 

14 
Midside nodal coordinate generation, 

178,341,413 
Mindlin plates: 

Elastic expressions, 167 
Mindlin plates, elasto-plastic; 319 

Discretisation, 324 
Equilibrium equations, 321 

Mindlin plates, elasto-plastic layered; 
326 

Nonl~ear equilibrium equations, 327 
Progfam structure, 355 

Mindlin plates, elasto-plastic non
layered; 327 

Nonlinear equilibrium equations, 329 
Program structure, 331 

Mohr-Coulomb yield criterion, 219, 
230, 234 

Newmark time stepping scheme, 432 
Newton-Raphson method, 15,24,40,68 
No-tension model, 477 
Non-associated flow rule, 476 
Nonlinear elastic problems, 25, 74 
Non-Newtonian fluid flow, 482 
Normality condition, 224 
Notched bend specimen, 5 
Numerical integration, 174 

Octahedral shear stress, 218 
One-dimensional FORTRAN programs; 

33 
Direct iteration of quasiharmonic 

problems, 63 
Elasto-plastic problems, 78 
Elasto-viscoplastic problems, 104 
Newton-Raphson solution of quasi-

harmonic problems, 68 
Nonlinear elastic problems, 74 

One-dimensional nonlinear problems, 
!3 

Output of results, 58, 211, 258, 342, 363, 
414 

Overlay method, 90, 304, 316 
Overlay simulation of: 

Four parameter viscous model, 309 
Three element viscous model, 309 
Visco-elastic model, 308 
Visco-elastic-plastic four parameter 

model, 309 

Pi plane, 217 
Piecewise linear strain hardening rep-

resentation, 266 
Piola-Kirchhoff stresses, 386 
Plane Strain, elastic expressions, 164 
Plane Stress, elastic expressions, 162 
Plastic multiplier, 224 
Plastic potential, 224, 273 
Power law pseudoplastic, 483 
Prandtl-Reuss equations, 225 
Predictor-corrector algorithm, 434, 436 
Prescribed displacements in equation 

solution, 46 
Principal stress evaluation, 258 
Profile equation solver, 436, 440 
Program structure, 8, 34, 104, 134, 235, 

281,331,355,392,440 
Programming notation, 10 
Pseudo-loads, viscoplastic, 100, 275 

Quasi-harmonic equation, 22, 63, 68 
Quasi-Newton method, 491 

Rayleigh damping, 391 
Residual forces, 15,71,76,81,102,236, 

249, 344, 364 

Sample input data and line printer out
put: 

Dynamic transient elasto-plastic ex
plicit time integration example, 567 

Dynamic transient elasto-plastic im
plicit/explicit example, 578 

Elasto-plastic layered Timoshenko 
beam, 537 

Non-layered elasto-plastic Mindlin 
plate problem, 558 

One-dimensional direct iteration quasi 
harmonic example, 529 

One-dimensional elasto-plastic prob
lem, 531 
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Sample input data-contd. 
One-dimensional elasto-viscoplastic 

problem, 535 
Two-dimensional elasto-plastic prob

lem,542 
Two-dimensional elasto-viscoplastic 

problem, SSO 
Seismic analysis, 377, 399, 424 
Selective integration, 128, 325, 482 
Shape function derivatives: 

Cartesian, 171, 182 
Local, 171 

Shape function evaluation, 179, 346 
Shells, e1asto-plastic and geometricaJly 

nonlinear, 488 
Singular points on the yield surface, 234 
Space diagonal, 217 
Sphere: 

Elasto-plastic, 267 
Elasto-viscoplastic, 315 

Spherical sheJl, dynamic example, 421, 
458 

Starting algorithm for central difference 
scheme, 390 

Steady state conditions, 104, 109, 279, 
297 

Stiffness matrix, 13, 24, 28, 100, 127, 
142, 173, 244, 283, 348, 367, 439, 
447 

Strain energy function, 25 
Strain hardening, 26, 222, 223 
Strain matrix, B, 172, 191 
Strain matrix, geometric nonlinear, 382, 

395 
Strain softening, 223 
Stress intensity factor, 485 
Stress invariants, 216, 233 
Stress space, 21 7 
Subroutines, elasto-plastic (additional): 

DIMEN,238 
FLOWPL,243 
INVAR,239 
LINEAR,247 
Master segment, 260 
OUTPUT,258 
RESIDU, 249 
STIFFP,244 
YIELDF,241 
ZERO, 238 

Subroutines, elasto-plastic layered M ind
lin plates (additional): 

CHECKI,360 
DEPMPA,360 

Subroutines-contd. 
FEAM,355 
LAYMPA,36O 
MDMPA,362 
OUTMPA,363 
RESMPA,364 
STIMPA,367 
STRMPA,369 

Subroutines, elasto-plastic nonlayered 
Mindlin plates: 

CONVMP, 336 
DlMMP,338 
FEMP, 334 
FLOWMP, 338 
GRADMP,340 
INVMP, 340 
MINDPB,341 
NODEXY, 341 
OUTMP, 342 
RESMP,344 
SFR2,346 
STIFMP,348 
STRMP, 353 
SUBMP, 354 
VZERO,354 
ZEROMP, 354 

Subroutines, elasto-plastic (standard): 
ALGOR, 209 
CONVER,212 
INCREM,210 
INPUT,205 

Subroutines, elasto-viscoplastic (ad-
ditional): 

FLOWVP, 294 
INVERT, 288 
Master segment, 299 
STEADY, 297 
STEPVP, 289 
STIFVP, 283 
STRESS, 295 
TANGVP, 286 
ZERO, 297 

Subroutines, elasto-viscoplastic tran-
sient dynamic analysis: 

BLARGE,395 
CONTOL,396 
DYNPAK,392 
EXPLIT,396 
FIXITY, 397 
FLOWVP, 398 
FUNCTA,399 
FUNCTS,399 
INPUTD,399 
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Subroutines-----contd. 
INTI ME, 401 
INVAR,403 
JACOBD,404 
LlNGNL,404 
LOADPL,405 
LUMASS,41O 
MODPS,413 
NODXYR,413 
OUTDYN,414 
PREVOS, 416 
RESVPL,417 
YIELDF,419 

Subroutines, implicit/explicit transient 
dynamic analysis (additional):. 

ADDBAN,444 
ADDRES,444 
COLMHT,445 
DECOMP,445 
DINTOB,446 
GEOMST,446 
GSTIFF,447 
IMPEXP,449 
ITRATE,451 
LlNKIN,452 
MIXDYN,442 
MULTPY, 454 
REDBAK,455 
RESEPL,456 

Subroutines, one-dimensional: 
ASSEMB,49\ 
ASTIF1,70 
BAKSUB,54 
CONUND,72 
CONVP,I09 
DATA,35 
GREDUC,51 
INCLOD,60, 110 
INCVP, 107 
INITAL,59 
Master segment, 61 
Master segment (viscoplasticity), 111 
MONITR,65 
NONAL,40 
REFOR1,71 
REFOR2,76 
REFOR3,81 
RESOLV,57 
RESULT,58 
STIFFI,63 
STIFF2,75 
STIFF3,78 
STUNVP,106 

Subroutines, Timoshenko beam analy-
sis: 

BEAM,135 
BEAML,I44 
LAYER,147 
REFORB,137 
RFORBL,146 
STIFBL,145 
STIFFB,136 

Subroutines, two-dimensional (elastic): 
BMAtPB,191 
BMATPS, 191 
CHECKI,200 
CHECK2,202 
DBE,194 
ECHO, 201 
FRONT, 194 
GAUSSQ,179 
JACOB2, 181 
LOADPB,188 
LOADPS, 183 
MODPB,193 
MODPS,I92 
NODEXY,178 
SFR2,179 

Substructuring, 493 
Subterranean cavity, viscoplastic, 314 

Tangent modulus, 26, 225 
Tangential stiffness, 20, 26, 28, 236, 275, 

327, 329 
Tangential stiffness method, 20, 40, 206 
Theorem of minimum total potential 

energy, 44 
Time-step limitations: 

Dynamic transient, 391, 426, 437 
Elasto-viscoplastic, 102, 276 

Timoshenko beam analysis; 121 
Basic assumptions, 122 
Element stress resultants, 128 
Finite element idealisation, 125 
Formulation of the stiffness matrix, 

127, 142 
Layered approach, 122, 141 
Non-layered approach, 121, 122 
Solution of nonlinear equations, 132, 

143 
Timoshenko layered beam program, 

TIMLAY,I44 
Timoshenko non-layered beam pro

gram, TIMOSH, 135 
T&'erance value, 65, 72, 298 
Tresca yield criterion, 217, 230, 234 
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Unconditional stability, 276, 302, 437 
Uniaxial yield stress, 26, 219 
Uniaxial tension test, 26, 225 

Virtual work, 124, 162 
Viscoelastic behaviour, 305, 308 
Viscoplastic: 

Strain increment, 273 
Stress increment, 274, 295 

Viscoplastic computational procedure: 
One dimension, 103 
Two dimensions, 278 

Viscoplastic element stiffness formu
lation,283 

Viscoplastic flow function, 273, 286 
Viscoplastic strain rate, 100, 272, 294, 

398 
Viscoplastic strain rate derivative 

matrix, 274, 279 

Viscoplasticity, basic theoretical re-
sponse: 

Dynamic application, 381 
One dimension, 98 
Two dimensions, 272 

Viscoplasticity in two dimensions, 271 
Viscoplasticity in one dimension, 95 
Viscosity coefficient, 97 
Volume, elemental, 172 
Von Mises yield criterion, 218, 230 

Weighting functions, 23 
Winkler foundation, 151,372 
Work hardening, 222, 223, 228 

Yield criterion, 26, 216, 272, 326, 328 
Yield function constants, 231, 234, 235 
Yield moment, 129 
Yield surface, 217 
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